2/4/2017

Measurements

Overview

* To understand and improve program performance, you

need insight into program behavior on platform of
interest

* execution time of program

* processor pipeline: stalls

* memory hierarchy: cache accesses and misses, etc.

* Measurements (general)

* repeatability: repeating measurement on same setup gives
more or less the same results

* replicability: performing measurement on a different but
similar setup gives more or less the same results

* Measurements (computer performance)

* basic ideas are quite simple

* however processors are very complex so getting accurate
measurements can be difficult

* you must have a mental model of how processors execute
instructions to make sensible measurements

* Libraries like PAPI simplify some measurements

Timing your code

* Problems

Basic idea

* Assume there is a way to get “current
time” on the computer

+ for now, don’t worry about precise

definition of “current time” tick = “getCurrentTime”;

* Timing your code

* *
« Use the pseudocode on right /*your code here */

« definition of “current time” can be quite
subtle

modern computer systems areso
complex that \ﬁou may not be measuring
what you think you are measuring
usuallnyour code is written in C or some
other high-level language and compiler
may transform your code in unexpected
ways

execTime = tock — tick;

tock = “getCurrentTime”;

2/4/2017

Main issues

1. Initial conditions matter
* measured time may depend on state of machine when timing
starts
2. Resolution and accuracy of timer
« granularity of your measuring device
* spread in measurements
3. Heisenberg effect
* measurement may change quantity you are measuring
4. Compiler optimizations
* may need to look at actual assembly code to make sure
compiler has not modified your code in unexpected ways
5. Context-switching by O/S and hardware interrupts
« you may end up measuring stuff outside your code
6. Out-of-order execution of instructions

* what you measure may not be what you think you are
measuring

Main issues (1): Initial conditions

* Computers have a lot of internal
state
* caches, TLBs,...

* Internal state when measurement
starts can affect execution time
* are instructions in I-cache when
measurement starts?

* are memory locations accessed by
your code in caches or memory?
* what levels of cache?

tick = “getCurrentTime”; .
/*your code here */ R
v

tock = “getCurrentTime”;

execTime = tock — tick;

Main issues(2):
Resolution and accuracy

* Resolution:

* how small a quantity can the device
measure?

+ example: you can use a tape measure to
measure cloth for a suit but not to measure
how wide a hydrogen atom is

. o . . * *
* If code in Ris just a few instructions, your | /*your codehere*/ R
timer may not have resolution to
measure this

* what if timer only measured milliseconds?

* what about overhead of getCurrentTime
itself?

* Accuracy:

* assuming resolution is not a groblem, how
variable is the measurement?

« if you repeat it ten times, how wide is the
spread of measurements?

tick = “getCurrentTime”

RV B

tock = “getCurrentTime

execTime = tock — tick

Main issues(3): Heisenberg effect

* One solution to resolution problem:
* put a loop around your code and
execute it N times
* divide (tock-tick) by N
* Problems:
* loop code may change context of
measurement
« if loop counter i is allocated to a register,
does that affect register allocation in your
code?
« are your instructions still in I-cache?
* you are including loop overhead in your
measurement

tick = “getCurrentTime”

/*your code here */
tock = “getCurrentTime”

execTime = tock — tick

tick = “getCurrentTime”
for (int i=0;i<N;i++){
/*your code here */

}

tock = “getCurrentTime”

execTime = (tock — tick)/N

2/4/2017

Main issues(4):
compiler optimizations

Compiler can optimize your code in
unexpected ways so you measure
something different from what you are
expected

* Example:

* to eliminate effect of loop overhead in
previous slide, you can try to measure
execTime with and without your code in the
loop body

* however, compiler might optimize away the
loop in the second piece of code since the
loop body is empty }

* Solutions

* examine assembly code to ensure compiler
is not changing code in unexpected ways
if it is, disable compiler optimizations (but
this can change what you are measuring in
undesirable ways)

you can tweak code to trick compiler to stop
it from doing undesirable things

tick = “getCurrentTime”;
for (int i=0;i<N;i++){
/*your code here */
}
tock = “getCurrentTime”;
execTimel = (tock — tick);

tick = “getCurrentTime”;
for (int i=0;i<N;i++){
/*empty loop body*/

tock = “getCurrentTime”;
execTime2 = (tock — tick);

myCodeTime =
(execTimel — execTime2)/N;

Main issues(5): Process

-switching

Code in R may not be executed in one shot
by OS and processor

* 0OS may de-schedule your process while
executing R, schedule code from other
processes, and then get back to executing
code from R

This may haPpen many times during
execution of R

Analogy:
* taking an exam vs. doing an assignment

What is getCurrentTime measuring?

« ifitis elapsed time like “wall-clock time”,
process switches will confound your
measurement

Solutions:

« disable process switches and interrupts before
executing code in R (but you may not be able
to do this in user mode)

* find a timer that advances only when
processor is executing your program

* but context-switches may still pollute your caches

tick = “getCurrentTime”

/*your code here */ R

tock = “getCurrentTime

execTime = tock — tick

Main issues(6):
Out-of-order execution of instructions

. !\/Ioderq processors execute
instructions out of program order
* but ensure dependences are
satisfied
* Problem:
« code from region R maK get
executed outside of tick and tock
* code from outside region R may get
executed between tick and tock
* Solution:
* need to insert serializing instructions
around region R
* “fence off” instructions being timed
from other instructions
* similar to memory fences but for
instructions of all types, not just
memory operations

tick = “getCurrentTime”
/*your code here */
v

tock = “getCurrentTime

execTime = tock — tick

Drilling down

* Key questions:

* What can we use for “getCurrentTime” and | tick = “getCurrentTime”

what is its resolution?

* How do we avoid timing errors from
process-switches and interrupts?

* How do we insert serialization instructions
at tick and tock?

* Answer is very system-dependent but
we will discuss two solutions for
C/Linux/x86:

e Linux call: clock_gettime
* x86 code

/*your code here */ R

tock = “getCurrentTime

execTime = tock — tick

2/4/2017

clock_gettime

#include <time.h>
struct timespec { time_t tv_sec;
int clock_gettime(clockid_t
int clock_getres (clockid_t cl

/* seconds */ long tv_nsec; /* nanoseconds */ };
d, struct timespec *tp)
id, struct timespec *res)

* timespec
* type for time measurement
* two fields:
* tv_sec (seconds)
* tv_nsec (nanoseconds)
* to get total time in nanoseconds, multiple tv_sec by a billion and
add to tv_nsec
e clock_gettime
« first argument: which clock?
* some choices:
CLOCK_REALTIME: systemwide, real-time clock
CLOCK_PROCESS_CPUTIME_ID: high-resolution (nanosecond) timer for
process
CLOCK_THREAD_CPUTIME_ID: high-resolution (nanosecond) timer for
thread™

#include <stdio.h> /* for printf */
#include <stdint.h> /* for uint64 */
#include <time.h> /* for clock_gettime */

main(int argc, char **argv)
{ uint64_t execTime; /*time in nanoseconds */
struct timespec tick, tock;

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tick);
/* do stuff */
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tock);

execTime = 1000000000 * (tock.tv_sec - tick.tv_sec) + tock.tv_nsec - tick.tv_nsec;
printf("elapsed process CPU time = %llu nanoseconds\n", (long long unsigned int) execTime);

Implementation of clock_gettime should use serialization instructions.
CLOCK_PROCESS_CPUTIME_ID measures the amount of time spent in this process.
Resolution on systems | used is 1 nanosecond.

Even if /*do stuff */ is empty, execTime is about 2000 nanosec on these systems.

x86 code

* Getting time:
* TSC: 64-bit time-stamp counter that tracks cycles
* RDTSC instruction: read time-stamp counter
* EDX € high-order 32 bits of counter
* EAX € low-order 32 bits of counter
* no serialization guarantee
* RDTSCP instruction

« waits until all previous instructions have been executed before
reading counter

* however following instructions may begin execution before
read is performed
* Serialization instruction:
¢ CPUID instruction
« modifies EAX, EBX, ECX, EDX registers
* can be executed at any privilege level

Further reading

* Linux man pages:
« describes clock_gettime and other clocks
« https://linux.die.net/man/3/clock gettime

* Technical note from Intel:
* shows how to use RDTSC and CPUID for accurate timing
measurements
* www.intel.com/content/dam/www/public/us/en/docu
ments/white-papers/ia-32-ia-64-benchmark-code-
execution-paper.pdf

2/4/2017

PAPI| counters

Hardware counters

* Modern CPUs have hardware counters for many events
* Cycles

Instructions

Floating-point instructions

Loads and stores

I-cache misses

L1 data cache misses

L2 data cache misses

TLB misses

Pipeline stalls

* Complications
* accessing counters directly can be complex
* code is not portable

= on many processors, fewer hardware counters than events you can
track so only a subset of events can be measured in a given run

PAPI

* Performance Application Programming Interface

* Two interfaces to underlying counter hardware:

 High-level interface: provides ability to start, stop and read
counters for a specified list of events

* Low-level interface: manages hardware events in user-
defined groups called EventSets

* Timers and system information
e Cand Fortran bindings

* PAPIl interface to performance counters supported in
the Linux 2.6.31 kernel

e User guide:
http://icl.cs.utk.edu/projects/papi/files/documentation

/PAPI_USER GUIDE 23.htm

PAPI design

| Toak |
PAFI Law Level PAPL High Leval
Partable
Layer
PAPL Machine Dependent Subsirate
Machine | Kernel Extendion
Specific
Layer | QOperating System
Hardware Ferformance Courters

2/4/2017

PAP| Events

* Preset events

* platform-independent names for events deemed useful
for performance tuning

* examples: accesses to the memory hierarchy, cache
coherence protocol events, cycle and instruction counts,
functional unit and pipeline utlilization

* run PAPI papi_avail utility to determine preset events
available on platform
* PAPI also provides access to native events through
low-level interface
* may be platform-specific

PAP| preset events

* PAPI_L1_DCM: Level 1 data cache misses

* PAPI_L1_DCA: Level 1 data cache accesses

* PAPI_L1_ICM: Level 1 I-cache misses

* PAPI_L2_DCM: Level 2 data cache misses

* PAPI_L3_DCM: Level 3 data cache misses

* PAPI_FXU_IDL: cycles floating-point units are idle
* PAPI_TOT_INS: total instructions executed

* PAPI_TOT_CYC: total cycles

* PAPI_IPS: instructions executed per second

PAP| guery event

* Check whether CPU can measure the PAPI event
you are interested in

if (PAPI_OK != PAPI_query_event (PAPI_TOT_INS))
ehandler ("Cannot count PAPI_TOT_INS.");

if (PAPI_OK != PAPI_query_event (PAPI_L1_DCM))
ehandler("Cannot count PAPI_L1_DCM.");

if (PAPI_OK != PAPI_query_event (PAPI_L2_DCM))
ehandler("Cannot count PAPI_L2 _DCM.");

High Level API

* Meant for application programmers wanting simple but accurate
measurements
« calls the lower level API

* Eight important functions:
« PAPI_num_counters

+ how many hardware counters are supported?
PAPI1_start_counters
PAPI_stop_counters
PAPI_read_counters
PAP1_accum_counters

« adds counters into accumulator array and zeroes them
« PAPI_flops

« floating-point operations per second
PAPI_flips

« floating-point instructions per second
PAPI_ipc

« instructions per cycle

2/4/2017

#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<math.h>
<papi .h>

int main(int argc, char *argv[]) {

int i, j, k
long long counters[3];
int PAPI_events[] = {
PAPI_TOT_CYC,
PAPI_L2_DCM,
PAPI_L2_DCA };
PAPI_library_init(PAPI_VER_CURRENT);
i = PAPI_start_counters(PAPI_events, 3);
/* your code here */
PAPI_read_counters(counters, 3);
printf("%lld L2 cache misses (%.31F%% misses) in %Ild cycles\n",
counters[1],
(double)counters[1] / (double)counters[2],
counters[0]);

return 0;

Summary

* Measurement
* basic ideas are quite simple
* however processors are very complex so getting
accurate measurements can be difficult
* You must have a mental model of how processors
execute instructions

* Libraries like PAPI simplify some measurements

