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Accelerators

• Single-core processors

• Multi-core processors

• What if these aren’t enough?

• Accelerators, specifically GPUs

• what they are

• when you should use them



Timeline

• 1980s

• Geometry Engines

• 1990s

• Consumer GPUs

• Out-of-order Superscalars

• 2000s

• General-purpose GPUs

• Multicore CPUs

• Cell BE (Playstation 3)

• Lots of specialized accelerators in phones



The Graphics Processing Unit (1980s)

• SGI Geometry Engine

• Implemented the Geometry Pipeline

• Hardwired logic

• Embarrassingly Parallel

• O(Pixels)

• Large number of logic elements

• High memory bandwidth

• From Kaufman et al. (2009):



GPU 2.0 (circa 2004)

• Like CPUs, GPUs benefited from Moore’s Law

• Evolved from fixed-function hardwired logic to flexible,

programmable ALUs

• Around 2004, GPUs were programmable “enough” to do some
non-graphics computations

• Severely limited by graphics programming model (shader

programming)

• In 2006, GPUs became “fully” programmable

• GPGPU: General-Purpose GPU

• NVIDIA releases “CUDA” language to write non-graphics

programs that will run on GPUs



FLOPS/s

NVIDIA CUDA C Programming Guide



Memory Bandwidth

NVIDIA CUDA C Programming Guide



GPGPU Today

• GPUs are widely deployed as

accelerators

• Intel Paper

• 10x vs 100x Myth

• GPUs so successful that
other accelerators are dead

• Sony/IBM Cell BE

• Clearspeed RSX

• Kepler K40 GPUs from
NVIDIA have performance
of 4TFlops (peak)

• CM-5, #1 system in 1993

was 60 Gflops (Linpack)

• ASCI White (#1 2001)

was 4.9 Tflops (Linpack)
Pictures of Titan and Tianhe 1A from the Top500 website.



Accelerator Programming Models

• CPUs have always depended on co-processors

• I/O co-processors to handle slow I/O

• Math co-processors to speed up computation

• H.264 co-processor to play video (Phones)

• DSPs to handle audio (Phones)

• Many have been transparent

• Drop in the co-processor and everything sped up

• Or used a function-based model

• Call a function and it is sped up (e.g. “decode video”)

• The GPU is not a transparent accelerator for general purpose
computations

• Only graphics code is sped up transparently

• Code must be rewritten to target GPUs



Using a GPU

• You must retarget code for the GPU

• Rewrite, recompile, translate, etc.
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The Two (Three?) Kinds of GPUs

• Type 1: Discrete GPUs

• More computational power

• More memory bandwidth

• Separate memory

NVIDIA



The Two (Three?) Kinds of GPUs #2

• Type 2: Integrated GPUs

• Share memory with processor

• Share bandwidth with processor

• Consume Less power

• Can participate in cache coherence

Intel



The NVIDIA Kepler

NVIDIA Kepler GK110 Whitepaper



Using a Discrete GPU

• You must retarget code for the GPU

• Rewrite, recompile, translate, etc.

• Working set must fit in GPU RAM

• You must copy data to/from GPU RAM

• “You”: Programmer, Compiler, Runtime, OS, etc.

• Some recent hardware can do this for you (it’s slow)



NVIDIA Kepler SMX (i.e. CPU core equivalent)



NVIDIA Kepler SMX Details

• 2-wide Inorder

• 4-wide SMT

• 2048 threads per core (64 warps)

• 15 cores

• Each thread runs the same code (hence SIMT)

• 65536 32-bit registers (256KBytes)

• A thread can use upto 255 of these

• Partitioned among threads (not shared!)

• 192 ALUs

• 64 Double-precision

• 32 Load/store

• 32 Special Functional Unit

• 64 KB L1/Shared Cache

• Shared cache is software-managed cache



CPU vs GPU

Parameter CPU GPU

Clockspeed > 1 GHz 700 MHz

RAM GB to TB 12 GB (max)

Memory B/W 60 GB/s > 300 GB/s

Peak FP < 1 TFlop > 1 TFlop

Concurrent Threads O(10) O(1000)

[O(10000)]

LLC cache size > 100MB (L3)

[eDRAM] O(10)

[traditional]

< 2MB (L2)

Cache size per thread O(1 MB) O(10 bytes)

Software-managed cache None 48KB/SMX

Type OOO super-

scalar

2-way Inorder su-

perscalar



Using a GPU

• You must retarget code for the GPU

• Rewrite, recompile, translate, etc.

• Working set must fit in GPU RAM

• You must copy data to/from GPU RAM

• “You”: Programmer, Compiler, Runtime, OS, etc.

• Some recent hardware can do this for you

• Data accesses should be streaming

• Or use scratchpad as user-managed cache

• Lots of parallelism preferred (throughput, not latency)

• SIMD-style parallelism best suited

• High arithmetic intensity (FLOPs/byte) preferred



Showcase GPU Applications

• Image Processing

• Graphics Rendering

• Matrix Multiply

• FFT

See “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU” by V.W.Lee et al. for more
examples and a comparison of CPU and GPU.
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Hierarchy of GPU Programming Models

Model GPU CPU Equivalent

Vectorizing Compiler PGI CUDA Fortran gcc, icc, etc.

“Drop-in” Libraries cuBLAS ATLAS

Directive-driven OpenACC,

OpenMP-to-CUDA

OpenMP

High-level languages pyCUDA python

Mid-level languages OpenCL, CUDA pthreads +

C/C++

Low-level languages PTX, Shader -

Bare-metal SASS Assembly/Machine

code



“Drop-in” Libraries

• “Drop-in” replacements for
popular CPU libraries,
examples from NVIDIA:

• CUBLAS/NVBLAS for

BLAS (e.g. ATLAS)

• CUFFT for FFTW

• MAGMA for LAPACK

and BLAS

• These libraries may still

expect you to manage data

transfers manually

• Libraries may support

multiple accelerators (GPU

+ CPU + Xeon Phi)



GPU Libraries

• NVIDIA Thrust

• Like C++ STL, but

executes on the GPU

• Modern GPU

• At first glance:

high-performance library

routines for sorting,

searching, reductions, etc.

• A deeper look: Specific

“hard” problems tackled

in a different style

• NVIDIA CUB

• Low-level primitives for

use in CUDA kernels



Directive-Driven Programming

• OpenACC, new standard for “offloading” parallel work to an
accelerator

• Currently supported only by PGI Accelerator compiler

• gcc 5.0 support is ongoing

• OpenMPC, a research compiler, can compile OpenMP code +
extra directives to CUDA

• OpenMP 4.0 also supports offload to accelerators

• Not for GPUs yet

int main(void) {
double pi = 0.0f; long i;

#pragma acc parallel loop reduction(+:pi)
for (i=0; i<N; i++) {

double t= (double)((i+0.5)/N);
pi +=4.0/(1.0+t*t);

}

printf("pi=%16.15f\n",pi/N);
return 0;

}



Python-based Tools (pyCUDA)

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule

mod = SourceModule(""\"
__global__ void multiply_them(float *dest, float *a, float *b)
{

const int i = threadIdx.x;
dest[i] = a[i] * b[i];

}
""\")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(
drv.Out(dest), drv.In(a), drv.In(b),
block=(400,1,1), grid=(1,1))

print dest-a*b



OpenCL

• C99-based dialect for programming heterogenous systems

• Originally based on CUDA

• nomenclature is different

• Supported by more than GPUs

• Xeon Phi, FPGAs, CPUs, etc.

• Source code is portable (somewhat)

• Performance may not be!

• Poorly supported by NVIDIA



CUDA

• “Compute Unified Device Architecture”

• First language to allow general-purpose programming for
GPUs

• preceded by shader languages

• Promoted by NVIDIA for their GPUs

• Not supported by any other accelerator

• though commercial CUDA-to-x86/64 compilers exist

• We will focus on CUDA programs



CUDA Architecture

• From 10000 feet – CUDA is like pthreads

• CUDA language – C++ dialect

• Host code (CPU) and GPU code in same file

• Special language extensions for GPU code

• CUDA Runtime API

• Manages runtime GPU environment

• Allocation of memory, data transfers, synchronization with

GPU, etc.

• Usually invoked by host code

• CUDA Device API

• Lower-level API that CUDA Runtime API is built upon



CUDA Limitations

• No standard library for GPU functions

• No parallel data structures

• No synchronization primitives (mutex, semaphores, queues,
etc.)

• you can roll your own

• only atomic*() functions provided

• Toolchain not as mature as CPU toolchain

• Felt intensely in performance debugging

• It’s only been a decade :)



Conclusions

• GPUs are very interesting parallel machines

• They’re not going away

• Xeon Phi might pose a formidable challenge

• They’re here and now

• Your laptop probably already contains one

• Your phone definitely has one


	Introduction to Accelerators
	GPU Architectures
	GPU Programming Models

