Lecture 2

\ Logical Abstractions

of

Multiprocessors

Physical Organization

- Uniform memory access (UMA) machines

P | — M All memory is equally far away from all processors.

P M

Early parallel processors like NYU Ultracomputer

Problem: why go across network for instructions? read-only data?
what about caches?

- Non-uniform memory access (NUMA) machines:
M|
P

Bl _ Access to local memory is usually 10-1000 times
faster than access to non-local memory
M=

Static and dynamic locality of reference are critical for high performance.

Compiler support? Architectural support?

Bus-based symmetric multiprocessors (SMP’s): combine both aspects

Logical Organization

- Shared Memory Model

X

N

single
address space

| (conceptual picture)

- hardware/systems software provide single address space model
to applications programmer

- some systems: distinguish between local and remote references

- communication between processors: read/write shared memory locations: _u_.:” @Q_“

- Distributed Memory Model (Message Passing)

= — M P
=)®, = "
G5 5O g
\ [<<

P] P M—{P—

- each processor has its own address space

(conceptual picture)

- communication between processors: messages (like e-malil)

- basic message-passing commands: send receive

Key difference: In SMM, P1 can access remote memory locations
w/o prearranged participation of application program on remote processor

Message Passing

Blocking SEND/RECEIVE : couple data transfer and synchronization

- Sender and receiver rendezvous to exchange data

SrcP DestP ﬂ ﬂ

_____________ Wl (£ M F
X0= | RECEIVE(y,SrcP) T@
SEND(X, DestP) =

|

History: Caltech Cosmic Cube

- SrcP field in RECEIVE command permits DestP to select
which processor it wants to receive data from

- Implementation:

- SrcP sends token saying ‘ready to send’

- DestP returns token saying ‘me too’

- Data transfer takes place directly between application programs
w/o buffering in O/S

- Motivation: Hardware ‘channels’ between processors in early multicomputers

- Problem:
- sender cannot push data out and move on
- receiver cannot do other work if data is not available yet

one possibility: new command TEST(SrcP,flag): is there a message from SrcP?

m Overlapping of computation and communication is critical for performance w

Non-blocking SEND/RECEIVE : decouple synchronization from data transfer

SrcP DestP ﬂ ﬂ
Xi= I RECEIVE(y,SrcP,tag,flag) @ E @ i

SEND(x, DestP,tag) <=

Network

- SrcP can push data out and move on

- Many variation: return to application program when
- data is out on network?
- data has been copied into an O/S buffer?

- Tag field on messages permits receiver to receive messages
in an order different from order that they were sent by SrcP

- RECEIVE does not block
- flag is set to true by O/S if data was transfered/false otherwise

- Applications program can test flag and take the right action
- What if DestP has not done a RECEIVE when data arrives from SrcP?
- Data is buffered in O/S buffers at DestP till application program does a RECEIVE

Can we eliminate waiting at SrcP ?
Can we eliminate buffering of data at DestP ?

Asynchronous SEND/RECEIVE

SrcP DestP ﬂ ﬂ
X2= - rW._Wom_<mo_w8v;m@;_m@mv r r r r
ISEND(X, Dmm:u.”m@_:wwb E q E ﬁ
| Network

- SEND returns as soon as O/S knows about what needs to be sent
- ‘Flagl’ set by O/S when data in x has been shipped out

- Application program continues, but must test ‘flagl’ before overwriting x
- RECEIVE is non-blocking:

- returns before data arrives

- tells O/S to place data in 'y’ and set ‘flag’ after data is received
- ‘posting’ of information to O/S

- ‘Flag2’ is written by O/S and read by application program on DestP

- Eliminates buffering of data in DestP O/S area if IRECEIVE is posted
before message arrives at DestP

So far, we have looked at point-to-point communication

Collective communication:

- patterns of group communication that can be implemented more efficiently
than through long sequences of send’s and receive’s

- important ones:

- one-to-all broadcast
(eg. A*x implemented by rowwise distribution: all processors need x)

- all-to-one reduction
(eg. adding a set of numbers distributed across all processors)

- all-to-all broadcast
every processor sends a piece of data to every other processor

- one-to-all personalized communication
one processor sends a different piece of data to all other processors

- all-to-all personalized communication
each processor does a one-to-all communication

Example: One-to-all broadcast (intuition: think ‘tree’)

\)w/
Messages in each phase
Kw do not compete for links
2
{

Assuming message size is small, time to send a message = Ts + h*Th
where Ts = overhead at sender/receiver
Th = time per hop

Total time for broadcast = Ts + Th*P/2
+ Ts + Th*P/4

=Ts *logP + Th*(P-1)

Reality check: Actually, a k-ary tree makes sense because processor 0 can send
many messages by the time processor 4 is ready to participate
in broadcast

Other topologies: use the same idea

Step 1: Broadcast within row of originating processor

Step 2: Broadcast within each column in parallel

Time = Ts logP + 2Th*(sqrt(P) -1)

10

Example: All-to-one reduction

A/‘_./
%\ Messages in each phase
&79 do not compete for links
2
N~

1

Purpose: apply a commutative and associative operator

(reduction operator) like +,*,AND,OR etc to values
contained in each node

Can be viewed as inverse of one-to-all broadcast
Same time as one-to-all broadcast

Important use: determine when all processors are finished working
(implementation of ‘barrier’)

11

Example: All-to-all broadcast

J- = TN

- Intuition: cyclic shift register
- Each processor receives a value from one neighbor ,

stores it away, and sends it to next neighbor in the next phase.
- Total of (P-1) phases to complete all-to-all broadcast

Time = (Ts + Th) *(P-1) assuming message size is small

- Same idea can be applied to meshes as well:
- first phase, all-to-all broadcast within each row
- second phase, all-to-all broadcast within each column

12

A Message-passing Program

13

MPI. Message-Passing Interface

Goal: Portable Parallel Programming for
Distributed Memory Computers

- Lots of vendors of Distributed Memory Computers:
IBM,NCube, Intel, CM-5,

- Each vendor had its own communication constructs
=> porting programs required changing parallel programs
even to go from one distributed memory platform to another!

- MPI goal: standardize message passing constructs syntax and semantics

- Mid 1994: MPI-1 standard out and several implementations available (SP-2)

14

Write an MPI program to perform matrix-vector multiply

- Style of programming: Master-Slave

- one master, several slaves
- master co-ordinates activities of slaves

- Master initially owns all rows of A and vector b

- Master broadcasts vector b to all slaves

- Slaves are self-scheduled
- each slave comes to master for work
- master sends a row of matrix to slave
- slave performs product, returns result and asks for more work

- Very naive algorithm, but it's a start.

15

Key MPI Routines we will use:

MPI_INIT : Initialize the MPI System
MPI1_COMM_SIZE: Find out how many processes there are
MPI_COMM_RANK: Who am I?
MPI_SEND: Send a message
MPI_SEND(address,count,datatype,DestP,tag,comm)
e e !
permits entire data structures identifies process group
to be sent with one command

MPI_RECV: Receive a message (blocking receive)
MPI_FINALIZE: Terminate MPI

MPI1_BCAST: Broadcast

16

C

COMMON PROGRAM EXECUTED BY BOTH MASTER AND SLAVES

C 3k %k %k 3%k 3k 3k %k 3%k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 5k 3k 5k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k %k 3k 3k %k %k 3k 5k 5%k 5%k %k 3k 3k 3k 3k %k 5k %k %k %k 3k %k %k %k %k %k %k %k %k k *k

C

matmul.f - matrix - vector multiply, simple self-scheduling version

C 3k %k %k 3%k 3k 3k %k 3%k 3k %k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k %k 5k 3k 3k 3k %k %k %k 3k 3k 3k 5k 5k 3k %k %k 3k %k 3k 3k 3k %k 3k 3k 5k 3k %k %k 5%k 5k 3k 3k %k %k 3k %k 3k 3k ok %k %k %k %k %k %k %k %k *k %k k *k

200

program main

include ’mpif.h’

integer MAX_ROWS, MAX_COLS, rows, cols

parameter (MAX_ROWS = 1000, MAX_COLS = 1000)

double precision a(MAX_ROWS,MAX_COLS), b(MAX_COLS), c(MAX_COLS)
double precision buffer (MAX_COLS), ans

integer myid, master, numprocs, ierr, status(MPI_STATUS_SIZE)
integer i, j, numsent, numrcvd, sender, job(MAX_ROWS)

integer rowtype, anstype, donetype

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

master =0
rows = 100
cols = 100

if (myid .eq. master) then
master initializes and then dispatches

call MPI_FINALIZE(ierr)
stop
end

17

c CODE EXECUTED BY MASTER
if (myid .eq. master) then

C

master initializes and then dispatches

initialize a and b to arbitrary values

do

10

20 1 =
b(i)
do 10 j

a(i,

1,cols

1

= 1,rows
j) =i

continue

20 continue

numsent
numrcvd

send b to
call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,

MPI_C

each other process

OMM_WORLD, ierr)

send a row to each other process

do

30

Job(i) =

40 i =
do 30 j
buff

1,numprocs-1
= 1,cols

er(j) = a(i,j)

continue

call MP

ro

NUMBER
job (i)
numsent

40 continue

do

70 i =

I_SEND(buffer, cols, MPI_DOUBLE_PRECISION, i,
wtype, MPI_COMM_WORLD, ierr)

OF ROW CURRENTLY BEING PROCESSED BY PROCESS 1i.

=1

= numsent+1

1,rows

18

call MPI_RECV(ans, 1, MPI_DOUBLE_PRECISION, MPI_ANY_SOURCE,
$ anstype, MPI_COMM_WORLD, status, ierr)
sender = status(MPI_SOURCE)

c(job(sender)) = ans

if (numsent .1lt. rows) then
do 50 j = 1,cols
buffer(j) = a(numsent+1,j)

50 continue
call MPI_SEND(buffer, cols, MPI_DOUBLE_PRECISION, sender,

$ rowtype, MPI_COMM_WORLD, ierr)

job(sender) = numsent+1

numsent numsent+1

else
call MPI_SEND(1, 1, MPI_INTEGER, sender, donetype,

$ MPI_COMM_WORLD, ierr)
endif

70 continue

c print out the answer
do 80 i = 1,cols
print *, "c(", i, ") =", c(i)

80 continue

19

c CODE EXECUTED BY SLAVES

c slaves receive b, then compute dot products until done message
call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,
$ MPI_COMM_WORLD, ierr)
90 call MPI_RECV(buffer, cols, MPI_DOUBLE_PRECISION, master,
$ MPI_ANY_TAG, MPI_COMM_WORLD, status, ierr)
if (status(MPI_TAG) .eq. donetype) then
go to 200
else

ans = 0.0
do 100 i = 1,cols

ans = ans+buffer(i)*b(i)

100 continue
call MPI_SEND(ans, 1, MPI_DOUBLE_PRECISION, master, anstype,
$ MPI_COMM_WORLD, ierr)
go to 90
endif
endif

200 call MPI_FINALIZE(ierr)
stop

end

20

Cokskak sk ok ok ok ok ok sk sk o ok o ok o ok o ook sk sk ook sk sk ok sk ok sk o s ok ks sk o o o ook sk o sk o ks sk o ook sk o sk o ook ok ok ok ok
c matmul.f - matrix - vector multiply, simple self-scheduling version
Cokskok sk ok ok ok sk ok sk sk ook o ok sk o ok o ok sk sk ook sk sk ok sk oo ok ko sk o ok sk o o ok sk sk s ko sk ok o ook sk ok o ok ok

program main
include ’mpif.h’

integer MAX_ROWS, MAX_COLS, rows, cols

parameter (MAX_ROWS = 1000, MAX_COLS = 1000)

double precision a(MAX_ROWS,MAX_COLS), b(MAX_COLS), c(MAX_COLS)
double precision buffer (MAX_COLS), ans

integer myid, master, numprocs, ierr, status(MPI_STATUS_SIZE)
integer i, j, numsent, numrcvd, sender, job(MAX_ROWS)
integer rowtype, anstype, donetype

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
if (numprocs .1lt. 2) then
print *, "Must have at least 2 processes!"
MPI_Abort(MPI_COMM_WORLD, 1)
stop
endif

print *, "Process ", myid, " of ", numprocs, " is alive"

[l
[y

rowtype

1
N

anstype

1
w

donetype

1
o

master
rows = 100
100

cols

21

10
20

30

40

if (myid .eq. master) then
master initializes and then dispatches
initialize a and b
do 20 i = 1,cols
b(i) =1
do 10 j = 1,rows

a(i,j) =1
continue

continue

1
o

numsent

L}
o

numrcvd

send b to each other process
call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,
MPI_COMM_WORLD, ierr)

send a row to each other process
do 40 i = 1,numprocs-1
do 30 j = 1,cols
buffer(j) = a(i,j)
continue
call MPI_SEND(buffer, cols, MPI_DOUBLE_PRECISION, i,
rowtype, MPI_COMM_WORLD, ierr)
job(i) =1
numsent = numsent+1
continue

do 70 i = 1,rows
call MPI_RECV(ans, 1, MPI_DOUBLE_PRECISION, MPI_ANY_SOURCE,
anstype, MPI_COMM_WORLD, status, ierr)
sender = status(MPI_SOURCE)

22

50

70

80

90

c(job(sender)) = ans

if (numsent .1lt. rows) then
do 50 j = 1,cols
buffer(j) = a(numsent+1,j)

continue
call MPI_SEND(buffer, cols, MPI_DOUBLE_PRECISION, sender,

rowtype, MPI_COMM_WORLD, ierr)

job(sender) = numsent+1

numsent numsent+1

else

call MPI_SEND(1, 1, MPI_INTEGER, sender, donetype,
MPI_COMM_WORLD, ierr)

endif

continue

print out the answer
do 80 i = 1,cols
mvH.MHH.ﬂ *, :nA:v Mu :v = :u GAHV

continue

else
slaves receive b, then compute dot products until done message
call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, master,
MPI_COMM_WORLD, ierr)
call MPI_RECV(buffer, cols, MPI_DOUBLE_PRECISION, master,
MPI_ANY_TAG, MPI_COMM_WORLD, status, ierr)
if (status(MPI_TAG) .eq. donetype) then
go to 200
else
ans = 0.0
do 100 i = 1,cols
ans = ans+buffer(i)*b(i)

23

100 continue
call MPI_SEND(ans, 1, MPI_DOUBLE_PRECISION, master, anstype,
$ MPI_COMM_WORLD, ierr)
go to 90
endif

endif

200 call MPI_FINALIZE(ierr)
stop

end

24

q A

This style of parallel programming is called
Single Program Multiple Data (SPMD) programming

All processors execute the same code but branch on their IDs to

perform disjoint activities.

In principle, each processor could run different programs, but this
is not very common (cf. CSP, OCCAM, ...).

N \

25

