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Introduction

Who am [?
* 7 years atiIntel, 17 years in industry

* Managing compiler teams (GCC, Go)

* 10 years teaching
Why we are here?

e To better understand how CPU works
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Texbooks and References

* Try to hit the tip of the iceberg

* Explain main concepts only

* Not enough to develop your own microprocessor...

* But allow better understand behavior and performance of your program

« Hennesy, Patterson, Computer Architecture: Quantative Approach, 6t Ed.

« Blaauw, Brooks, Computer Architecture: Concepts and Evolution |

i d__HiH COMPUTER
COMPUTER ARCHITECTURE
ARCHITECTURE Soro3d

A Quantitative Approach
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Lecture Outline

* Pipeline

 Memory Hierarchy (Caches: +1 lecture later)
* Qut-of-order execution

* Branch prediction

* Real example: Haswell Microarchitecture
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Layers of Abstraction

Application

Algorithms
- Software

Programming Languages

Operating Systems/Libraries

Interface between

HW and SW Instruction Set Architecture

Microarchitecture
Gates/Register-Transfer Level (RTL)

Hardware - : :
Circuits

Physics
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Basic CPU Actions

4ns 8ns time
< L >

F DE MW

1. Fetch instruction by PC from memory
Decode it and read its operands from registers
Execute calculations

Read/write memory

ok~ WD

Write the result into registers and update PC
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Non-Pipelined Processing

Sync signal
(clocks) ‘ l

4ns 8ns 12ns 16ns time
£ 2 >

>
F[ou M((,

instr 0 f lo £ M W

instr 1 o
°©
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instr 2 % F D [
v = ! =

* Instructions are processed sequentially, one per cycle
 How to speed-up?

 SW: decrease number of instructions

« HW: decrease the time to process one instruction

or overlap their processing. i.e. make pipeline
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Pipeline

el R AR IR ERARARER

4ns 8ns 12ns 16ns time
> > -> - »
instr 0 F D E M W
instrl | 2 F ' D E M W
% |
o
instr2 | % F D E M 'W
' - > J

* Processing is split into several steps called “stages”
* Each stage takes one cycle
* The clock cycle is determined by the longest stage
* Instructions are overlapped
* A new instruction occupies a stage as soon as the previous one leaves it
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Pipeline vs Non-Pipeline

Non-Pipelined
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Pipeline vs Non-Pipeline

Non-Pipelined
we an
nstr 3 8ns
i
Pipelined * Pipeline improves
throughput, not latency
» Effective time to process
we | pipeline fill tol FT instruction is one clock
str 3 (: ) e
. ’%( - — Clock length is defined by
| ‘/,;/ - the longest stage
o
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Pipeline Limitations

* Max speed of the pipeline is one instruction per clock

* [tis rare due to dependencies among instructions (data or control) and in-
order processing

F|D|E|IM|W

F|DIE|M|W
F|D|E|M|W
F|D|E|M|W
F| D|E|M|W
F|D|E|M|W
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Pipeline Limitations

» Various types of hazards:
* read after write (RAW), a true dependency
« write after read (WAR), an anti-dependency
* write after write (WAW), an output dependency

F|D|E| M| W
F|D]J]E|M| W
F | D BE M
3
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Motivation for Memory Hierarchy

SO F=ereo e serzeyssims pome s béf'yé'a.r' ............ / CPU
(Doubles every 1.5 year)
i [0]5 | [T TR S AR——
Relati Performance gap
perfo?':rlw\;fwce (Grows 50% per year)
‘] 0 ............................. 9% peryear .........................
(Doubles every 10 year DRAM
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Memory Tradeoffs

* Large memories are slow

* Small memories are fast, but expensive and consume high power

* Goal: give the processor a feeling that it has memory which is fast, large,
cheap and consumes low energy

* Solution: Hierarchy of Memories

ceu | t1 |—1 L2 L3 Memory

——| Cache »| Cache |——| Cache |—-|(DRAM)

Speed: Fastest > Slowest
Capacity (size): Smallest >
Cost: Highest >
Power: Highest >
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Superscalar: Wide Pipeline

* Pipeline exploits instruction level parallelism (ILP)
« Can we improve? Execute, instructions in parallel
* Need to double HW structures

* Max speedup is 2 instructions per cycle (IPC=2)
 Thereal speedup is less due to dependencies and in-order execution

Flo|lE|[m|w

FlolEe|m|w
Flo|E|m|\d
F

o
=
=

o
=
=
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Is Superscalar Good Enough?

* Theoretically can execute multiple instructions in parallel

* Wide pipeline => more performance

 But...
* Only independent subsequent instructions can be executed in parallel

 Whereas subsequent instructions are often dependent

* So the utilization of the second pipe is often low

 Solution: out-of-order execution

* Execute instructions based on the “data flow” graph, rather than
program order

» Still need to keep the visibility of in-order execution
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Data Flow Analysis

Example: Data Flow Graph

(1) rl <« r4 / r7 o e o
r1 N r5&=

(2) r8 «— rl + r2

(3) 'S« nrS +1 \ ¥
(4) «— ré - r3 0 9
(S) r4 < load [I‘S + ] r8 v\ /7 rd

(6) r7 «<— r8 * r4 o

In-order execution Out-of-order execution
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Instruction “Grinder”

Then technology allowed building wide HW, but the code representation
remained sequential

Decision: extract parallelism back by means of hardware
Compatibility burden: needs to look like sequential hardware

N

Sophisticated s

Parallel

Sequential Visibility of
algorithms

code (ISA) parallel sequential HW

\
R
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Why Order is Important?

* Many mechanisms rely on original program order

— Precise exceptions: nothing after instruction caused an
exception can be executed

(1) #3 &= ¥l + "2. that if they are executed in the
(2) S« rd / r3™s following order: (1) = (3) = (2)

(3) P2 = r7 + P6 and then (2) leads to exception?

— Memory model: inter-thread communication requires that
the memory accesses are ordered

LD A ST B . LDA LD B

LD B STA STB STA
Load A returns new data, Load B Both loads return new data =
returns old data = NOT ALLOWED | | NOT ALLOWED
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Maintaining Architectural State

* Solution: support two state, speculative and architectural

* Update arch state in program order using special buffer
called ROB (reorder buffer) or instruction window
— Instructions written and stored in-order

— Instruction leaves ROB (retired) and update arch state only if it is
the oldest one and has been executed

b . Visibility of
Sequential Fetch & Instruction . oy,
, ' . Retirement sequential

code Decode window
N execution

L) N

| ArchitecturaIJ
Y

Speculative Out-of-order state
state r execution \
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Dependency Check

HW instruction window (ROB)
14 13 12 11 10 9 8 7 6

15
Fetch
?

T

r3 «— rl + r2 rl - . | Pe & L

consumers

Retire

Src2: not ready

* For each source check its previous producer

— If both sources are ready then instruction is ready
— If a source is not ready, write the instr# into the consumer list of producer

* When an instruction becomes ready, send a signal to all
consumers that their sources become ready too

* Forloads need also to check addresses of all previous stores
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How Large Windows Should Be?

* Inshort, the large window - the better
— Find more independent instructions
— Hide longer latencies (e.g., cache misses, long operations)

* Example
— The modern CPU has a window of 200

— If we want execute 4 instruction per cycle, then we can
hide latency of 50 cycles

— It is enough to hide L1 and L2 misses, but not L3 miss

* But, there are limitation to find independent
instructions in a large window:

— branches and false dependencies
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Limitation: False Dependencies

Example: Data Flow Graph
(1) r1 « r4 / r7 &
(2) r8 <« rl + r2 6 4 0
(3) P1 « S + 1 r1\ r1\
(4) “— ré - r3 (5

(S5) r4 « load [r1 + ]
(6) r7 <« r8 * r4

r8 % 4 rd

Out-of-order execution False Dependencies:
* Write-After-Write: (1) = (3)
3] s e * Write-After-Read: (2) » (3)
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Register Renaming

* Redo register allocation that was done by compiler
* Eliminate all false dependencies

Example: Renaming
&9] prio prie = ri
@3] pril pril = r8
(3)f Pl < r5 + 1 prl2 = ril
(4)F5E8 < r6 - r3 pri3 =

(S)m~— load goy+ = prid

Register Aliases Table (RAT)

pri2 pria pri3 pril
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Limitation: Branches

* How to fill a large window from a single sequential
instruction stream in presence of branches?

Fetch l Retire

* How harmful are branches?
* In average, each 5th instruction is a branch
* |f follow one branch path randomly, then accuracy is 50%

* The probability that 100" instruction in the window will
not be removed is (50%)*20 = 0.0001%

* Need significantly increase accuracy!
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Dynamic Branch Prediction

* Dynamic branch prediction approach:

— As soon as branch is fetched (at IF stage) change the PC to the
predicted path

— Switch to the right path after the branch execution if the prediction
was wrong

* It required complex hardware at IF stage that will predicts:
— Is it a branch

PC
— Branch taken or not

~ Taken branch target sacnrc IR

* Structure performs v
such function is
called BPU
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How To Predict Branch?

* A saturating counter or bimodal predictor is a state machine
with four states:

* Why four states?
-~ Bimodal predictor make only one mistake on a loop back branch
(on the loop exit)

* Advantages:
—~ Small - only 2 bits per branch
— Predicts well branches with stable behaviour

* Disadvantages
— Cannot predict well branches which often change their outcome:

¢« egT,NT,T,NT,T,NT, T,NT,T,..
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Using History Patterns

* Remember not just most often outcome, but most
often outcome after certain history patterns

present
future past

Pattern hnstory table
> | >
Branch

utrrmqryl m weakly | '
sequence: k

1001|060 0(10 0 “*'“‘“’”
= - Q”’ U )

Prediction: 7]

TRU E 11 5"("“3’)': ‘ wer ﬂ ly | (\! ongl y\
Result:
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Local Predictor

* Local branch predictor has a separate history buffer
and pattern table for each branch

pistory [

=) Prediction
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Global Predictor

* Global predictor have common history and pattern table
for all branches

* Can have very large history if (a == 3)
{
* Can see correlation among different
branches }
* The real branch predictor is a if (a > 6)

combination of different local, global
and more sophisticated predictors )
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Concepts Covered

* Advantages of OO0 Execution
— Help to exploit Instruction Level Parallelism (ILP)
— Help to hide latencies (e.g., cache miss, divide)
— Superior/complementary to the compiler

* Complex HW
— Requires reconstruction of original order
— Complex dependency check logic
— Register renaming
— Branch prediction and Speculative Execution
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Intel Processor Roadmap

Year ’ 2008 2010 2011 2012 PAES 2014 2015 2016

Haswell

Tech

45 nm 32 nm 22 nm 14 nm 10 nm
Process

Nehalem Westmere Ivy Bridge Haswell Broadwell Skylake Cannonlake

Tick-Tock model

— A new microarchitecture (Tock) is followed by process
compaction (Tick)
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Haswell Floorplan

. S§l§‘tlem,
ﬁi\gent '
N
E ,;.I\Aeq.lory
' ‘ Controller. 192 Entry Reorder Buffer (ROB)
==Shared’L3'Cache ™= Tu | f T ¢[ : I 1 ]
‘ ey T (regme ) ([ g ) Comtermmes) (comtmer ) (s e
. 60 Entry Uniﬁe‘cri Scheduler - - ]
* 22nm process -.--
« 1.4 Billion transistors ; .

* Diesize: 160 mm2
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Haswell ( 56 pop Decode Queue )

Block Diagram — ]

192 Entry Reorder Buffer (ROB)
|

.
Branch Haswell _r Instruction
Predictors 'l Fetch Unit 168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
/ Heglsters Registers Order Buffer Load Buffer Store Buffer
LI ITLBI 32KB L1 I-Cache (8 way)
[ 60 Entry Unified Scheduler ]

168~
w

P::-rt 0 Port 1] Port 5 Port 6 Port 2 Port 3 |Port 4
[ 16B Predecode, Fetch Buffer ] F | 1 i J |
6 Instructions ALU 256-bit ALU ALU 256-bit
v Branch VMUL LEA Fast LEA VALU
[ 2x20 Instruction Queue ] Shift VShift MUL VShuffle
)

k 4 w
256—blt 256-bit 256-bit 256-bit ALU
FMA FMA VALU FShuffle] | Branch
FBlend FADD VBlend FBlend Shift

w

code Complex}| Simple || Simple Simple
H Decoder] |Decoder] | Decoder) | Decode

4uOPS"‘"-. THop™~  THopSW luop""
[1.5K pop Cache (8 wayH 56 pop Decode Queue J
4 pops

328

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




FrontEnd

Instruction Fetch and Decode
« 32 KB 8-way Icache

* 4 decoders, up to 4 inst/cycle

 CISC to RISC transformation

6 Instructions

* Decode Pipeline supports 16
bytes per cycle

e’ Hops .
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FrontEnd: Instruction Decode

* Four decoding units decode instructions
Into uops
* The first can decode all instructions
up to four uops in size
* Uops emitted by the decoders are
directed to the Decode Queue and to
the Decoded Uop Cache
* Instructions with >4 uoops generate
their uops from the MSROM
« The MSROM bandwith is 4 uops per
cycle
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FrontEnd: Decode UOP Cache

* The UC is an accelerator of the
legacy decode pipeline
— Caches the uops coming out of the
instruction decoder

-~ Next time uops are taken from the UC
- The UC holds up to 1536 uops
— Average hit rate of 80% of the uops

6 Instructions

» Skips fetch and decode for the cached uops
- Reduces latency on branch mispredictions
-~ Increases uop delivery bandwidth to the OO0 engine
— Reduces front end power consumption

* The UCis virtually addressed — —
— Flushed on a context switch —_————
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FrontEnd: Loop Stream Detector

« LSD detects small loops that fitin the
Decode Queue
 The loop streams from the uop queue,
with no more fetching, decoding, or
reading uops from any of the caches L1ime |
* Works until a branch misprediction '"
* The loops with the following attributes
quallfy for LSD replay
Up to 56 uops
 All uops are also resident in the UC
« No more than eight taken branches
* No CALL or RET
* No mismatched stack operations (e.g.
more PUSH than POP)

6 Instructions

=7 4 uops '
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FrontEnd: Macro-Fusion

* Merge two instructions into a single uop
* |Increased decode, rename and retire
bandwidth
* Power savings from representing
more work in fewer bits
* The first instruction of a macro-fused pair
modifies flags
« CMP, TEST, ADD, SUB, AND, INC, DEC
« The 2"dinst of a macro-fusible pairis a
conditional branch
* For each first instruction, some
branches can fuse with it
These pairs are common in many apps
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OOO Structures

4 Hops \l\

( 192 Entry Reorder Buffer (ROB) ]
|

¥ y Y Y y

168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer
60 Entry Unified Scheduler ]

Window (BOB)

In-flight Loads (LB) 48 64 72
In-flight Stores (SB) 32 36 42
Scheduler Entries (RS) 36 54 60
Integer Registers Equal to ROB 160 168
FP Registers Equal to ROB 144 168
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O0O0O: Renamer

* Rename 4 uops / cycle and provide to the OO0 engine

— Renames architectural sources and destinations of the uops to micro-
architectural sources and destinations

-~ Allocates resources to the uops, e.g., load or store buffers
- Binds the uop to an appropriate dispatch port

* Some uops can execute to completion during rename,
effectively costing no execution bandwidth
- Zero idioms (dependency breaking idioms)
— NOP
- VZEROUPPER
- FXCHG
— A subset of register-to-register MOV
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OOO: Dependency Breaking Idiom

* Move elimination
— Moves just update RAT w/o real copy of register value

— Example: eax is renamed to prl0,
after mov eax->ebx, ebx is also renamed to prl0

* Instruction parallelism can be improved by zeroing register
content

* Zero idiom examples
—~ XOR REG,REG
— SUB REG,REG

* Zero idioms are detected and removed by the renamer
— Have zero execution latency
— They do not consume any execution resource
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EXE

&0-entry Unifiad Reservation Station

Port 2 Port 3 Port 4 Port 5

Load/
Store
Address

Integer

ALULEA

Branch
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Core Cache Size/Latency/Bandwidth

Metric Nehalem
L1 Instruction Cache 32K, 4-way
L1 Data Cache 32K, 8-way
Fastest Load-to-use 4 cycles
Load bandwidth 16 Bytes/cycle
Store bandwidth 16 Bytes/cycle
L2 Unified Cache 256K, 8-way
Fastest load-to-use 10 cycles

Bandwidth to L1

L1 Instruction TLB

32 Bytes/cycle

4K: 128, 4-way
2M/4M: 7/thread

4K: 64, 4-way

L1 Data TLB

L2 Unified TLB

All caches use 64-byte lines

2M/4M: 32, 4-way

1G: fractured

4K: 512, 4-way

\

Sandy Bridge Haswell
32K, B-way 32K, 8-way
32K, 8-way 32K, 8-way

4 cycles 4 cycles
32 Bytes/cycle
(banked) 64 Bytes/cycie

16 Bytes/cycle 32 Bytes/cycle

256K, 8-way 256K, 8-way
11 cycles 11 cycles
32 Bytes/cycle [64 Byheslcycla]

4K: 128, 4-way
2M/4M: 8/thread

4K: 128, 4-way
2M/4M: 8/thread

4K: 64, 4-way 4K: 64, 4-way
2M/4M: 32, 4-way | 2M/4M: 32, 4-way
1G: 4, 4-way 1G: 4, 4-way
: £ 4K+2M shared:
4K: 512, 4-way [ 1024, 8-way L

15  Intet® Miroarchitecture {(Haswell); intel® Microarchitecture (Sandy Bridge); Intet® Microarchitecture (Nehalem)
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ST vs MT

ST ST
1x width 2x width

4x area
1.5x perf

1x area

1x perf

SMT
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MT
4x width

Ixarea Ixarea
Ixperf 1xperf

Ixarea 1Ixarea
Ixperf 1xperf




