CRASH COURSE ON
COMPUTER ARCHITECTURE

Areg Melik-Adamyan, PhD

Engineering Manager, Intel Developer Products Division

Introduction

Who am [?
* 7 years atiIntel, 17 years in industry

* Managing compiler teams (GCC, Go)

* 10 years teaching
Why we are here?

e To better understand how CPU works

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Texbooks and References

* Try to hit the tip of the iceberg

* Explain main concepts only

* Not enough to develop your own microprocessor...

* But allow better understand behavior and performance of your program

« Hennesy, Patterson, Computer Architecture: Quantative Approach, 6t Ed.

« Blaauw, Brooks, Computer Architecture: Concepts and Evolution |

i d__HiH COMPUTER
COMPUTER ARCHITECTURE
ARCHITECTURE Soro3d

A Quantitative Approach

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Lecture Outline

* Pipeline

 Memory Hierarchy (Caches: +1 lecture later)
* Qut-of-order execution

* Branch prediction

* Real example: Haswell Microarchitecture

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Layers of Abstraction

Application

Algorithms
- Software

Programming Languages

Operating Systems/Libraries

Interface between

HW and SW Instruction Set Architecture

Microarchitecture
Gates/Register-Transfer Level (RTL)

Hardware - : :
Circuits

Physics

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Basic CPU Actions

4ns 8ns time
< L >

F DE MW

1. Fetch instruction by PC from memory
Decode it and read its operands from registers
Execute calculations

Read/write memory

ok~ WD

Write the result into registers and update PC

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Non-Pipelined Processing

Sync signal
(clocks) ‘ l

4ns 8ns 12ns 16ns time
£ 2 >

>
F[ou M((,

instr 0 f lo £ M W

instr 1 o
°©
§ T
instr 2 % F D [
v = ! =

* Instructions are processed sequentially, one per cycle
 How to speed-up?

 SW: decrease number of instructions

« HW: decrease the time to process one instruction

or overlap their processing. i.e. make pipeline

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline

el R AR IR ERARARER

4ns 8ns 12ns 16ns time
> > -> - »
instr 0 F D E M W
instrl | 2 F ' D E M W
% |
o
instr2 | % F D E M 'W
' - > J

* Processing is split into several steps called “stages”
* Each stage takes one cycle
* The clock cycle is determined by the longest stage
* Instructions are overlapped
* A new instruction occupies a stage as soon as the previous one leaves it

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline vs Non-Pipeline

Non-Pipelined

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline vs Non-Pipeline

Non-Pipelined
we an
nstr 3 8ns
i
Pipelined * Pipeline improves
throughput, not latency
» Effective time to process
we | pipeline fill tol FT instruction is one clock
str 3 (:) e
. ’%(- — Clock length is defined by
| ‘/,;/ - the longest stage
o

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline Limitations

* Max speed of the pipeline is one instruction per clock

* [tis rare due to dependencies among instructions (data or control) and in-
order processing

F|D|E|IM|W

F|DIE|M|W
F|D|E|M|W
F|D|E|M|W
F| D|E|M|W
F|D|E|M|W

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

Other names and brands may be claimed as the property of others.

Pipeline Limitations

» Various types of hazards:
* read after write (RAW), a true dependency
« write after read (WAR), an anti-dependency
* write after write (WAW), an output dependency

F|D|E| M| W
F|D]J]E|M| W
F | D BE M
3

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Motivation for Memory Hierarchy

SO F=ereo e serzeyssims pome s béf'yé'a.r' / CPU
(Doubles every 1.5 year)
i [0]5 | [T TR S AR——
Relati Performance gap
perfo?':rlw\;fwce (Grows 50% per year)
‘] 0 9% peryear
(Doubles every 10 year DRAM

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Tradeoffs

* Large memories are slow

* Small memories are fast, but expensive and consume high power

* Goal: give the processor a feeling that it has memory which is fast, large,
cheap and consumes low energy

* Solution: Hierarchy of Memories

ceu | t1 |—1 L2 L3 Memory

——| Cache »| Cache |——| Cache |—-|(DRAM)

Speed: Fastest > Slowest
Capacity (size): Smallest >
Cost: Highest >
Power: Highest >

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Superscalar: Wide Pipeline

* Pipeline exploits instruction level parallelism (ILP)
« Can we improve? Execute, instructions in parallel
* Need to double HW structures

* Max speedup is 2 instructions per cycle (IPC=2)
 Thereal speedup is less due to dependencies and in-order execution

Flo|lE|[m|w

FlolEe|m|w
Flo|E|m|\d
F

o
=
=

o
=
=

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Is Superscalar Good Enough?

* Theoretically can execute multiple instructions in parallel

* Wide pipeline => more performance

 But...
* Only independent subsequent instructions can be executed in parallel

 Whereas subsequent instructions are often dependent

* So the utilization of the second pipe is often low

 Solution: out-of-order execution

* Execute instructions based on the “data flow” graph, rather than
program order

» Still need to keep the visibility of in-order execution

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data Flow Analysis

Example: Data Flow Graph

(1) rl <« r4 / r7 o e o
r1 N r5&=

(2) r8 «— rl + r2

(3) 'S« nrS +1 \ ¥
(4) «— ré - r3 0 9
(S) r4 < load [I‘S +] r8 v\ /7 rd

(6) r7 «<— r8 * r4 o

In-order execution Out-of-order execution

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Instruction “Grinder”

Then technology allowed building wide HW, but the code representation
remained sequential

Decision: extract parallelism back by means of hardware
Compatibility burden: needs to look like sequential hardware

N

Sophisticated s

Parallel

Sequential Visibility of
algorithms

code (ISA) parallel sequential HW

\
R

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Why Order is Important?

* Many mechanisms rely on original program order

— Precise exceptions: nothing after instruction caused an
exception can be executed

(1) #3 &= ¥l + "2. that if they are executed in the
(2) S« rd / r3™s following order: (1) = (3) = (2)

(3) P2 = r7 + P6 and then (2) leads to exception?

— Memory model: inter-thread communication requires that
the memory accesses are ordered

LD A ST B . LDA LD B

LD B STA STB STA
Load A returns new data, Load B Both loads return new data =
returns old data = NOT ALLOWED | | NOT ALLOWED

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Maintaining Architectural State

* Solution: support two state, speculative and architectural

* Update arch state in program order using special buffer
called ROB (reorder buffer) or instruction window
— Instructions written and stored in-order

— Instruction leaves ROB (retired) and update arch state only if it is
the oldest one and has been executed

b . Visibility of
Sequential Fetch & Instruction . oy,
, ' . Retirement sequential

code Decode window
N execution

L) N

| ArchitecturaIJ
Y

Speculative Out-of-order state
state r execution \

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Dependency Check

HW instruction window (ROB)
14 13 12 11 10 9 8 7 6

15
Fetch
?

T

r3 «— rl + r2 rl - . | Pe & L

consumers

Retire

Src2: not ready

* For each source check its previous producer

— If both sources are ready then instruction is ready
— If a source is not ready, write the instr# into the consumer list of producer

* When an instruction becomes ready, send a signal to all
consumers that their sources become ready too

* Forloads need also to check addresses of all previous stores

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

How Large Windows Should Be?

* Inshort, the large window - the better
— Find more independent instructions
— Hide longer latencies (e.g., cache misses, long operations)

* Example
— The modern CPU has a window of 200

— If we want execute 4 instruction per cycle, then we can
hide latency of 50 cycles

— It is enough to hide L1 and L2 misses, but not L3 miss

* But, there are limitation to find independent
instructions in a large window:

— branches and false dependencies

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Limitation: False Dependencies

Example: Data Flow Graph
(1) r1 « r4 / r7 &
(2) r8 <« rl + r2 6 4 0
(3) P1 « S + 1 r1\ r1\
(4) “— ré - r3 (5

(S5) r4 « load [r1 +]
(6) r7 <« r8 * r4

r8 % 4 rd

Out-of-order execution False Dependencies:
* Write-After-Write: (1) = (3)
3] s e * Write-After-Read: (2) » (3)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Register Renaming

* Redo register allocation that was done by compiler
* Eliminate all false dependencies

Example: Renaming
&9] prio prie = ri
@3] pril pril = r8
(3)f Pl < r5 + 1 prl2 = ril
(4)F5E8 < r6 - r3 pri3 =

(S)m~— load goy+ = prid

Register Aliases Table (RAT)

pri2 pria pri3 pril

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Limitation: Branches

* How to fill a large window from a single sequential
instruction stream in presence of branches?

Fetch l Retire

* How harmful are branches?
* In average, each 5th instruction is a branch
* |f follow one branch path randomly, then accuracy is 50%

* The probability that 100" instruction in the window will
not be removed is (50%)*20 = 0.0001%

* Need significantly increase accuracy!

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Dynamic Branch Prediction

* Dynamic branch prediction approach:

— As soon as branch is fetched (at IF stage) change the PC to the
predicted path

— Switch to the right path after the branch execution if the prediction
was wrong

* It required complex hardware at IF stage that will predicts:
— Is it a branch

PC
— Branch taken or not

~ Taken branch target sacnrc IR

* Structure performs v
such function is
called BPU

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

Other names and brands may be claimed as the property of others

How To Predict Branch?

* A saturating counter or bimodal predictor is a state machine
with four states:

* Why four states?
-~ Bimodal predictor make only one mistake on a loop back branch
(on the loop exit)

* Advantages:
—~ Small - only 2 bits per branch
— Predicts well branches with stable behaviour

* Disadvantages
— Cannot predict well branches which often change their outcome:

¢« egT,NT,T,NT,T,NT, T,NT,T,..

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using History Patterns

* Remember not just most often outcome, but most
often outcome after certain history patterns

present
future past

Pattern hnstory table
> | >
Branch

utrrmqryl m weakly | '
sequence: k

1001|060 0(10 0 “*'“‘“’”
= - Q”’ U)

Prediction: 7]

TRU E 11 5"("“3’)': ‘ wer ﬂ ly | (\! ongl y\
Result:

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Local Predictor

* Local branch predictor has a separate history buffer
and pattern table for each branch

pistory [

=) Prediction

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Global Predictor

* Global predictor have common history and pattern table
for all branches

* Can have very large history if (a == 3)
{
* Can see correlation among different
branches }
* The real branch predictor is a if (a > 6)

combination of different local, global
and more sophisticated predictors)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Concepts Covered

* Advantages of OO0 Execution
— Help to exploit Instruction Level Parallelism (ILP)
— Help to hide latencies (e.g., cache miss, divide)
— Superior/complementary to the compiler

* Complex HW
— Requires reconstruction of original order
— Complex dependency check logic
— Register renaming
— Branch prediction and Speculative Execution

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel Processor Roadmap

Year ’ 2008 2010 2011 2012 PAES 2014 2015 2016

Haswell

Tech

45 nm 32 nm 22 nm 14 nm 10 nm
Process

Nehalem Westmere Ivy Bridge Haswell Broadwell Skylake Cannonlake

Tick-Tock model

— A new microarchitecture (Tock) is followed by process
compaction (Tick)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Haswell Floorplan

. S§l§‘tlem,
ﬁi\gent '
N
E ,;.I\Aeq.lory
' ‘ Controller. 192 Entry Reorder Buffer (ROB)
==Shared’L3'Cache ™= Tu | f T ¢[: I 1]
‘ ey T (regme) ([g) Comtermmes) (comtmer) (s e
. 60 Entry Uniﬁe‘cri Scheduler - -]
* 22nm process -.--
« 1.4 Billion transistors ; .

* Diesize: 160 mm2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

f‘uu
E/§=]

w.{’.

....3__!

Haswell (56 pop Decode Queue)

Block Diagram —]

192 Entry Reorder Buffer (ROB)
|

.
Branch Haswell _r Instruction
Predictors 'l Fetch Unit 168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
/ Heglsters Registers Order Buffer Load Buffer Store Buffer
LI ITLBI 32KB L1 I-Cache (8 way)
[60 Entry Unified Scheduler]

168~
w

P::-rt 0 Port 1] Port 5 Port 6 Port 2 Port 3 |Port 4
[16B Predecode, Fetch Buffer] F | 1 i J |
6 Instructions ALU 256-bit ALU ALU 256-bit
v Branch VMUL LEA Fast LEA VALU
[2x20 Instruction Queue] Shift VShift MUL VShuffle
)

k 4 w
256—blt 256-bit 256-bit 256-bit ALU
FMA FMA VALU FShuffle] | Branch
FBlend FADD VBlend FBlend Shift

w

code Complex}| Simple || Simple Simple
H Decoder] |Decoder] | Decoder) | Decode

4uOPS"‘"-. THop™~ THopSW luop""
[1.5K pop Cache (8 wayH 56 pop Decode Queue J
4 pops

328

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd

Instruction Fetch and Decode
« 32 KB 8-way Icache

* 4 decoders, up to 4 inst/cycle

 CISC to RISC transformation

6 Instructions

* Decode Pipeline supports 16
bytes per cycle

e’ Hops .

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Instruction Decode

* Four decoding units decode instructions
Into uops
* The first can decode all instructions
up to four uops in size
* Uops emitted by the decoders are
directed to the Decode Queue and to
the Decoded Uop Cache
* Instructions with >4 uoops generate
their uops from the MSROM
« The MSROM bandwith is 4 uops per
cycle

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Decode UOP Cache

* The UC is an accelerator of the
legacy decode pipeline
— Caches the uops coming out of the
instruction decoder

-~ Next time uops are taken from the UC
- The UC holds up to 1536 uops
— Average hit rate of 80% of the uops

6 Instructions

» Skips fetch and decode for the cached uops
- Reduces latency on branch mispredictions
-~ Increases uop delivery bandwidth to the OO0 engine
— Reduces front end power consumption

* The UCis virtually addressed — —
— Flushed on a context switch —_————

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Loop Stream Detector

« LSD detects small loops that fitin the
Decode Queue
 The loop streams from the uop queue,
with no more fetching, decoding, or
reading uops from any of the caches L1ime |
* Works until a branch misprediction '"
* The loops with the following attributes
quallfy for LSD replay
Up to 56 uops
 All uops are also resident in the UC
« No more than eight taken branches
* No CALL or RET
* No mismatched stack operations (e.g.
more PUSH than POP)

6 Instructions

=7 4 uops '

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Macro-Fusion

* Merge two instructions into a single uop
* |Increased decode, rename and retire
bandwidth
* Power savings from representing
more work in fewer bits
* The first instruction of a macro-fused pair
modifies flags
« CMP, TEST, ADD, SUB, AND, INC, DEC
« The 2"dinst of a macro-fusible pairis a
conditional branch
* For each first instruction, some
branches can fuse with it
These pairs are common in many apps

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OOO Structures

4 Hops \l\

(192 Entry Reorder Buffer (ROB)]
|

¥ y Y Y y

168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer
60 Entry Unified Scheduler]

Window (BOB)

In-flight Loads (LB) 48 64 72
In-flight Stores (SB) 32 36 42
Scheduler Entries (RS) 36 54 60
Integer Registers Equal to ROB 160 168
FP Registers Equal to ROB 144 168

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O0O0O: Renamer

* Rename 4 uops / cycle and provide to the OO0 engine

— Renames architectural sources and destinations of the uops to micro-
architectural sources and destinations

-~ Allocates resources to the uops, e.g., load or store buffers
- Binds the uop to an appropriate dispatch port

* Some uops can execute to completion during rename,
effectively costing no execution bandwidth
- Zero idioms (dependency breaking idioms)
— NOP
- VZEROUPPER
- FXCHG
— A subset of register-to-register MOV

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OOO: Dependency Breaking Idiom

* Move elimination
— Moves just update RAT w/o real copy of register value

— Example: eax is renamed to prl0,
after mov eax->ebx, ebx is also renamed to prl0

* Instruction parallelism can be improved by zeroing register
content

* Zero idiom examples
—~ XOR REG,REG
— SUB REG,REG

* Zero idioms are detected and removed by the renamer
— Have zero execution latency
— They do not consume any execution resource

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

EXE

&0-entry Unifiad Reservation Station

Port 2 Port 3 Port 4 Port 5

Load/
Store
Address

Integer

ALULEA

Branch

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Core Cache Size/Latency/Bandwidth

Metric Nehalem
L1 Instruction Cache 32K, 4-way
L1 Data Cache 32K, 8-way
Fastest Load-to-use 4 cycles
Load bandwidth 16 Bytes/cycle
Store bandwidth 16 Bytes/cycle
L2 Unified Cache 256K, 8-way
Fastest load-to-use 10 cycles

Bandwidth to L1

L1 Instruction TLB

32 Bytes/cycle

4K: 128, 4-way
2M/4M: 7/thread

4K: 64, 4-way

L1 Data TLB

L2 Unified TLB

All caches use 64-byte lines

2M/4M: 32, 4-way

1G: fractured

4K: 512, 4-way

\

Sandy Bridge Haswell
32K, B-way 32K, 8-way
32K, 8-way 32K, 8-way

4 cycles 4 cycles
32 Bytes/cycle
(banked) 64 Bytes/cycie

16 Bytes/cycle 32 Bytes/cycle

256K, 8-way 256K, 8-way
11 cycles 11 cycles
32 Bytes/cycle [64 Byheslcycla]

4K: 128, 4-way
2M/4M: 8/thread

4K: 128, 4-way
2M/4M: 8/thread

4K: 64, 4-way 4K: 64, 4-way
2M/4M: 32, 4-way | 2M/4M: 32, 4-way
1G: 4, 4-way 1G: 4, 4-way
: £ 4K+2M shared:
4K: 512, 4-way [1024, 8-way L

15 Intet® Miroarchitecture {(Haswell); intel® Microarchitecture (Sandy Bridge); Intet® Microarchitecture (Nehalem)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ST vs MT

ST ST
1x width 2x width

4x area
1.5x perf

1x area

1x perf

SMT

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

MT
4x width

Ixarea Ixarea
Ixperf 1xperf

Ixarea 1Ixarea
Ixperf 1xperf

