
CS377P Programming for Performance

Basic GPU Programming

Sreepathi Pai

April 24, 2015

UTCS

Outline

Introduction to CUDA

Basic Performance

Memory Performance

Outline

Introduction to CUDA

Basic Performance

Memory Performance

Background

• Discrete GPUs

• CUDA

Basics

• CUDA is a C++ dialect

• extra keywords

• extra semantics

• CUDA code consists of:

• device code (executes on the GPU)

• host code (executes on the CPU)

• execution always starts on the CPU

• CUDA compiler is nvcc

First CUDA program: Vector addition

void vector_add(int *a, int *b, int *c, int N) {
for(int i = 0; i < N; i++) {

c[i] = a[i] + b[i];
}

}

int main(void) {
...
vector_add(a, b, c, N);

}

Kernels: global keyword

__global__
void vector_add(int *a, int *b, int *c, int N) {

...
}

int main(void) {
...
vector_add<<<...>>>(a, b, c, N);

}

• The global keyword indicates a GPU kernel

• GPU kernels must be called with a configuration

Kernels: Configuration

• GPU kernels are SPMD kernels

• All threads execute the same code

• Number of threads to execute is specified at launch time

• As a grid of B thread blocks of T threads each

• Total threads: B × T

• Reason: Only threads within the same thread block can
communicate with each other (cheaply)

• Other reasons too, but this is the only algorithm-specific reason

Determining the Configuration: Work Size

• Determine a thread block size: say, 256 threads

• Divide work by thread block size

• Round up

• dN/256e

• Configuration can be changed every call

int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;

vector_add<<<blocks, threads>>>(...)

Distributing work in the kernel

__global__
vector_add(int *a, int *b, int *c, int N) {

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if(tid < N) {
c[tid] = a[tid] + b[tid];

}
}

• Maximum 232 threads supported

• gridDim, blockDim, blockIdx and threadIdx are

CUDA-provided variables

CUDA vector add so far

__global__
vector_add(int *a, int *b, int *c, int N) {

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if(tid < N) {
c[tid] = a[tid] + b[tid];

}
}

int main(void) {
int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;

...

vector_add<<<blocks, threads>>>(a, b, c, N);
}

CUDA vector add: GPU memory

• GPU can’t read CPU memory directly by default

• Arrays a, b need to be copied to GPU memory

• The result c needs to be copied back to CPU memory

• Two CUDA functions:

• cudaMalloc allocates GPU memory

• cudaMemcpy copies memory between CPU and GPU

CUDA vector add with GPU memory

int *g_a, *g_b, *g_c;

cudaMalloc(&g_a, sizeof(a[0]) * N);
cudaMalloc(&g_b, sizeof(b[0]) * N);
cudaMalloc(&g_c, sizeof(c[0]) * N);

cudaMemcpy(g_a, a, sizeof(a[0]) * N, cudaMemcpyHostToDevice);
cudaMemcpy(g_b, b, sizeof(b[0]) * N, cudaMemcpyHostToDevice);

vector_add<<<...>>>(g_a, g_b, g_c, N);

cudaMemcpy(c, g_c, sizeof(c[0]) * N, cudaMemcpyDeviceToHost);

CUDA vector add: complete?

__global__
vector_add(int *a, int *b, int *c, int N) {

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if(tid < N) {
c[tid] = a[tid] + b[tid];

}
}

int main(void) {
int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;

cudaMalloc(&g_a, sizeof(a[0]) * N);
cudaMalloc(&g_b, sizeof(b[0]) * N);
cudaMalloc(&g_c, sizeof(c[0]) * N);

cudaMemcpy(g_a, a, sizeof(a[0]) * N, cudaMemcpyHostToDevice);
cudaMemcpy(g_b, b, sizeof(b[0]) * N, cudaMemcpyHostToDevice);

vector_add<<<blocks, threads>>>(g_a, g_b, g_c, N);

cudaMemcpy(c, g_c, sizeof(c[0]) * N, cudaMemcpyDeviceToHost);
}

Outline

Introduction to CUDA

Basic Performance

Memory Performance

Heterogeneous Systems

• GPU + CPU form a heterogeneous system

• “A system with non-trivial choices of where to perform a

computation”

• Parallel execution is possible

• CPU and GPU can work independently in parallel

• In fact, GPU allows data transfers in parallel to GPU execution

• Consider distributing work so that all execution units (CPU

and GPU) are fully utilized

• Not easy to do manually, but no automatic solution widely

accepted yet

Measurement Pitfalls

Keep in mind:

• A GPU program is a parallel CPU program

• i.e. GPU code sometimes runs on a separate thread

• A CPU + GPU system is a distributed system

• i.e. clocks are unsynchronized

• especially across GPU cores

• Use timelines not intervals to reason about performance

• timelines capture overlap

• timelines illustrate critical path

• NVIDIA Profiler provides timelines

How NOT to time a GPU kernel

struct stopwatch va;

clock_start (&va) ;
vector_add_1 <<<14*8, 384>>>(ga , gb , gc , N) ;
clock_stop (&va) ;

printf (TIMEFMT "s \n" , va.elapsed.tv_sec , va.elapsed.tv_nsec) ;

• Output is approx. 40µs on my machine

• NVIDIA Compute Profiler:

• gputime=[14078.336] (µs)

Vector Addition Performance

Vector Addition Performance

How many threads: GPU Occupancy

• CPU threads share resources by time multiplexing

• One thread owns all CPU resources (registers, etc.) for its

time slice

• Context-switches are performed by OS

• GPU threads do not share resources

• Own fixed partition of resources for entire lifetime of thread

• Context-switches are performed by hardware every few cycles

• Changing number of threads changes utilization of resources

GPU Resources per SM (NVIDIA Kepler)

Resource Available Maximum

Threads 2048 1024/block

Shared Memory 48K (max) 48K/block

Registers 65536 255/thread

Thread Blocks 16 16/SM

• Every block consumes:

• T threads

• T × R registers where R is registers per thread

• 1 block

• SM shared memory per block (optional)

• The resource that gets exhausted first determines occupancy
and residency

• Occupancy : number of hardware threads utilized

• Residency : number of hardware blocks utilized

GPU Occupancy: Example 1

kernel<<<2048, 32>>>()

• T = 32

• thread limit 2048/32 = 64 thread blocks

• R = 100 (100× 32 = 3200 per thread block)

• register limit 65536/3200 = 20 thread blocks

• SM = 1K

• SM limit 48K/1K = 48 thread blocks

• Limiting resource: thread blocks (16)

• Residency: 16

• Occupancy: (16× 32)/2048 = 25%

GPU Occupancy: Example 2

kernel<<<2048, 64>>>()

• T = 64

• thread limit 2048/64 = 32 thread blocks

• R = 100 (100× 64 = 6400 per thread block)

• register limit 65536/6400 =? thread blocks

• SM = 1K

• SM limit 48K/1K = 48 thread blocks

• Limiting resource: ?

• Residency: ?

• Occupancy: (?× 64)/2048 =?%

How many threads?

• Try to maximize utilization (NVIDIA Manual)

• Is there a better strategy?

• See Volkov, V., ”Better Performance at Lower Occupancy”,

GTC 2010

Outline

Introduction to CUDA

Basic Performance

Memory Performance

Data Layout for GPU programs (AoS)

struct pt {
int x;
int y;

};

__global__
void aos_kernel(int n_pts, struct pt *p) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {
p[i].x = i;
p[i].y = i * 10;

}
}

In main():

struct pt *p;
cudaMalloc(&p, ...)

Data Layout for GPU programs (SoA)

struct pt {
int *x;
int *y;

};

__global__
void soa_kernel(int n_pts, struct pt p) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {
p.x[i] = i;
p.y[i] = i * 10;

}
}

In main():

struct pt p;
cudaMalloc(&p.x, ...)
cudaMalloc(&p.y, ...)

AoS vs SoA for GPU programs

• Array of Structures

• Structure of Arrays

• Which is better for CPU?

• Which is better for GPU?

AoS memory layout

p[0].x p[1].x p[2].x p[3].x p[4].xp[0].y p[1].y p[2].y p[3].y p[4].y

transaction boundary transaction boundary

• p[i].x memory bandwidth utilization?

SoA memory layout

p.x[0] p.x[2] p.x[4] p.x[6] p.x[8]p.x[1] p.x[3] p.x[5] p.x[7] p.x[9]

transaction boundary transaction boundary

p.y[0] p.y[2] p.y[4] p.y[6] p.y[8]p.y[1] p.y[3] p.y[5] p.y[7] p.x[9]

• p.x[i] memory bandwidth utilization?

AoS vs SoA Performance

AoS vs SoA: Number of Memory Transactions

Assigning Work to Threads

Blocked:

start = tid * blksize;
end = start + blksize;

for(i = start; i < N && i < end; i++)
a[i] = b[i] + c[i]

Interleaved:

start = tid;

for(i = start; i < N; i+=nthreads)
a[i] = b[i] + c[i]

Which, if any, is faster?

Blocking vs Interleaved

Exploiting Spatial Locality: Texture Caches

• Textures are 2-D images that are “wrapped” around 3-D

models

• Exhibit 2-D locality, so textures have a separate cache

• GPU contains a texture fetch unit that non-graphics programs
can also use

• Step 1: map arrays to textures

• Step 2: replace array reads by tex1Dfetch(), tex2Dfetch()

• Catch: Only read-only data can be cached

• you can write to the array, but it may not become visible

through the texture in the same kernel call

• i.e. texture caches are not coherent with GPU memory

• Easiest way to use textures:

• const restrict *

• Compiler will automatically use texture cache for marked arrays

Exploiting Locality: Shared Memory

• “Shared Memory” is on-chip software-managed cache, also

known as a scratchpad

• 48K maximum size

• Partitioned among thread blocks

• shared qualifier places variables in shared memory

• Can be used for communicating between threads of the same

thread block

__shared__ int x;

if(threadIdx.x == 0)
x = 1;

__syncthreads(); //required!

printf("%d\n", x);

Shared Memory (SGEMM)

__shared__ float c_sub[BLOCKSIZE][BLOCKSIZE];

// calculate c_sub

__syncthreads();

// write out c_sub to memory

Constant Data Cache

• 64KB of “constant” data

• not written by kernel

• Suitable for read-only, “broadcast” data

• All threads in a warp read the same constant data item at the
same time

• what type of locality is this?

• Uses: Filter coefficients

• 2dconv: convolution matrix entries

Summary of Memory Performance

• Layout data structures in memory to maximize bandwidth

utilization

• Assign work to threads to maximize bandwidth utilization

• Rethink caching strategies

• identify readonly data

• identify blocks that you can load into shared memory

• identify tables of constants

	Introduction to CUDA
	Basic Performance
	Memory Performance

