
4/3/2018

1

Memory Consistency Models

Outline

• Need for memory consistency models

– architecture level

– programming language level

• Sequential consistency model

• Relaxed memory models 

– weak consistency model

– release consistency model

• Conclusions

Recall: uniprocessor execution

• Processors reorder operations to improve 
performance

• Constraint on reordering: must respect 
dependences
– data dependences must be respected: in 

particular, loads/stores to a given memory 
address must be executed in program order

– control dependences must be respected

Permitted memory-op reorderings

• Stores to different memory locations can be performed out of 
program order

store v1, data                                store b1, flag
store b1, flag              store v1, data

• Loads from different memory locations can be performed out of 
program order

load flag, r1                                    load data,r2
load data, r2               load flag, r1

• Load and store to different memory locations can be performed out 
of program order
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Example of hardware reordering

Memory systemProcessor

Store buffer

Load bypassing

• Store buffer holds store operations that need to be sent to memory
• Loads are higher priority operations than stores since their results are
needed to keep processor busy, so they bypass the store buffer

– load can bypass previous stores on its way to memory
• Load address is checked against addresses in store buffer, so store
buffer satisfies load if there is an address match

– load can return result before previous stores have completed

Key issue

• In single-threaded programs, reordering of 
instructions does not affect the output of the 
program
– may improve performance but does not change 

the semantics
• In shared-memory programs, reordering of 

instructions executed by a thread may change the 
output of the program.
– these usually occur in programs that use ordinary 

loads and stores instead of atomic operations to 
synchronize threads

Example (I) 

Code:
Initially A = Flag = 0

P1 P2
A = 23; while (Flag != 1) ; 
Flag = 1; ... = A; 

Idea: 
– P1 writes data into A and sets Flag to tell P2 that data 

value can be read from A. 
– P2 waits till Flag is set and then reads data from A.

Execution Sequence for (I)
Code:
Initially A = Flag = 0
P1 P2
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Possible execution sequence on each processor:
P1 P2 
Write A 23 Read Flag      //get 0 
Write Flag 1                                 ……

Read Flag      //get 1 
Read A          //what do you get?

Problem: If the two writes on processor P1 can be reordered, it is 
possible for processor P2 to read 0 from variable A. 
Can happen on most modern processors.
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Example II
Code: (like Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0)                     If (Flag1 == 0) 

critical section critical section

Possible execution sequence on each processor:
P1 P2 
Write Flag1, 1 Write Flag2, 1 
Read Flag2  //get 0 Read Flag1  //what do you get?

Execution sequence for (II)
Code: (like Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0)                          If (Flag1 == 0) 

critical section critical section

Possible execution sequence on each processor:
P1 P2 
Write Flag1, 1 Write Flag2, 1 
Read Flag2 //get 0 Read Flag1, ?? 

Most people would say that P2 will read 1 as the value of Flag1.
Since P1 reads 0 as the value of Flag2, P1’s read of Flag2 must happen before P2 
writes to Flag2. Intuitively, we would expect P1’s write of Flag to happen before P2’s 
read of Flag1.

However, this is true only if reads and writes on the same processor to different 
locations are not reordered by the compiler or the hardware.
Unfortunately, this is very common on most processors (store-buffers with load-
bypassing).

Concept: data race

• Conflicting accesses:
– two threads access 

the same shared 
variable and at least 
one of them performs 
a write

• Concurrent accesses:
– accesses from threads 

are not controlled by 
synchronization 
operations

Code:
Initially A = Flag = 0

P1 P2 
A = 23; while (Flag != 1) ; 
Flag = 1; ... = A; 

Lessons

• Uniprocessors can reorder instructions subject only to 
control and data dependence constraints

• These constraints are not sufficient in shared-memory 
context
– parallel programs with data races may produce 

counter-intuitive results
• Question: what constraints must we put on uniprocessor 

instruction reordering so that
– shared-memory programming is intuitive
– but we do not lose uniprocessor performance?

• Many answers to this question
– memory consistency model supported by the 

processor
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Consistency models

- Consistency models are not about memory operations 
from  different processors.

- Consistency models are not about dependent memory 
operations in a single processor’s instruction stream 
(these are respected even by processors that reorder 
instructions).

- Consistency models are all about ordering constraints on 
independent memory operations in a single processor’s
instruction stream that have some high-level 
dependence (such as flags guarding data) that should be 
respected to obtain intuitively reasonable results.

Sequential Consistency

- Simple model for reasoning about parallel programs

- Meaning of parallel program: 

- at each step, one thread is chosen for execution

- one instruction is executed from that thread

- Note: different interleavings of instructions may produce 
different results but all are legal executions

- You can verify that the programs we considered before 
execute as expected under these semantics

Example:
Initially A = Flag = 0
P1 P2
A = 23; while (Flag != 1) ;
Flag = 1; ... = A; 

Sequential consistency

Equivalent to this model:

– processor does not reorder its own loads and 
stores to global memory

– loads and stores from different processors are sent 
to global memory in some interleaved order (but 
what about caching?)

MEMORY

P1 P3P2 Pn

Sequential Consistency

• Systems with coherent caches:

– SC execution if processor does not reorder loads and 
stores to global memory

• Examples of forbidden behavior:

– load by-passing with store buffers

– load satisfied by store buffer before store has become 
visible globally (i.e., before line has been invalidated from 
other caches)

Memory systemProcessor

Store buffer

Load bypassing
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Problem

• Sequential consistency provides a simple model for reasoning 
about parallel programs

• However it disallows use of features like store buffers that are 
used to speed up uniprocessor programs

• Key issue:
– sequential consistency assumes every global memory 

operation might be involved in inter-thread synchronization
– this is usually not the case

• (e.g.) once you enter a critical section, you may do a lot of 
operations on global data structures

– unfortunately all global memory operations are slowed 
down

• Solution: ask the programmer

Relaxed consistency model:
Weak consistency

- Programmer specifies regions within which global memory operations can be reordered

- Processor has fence instruction:

- all data operations before fence in program order must complete before fence is 
executed

- all data operations after fence in program order must wait for fence to complete

- fences are performed in program order

- atomic instructions are treated as fences

- Implementation of fence: 

- processor has counter that is incremented when data op is issued, and decremented 
when data op is completed

- Example: PowerPC has SYNC instruction

- Language constructs:

- OpenMP: flush

- All synchronization operations like lock and unlock act like a fence

Weak ordering picture

fence

fence

fence

program
execution

Memory operations within these
regions can be reordered

Example (I) revisited
Code:
Initially A = Flag = 0

P1 P2
A = 23;
fence; while (Flag != 1) ;
Flag = 1;                                            fence;

... = A; 

Execution: 
– P1 writes data into A
– Fence waits till write to A is completed
– P1 then writes data to Flag
– Therefore, if P2 sees Flag = 1, it is guaranteed that it will read the 

correct value of A even if memory operations in P1 before fence and 
memory operations after fence are reordered by the hardware or 
compiler.
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Another relaxed model: 
release consistency

- Further relaxation of weak consistency

- Synchronization accesses are divided into 

- Acquires: operations like lock

- Release: operations like unlock

- Semantics of acquire:

- Acquire must complete before all following memory accesses

- Semantics of release: 

- all memory operations before release are complete

- However,

- acquire does not wait for accesses preceding it

- accesses after release in program order do not have to wait for release

- operations which follow release and which need to wait must be protected by an 
acquire

Example

L/S

ACQ

L/S

REL

L/S

Which operations can be overlapped?

Implementations on Current 
Processors Comments

• In the literature, there are a large number of other 
consistency models
– processor consistency
– total store order (TSO)
– ….

• It is important to remember that these are concerned 
with reordering of independent memory operations within
a processor.

• Easy to come up with shared-memory programs that 
behave differently for each consistency model.

• All processors today support some version of memory 
fences and those are exposed in programming language
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Memory consistency: 
program level

• Shared-memory 
programming languages 
also need to have a 
memory consistency model

• Example:
– compiler may reorder the two 

statements in P1 or the two 
statements in P2, leading to 
incorrect results

• This is similar to problem at 
instruction level but it 
affects compilation, not 
execution

Code:
Initially A = Flag = 0

P1 P2 
A = 23; while (Flag != 1) ; 
Flag = 1; ... = A; 

C++ Memory Model

• Provides SC for data-race free programs

• Memory operations:

– Data: load, store

– Synchronization: mutex lock/unlock, atomic 
load/store, atomic read-modify-write
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Summary

• Two problems: memory consistency and cache coherence
• Cache coherence

– preserve the illusion that there is a single logical memory 
location corresponding to each program variable even though 
there may be many physical memory locations where the 
variable is stored

• Memory consistency model
– what instructions is hardware allowed to reorder?
– nothing really to do with memory operations from different 

processors/threads
– sequential consistency in systems with coherent caches: perform 

global memory operations in program order
– relaxed consistency models: all of them rely on some notion of a 

fence operation that demarcates regions within which reordering 
is permissible


