
Michael Voss, Principal Engineer
Software and Services Group, Intel

With material used by permission
from J.D. Patel, Intel
from “Program Optimization Through Loop Vectorization” lecture slides by
María Garzarán, Saeed Maleki, William Gropp and David Padua, University of Illinois at Urbana-Champaign
from “Low-level Performance Analysis,” lecture slides by Pablo Reble.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study (after Spring Break)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Hardware and software have evolved together

• There are different styles / models for expressing
parallelism in applications

• These styles are often mixed in applications because
they each best exploit a particular level of parallelism in
the hardware

• For example MPI for message passing, OpenMP for
fork-join parallelism and SIMD intrinsics for SIMD layer.

Arch D. Robison and Ralph E. Johnson. 2010. Three layer cake for shared-memory programming.
In Proceedings of the 2010 Workshop on Parallel Programming Patterns (ParaPLoP '10). ACM, New
York, NY, USA, , Article 5 , 8 pages. DOI=http://dx.doi.org/10.1145/1953611.1953616

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Different levels of parallelism in hardware

• Instruction Level Parallelism (ILP) -- Needs no user intervention

– Micro-architectural techniques
Pipelined Execution Super-scalar execution
Out-of/In-order execution Branch prediction…

• Vector Level Parallelism (VLP)

– Using Single Instruction, Multiple Data (SIMD) vector processing instructions
– Intel has introduced extensions over time: SSE, AVX/AVX2, AVX-512
– SIMD registers width:

– Intel CPUs: 64-bit (MMX) 128-bit (SSE) 256-bit (AVX,CORE-AVX2) 512-bit (CORE-AVX512)

• Thread-Level Parallelism (TLP)

– Multi/many-core architectures

– Hyper threading (HT)

• Node Level Parallelism (NLP) (Distributed/Cluster/Grid Computing)

5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Defined
Tools of the
trade

Thread
Scaling

Increase concurrent thread
use across coherent
shared memory

OpenMP, TBB, Cilk Plus

Vector
Scaling

Use many wide-vector
(512-bit) instructions

Vector loops, vector
functions, array
notations

Cache
Blocking

Use algorithms to reduce
memory bandwidth
pressure and improve
cache hit rate

Blocking algorithms

Fabric
Scaling

Tune workload to
increased node count

MPI

Data
Layout

Optimize data layout for
unconstrained
performance

AoSSoA, directives for
alignment

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

0
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

1

2

3

4

5

At Intel, we talk about “Modernized” Code

6

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Defined
Tools of the
trade

Thread
Scaling

Increase concurrent thread
use across coherent
shared memory

OpenMP, TBB, Cilk Plus

Vector
Scaling

Use many wide-vector
(512-bit) instructions

Vector loops, vector
functions, array
notations

Cache
Blocking

Use algorithms to reduce
memory bandwidth
pressure and improve
cache hit rate

Blocking algorithms

Fabric
Scaling

Tune workload to
increased node count

MPI

Data
Layout

Optimize data layout for
unconstrained
performance

AoSSoA, directives for
alignment

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

0
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

1

2

3

4

5

At Intel, we talk about “Modernized” Code

7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Loop vectorization applies the same operation at the same
time to several vector elements

Used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Loop vectorization applies the same operation at the same
time to several vector elements

Used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

Done 4
times faster!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

SIMD => Single Instruction Multiple Data
VLP / Vectorization

Vectorization is the process of transforming a scalar operation acting on single data

elements at a time (Single Instruction Single Data – SISD), to an operation acting on
multiple data elements at once (Single Instruction Multiple Data – SIMD)

SIMD extensions Width
(bits)

DP (64-bit)
calculations

FP (32-bit)
calculations

Years
introduced

SSE2/SSE3/SSE4 128 2 4 ~2001-2007

AVX/AVX2 256 4 8 ~2011/2015

AVX-512 512 8 18 ~2017

These are the Intel supported ISA extensions. Other platforms that support SIMD
have different extensions.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

SIMD => Single Instruction Multiple Data
VLP / Vectorization

double *a,*b,*c; …

for (i = 0; i < size; i++)

c[i] = a[i] + b[i];

a

b

a+b

+

• Scalar mode
– one instruction produces one result

– e.g. vaddsd / vaddss (s => scalar)

+
a[i]

b[i]

a[i]+b[i]

• SIMD processing

– one instruction can produce multiple results (SIMD)

– e.g. vaddpd / vaddps (p => packed)

+

c[i+7] c[i+6] c[i+5] c[i+4]

b[i+7] b[i+6] b[i+5] b[i+4]

a[i+7] a[i+6] a[i+5] a[i+4]

AVX-512

c[i+3] c[i+2]

b[i+3] b[i+2]

a[i+3] a[i+2]

AVX/AVX2

c[i+1] c[i]

b[i+1] b[i]

a[i+1] a[i]

SSE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

The combined effect of vectorization and threading

The Difference Is Growing With Each New Generation of Hardware

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more information go to http://www.intel.com/performance Configurations at the end of this presentation.

http://www.intel.com/performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Patterns that inhibit vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Intel Confidential 14

Code snippets used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

How to write code to use the SIMD units

Hardest to use /
Most Control

Easiest to use /
Least Control

Assembly Language

Macros / Intrinsics

Vectorizing Compiler

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to write code to use the SIMD units?
1. Inline Assembly Language support

– Most control but much harder to learn, code, debug, maintain…

2. SIMD intrinsics

– Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

– Auto-Vectorization
– No code-changes; compiler vectorizes automatically for specified processor(s)

– Semi-Auto-Vectorization*
– Use simple pragmas to guide compiler for missed auto-vectorization opportunities
– Still hints to compiler, NOT mandatory!

– Explicit Vector Programming
– OpenMP SIMD-pragma, SIMD functions w/ powerful clauses… express code behavior better
– Go after the performance opportunities that are missed by auto and semi-auto vectorization

Or, use a library that exploits the SIMD capabilities for you
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

15

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to write code to use the SIMD units?
1. Inline Assembly Language support

– Most control but much harder to learn, code, debug, maintain…

2. SIMD intrinsics

– Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

– Auto-Vectorization
– No code-changes; compiler vectorizes automatically for specified processor(s)

– Semi-Auto-Vectorization*
– Use simple pragmas to guide compiler for missed auto-vectorization opportunities
– Still hints to compiler, NOT mandatory!

– Explicit Vector Programming
– OpenMP SIMD-pragma, SIMD functions w/ powerful clauses… express code behavior better
– Go after the performance opportunities that’re missed by auto and semi-auto vectorization

Or, use a library that exploits the SIMD capabilities for you
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

Will talk about
this briefly

Main focus

16

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Some slides are taken from:

Data dependences

• The notion of dependence is the foundation of the process of vectorization.

• It is used to build a calculus of program transformations that can be applied

manually by the programmer or automatically by a compiler.

19

Definition of Dependence

• A statement S is said to be data dependent on statement T if
– T executes before S in the original sequential/scalar program

– S and T access the same data item

– At least one of the accesses is a write.

20

Data Dependence

Flow dependence (True dependence)

Anti

dependence

Output dependence

S1: X = A+B

S2: C= X+A

S1: A = X + B

S2: X= C + D

S1: X = A+B

S2: X= C + D

S1

S2

S1

S2

S1

S2

21

Data Dependence

• Dependences indicate an execution order that must be honored.

• Executing statements in the order of the dependences guarantee correct

results.

• Statements not dependent on each other can be reordered, executed in parallel,

or coalesced into a vector operation.

22

Dependences in Loops (I)

• Dependences in loops are easy to understand if the loops are unrolled. Now the dependences are between

statement “executions”.

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

23

S2

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

i=0

24

S1: a[0] = b[0] + 1

S2: c[0] = a[0] + 2

S1: a[1] = b[1] + 1

S2: c[1] = a[1] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[2] + 2

i=1 i=2

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

i=0

25

S1: a[0] = b[0] + 1

S2: c[0] = a[0] + 2

S1: a[1] = b[1] + 1

S2: c[1] = a[1] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[2] + 2

i=1 i=2

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 …

…

26

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 …

…

27

Loop independent dependence

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 …

…

28

S1

S2

For the whole loop

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 …

…

29

S1

S2

For the whole loop

0

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 …

…

30

S1

S2

For the whole loop

0

distance

Dependences in Loops (I)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

31

For the dependences shown here, we assume

that arrays do not overlap in memory (no aliasing).

Compilers must know that there is no aliasing in order to

vectorize.

Dependences in Loops (II)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

32

S2

Dependences in Loops (II)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

S2

i=1

33

S1: a[1] = b[1] + 1

S2: c[1] = a[0] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[1] + 2

S1: a[3] = b[3] + 1

S2: c[3] = a[2] + 2

i=2 i=3

Dependences in Loops (II)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

34

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 …

…

S2

Dependences in Loops (II)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

35

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 …

…

Loop carried dependence

S2

Dependences in Loops (II)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

36

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 …

…

S1

S2

For the whole loop

S2

Dependences in Loops (II)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

37

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 …

…

S1

S2

For the whole loop

1

S2

Dependences in Loops (II)

• Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement “executions”

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

38

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 …

…

S1

S2

For the whole loop

1

distance

S2

Dependences in Loops (III)

• Dependences in loops are easy to understand if loops are unrolled.

Now the dependences are between statement “executions”

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

}

S1

S2

39

Dependences in Loops (III)

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

}

S1

S2

40

i=0

S1: a= b[0] + 1

S2: c[0] = a + 2

S1: a = b[1] + 1

S2: c[1] = a + 2

S1: a = b[2] + 1

S2: c[2] = a+ 2

i=1 i=2

Dependences in Loops (III)

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

}

S1

S2

41

i=0

S1: a= b[0] + 1

S2: c[0] = a + 2

S1: a = b[1] + 1

S2: c[1] = a + 2

S1: a = b[2] + 1

S2: c[2] = a+ 2

i=1 i=2

Loop independent dependence

Loop carried dependence

Dependences in Loops (III)

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 …

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

}

S1

S2

42

Dependences in Loops (III)

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 …

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

}

S1

S2

43

S1

S2

Dependences in Loops (IV)

• Doubly nested loops

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j-1]+a[i-1][j];

}}
S1

44

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j-1]+a[i-1][j];

}}

a[1][1] = a[1][0] + a[0][1]

a[1][2] = a[1][1] + a[0][2]

a[1][3] = a[1][2] + a[0][3]

a[1][4] = a[1][3] + a[0][4]

S1

45

j=1

j=2

j=3

j=4

a[2][1] = a[2][0] + a[1][1]

a[2][2] = a[2][1] + a[1][2]

a[2][3] = a[2][2] + a[1][3]

a[2][4] = a[2][3] + a[1][4]

Loop carried dependences

i=1 i=2

Dependences in Loops (IV)

Dependences in Loops (IV)

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j-1]+a[i-1][j];

}}

a[1][1] = a[1][0] + a[0][1]

a[1][2] = a[1][1] + a[0][2]

a[1][3] = a[1][2] + a[0][3]

a[1][4] = a[1][3] + a[0][4]

S1

46

j=1

j=2

j=3

j=4

a[2][1] = a[2][0] + a[1][1]

a[2][2] = a[2][1] + a[1][2]

a[2][3] = a[2][2] + a[1][3]

a[2][4] = a[2][3] + a[1][4]

Loop carried dependences

i=1 i=2

Dependences in Loops (IV)

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j-1]+a[i-1][j];

}}

1 2 3 4 …

1

2

3

4

j

i

S1

47

Dependences in Loops (IV)

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j-1]+a[i-1][j];

}}

1 2 3 4 …

1

2

3

4

j

i

S1

48

S1

0

1

1

0

Data dependences and vectorization

• Loop dependences guide vectorization

• Main idea: A statement inside a loop which is not in a cycle of the dependence

graph can be vectorized.

49

for (i=0; i<n; i++){
a[i] = b[i] + 1;

}

S1

S1

a[0:n-1] = b[0:n-1] + 1;

Data dependences and vectorization

• Main idea: A statement inside a loop which is not in a cycle of the dependence

graph can be vectorized.

50

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

S1

S2

1

a[1:n] = b[1:n] + 1;
c[1:n] = a[0:n-1] + 2;

S2

Stripmining

• Stripmining is a simple transformation.

• It is typically used to improve locality.

51

for (i=1; i<n; i++){
…

}

/* n is a multiple of q */
for (k=1; k<n; k+=q){

for (i=k; i<k+q-1; i++){
…
}

}

Stripmining (cont.)

• Stripmining is often used when vectorizing

52

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

for (i=1; i<n; i+=q){
a[i:i+q-1] = b[i:i+q-1] + 1;
c[i:i+q-1] = a[i-1:i+q] + 2;

}

for (k=1; k<n; k+=q){
/* q could be size of vector register */
for (i=k; i < k+q; i++){

a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}
}

stripmine

vectorize

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
53

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that Impact Compiler Vectorization

Loop-carried dependencies

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp);

}

Function calls

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

Unknown/aliased loop iteration count

Indirect memory access

Pointer aliasing

void scale(int *a, int *b, int size)

{

for (int i = 0; i < size; i++)

b[i] = z * a[i];

}

for (i = 0; i < N; ++i) {

a[b[i]] += c[i]*d[i];

}

for (i = 1; i < N: ++i) {

a[i] = a[i-1] + b[i];

}

And
many
More ……

Acyclic dependencies

for (i = 1; i < N: ++i) {

a[i] = b[i] + c[i];

d[i] = a[i] + (float)1.0;

}

54

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that Impact Compiler Vectorization

Acyclic dependencies

• Forward dependences are typically handled by a compiler
• Backward dependences may need reordering, but compiler may do it:

for (i = 1; i < N: ++i) {
a[i] = b[i] + c[i];
d[i] = a[i] + (float)1.0;

}

for (i = 1; i < N: ++i) {
a[i] = b[i] + c[i];
d[i] = a[i+1] + (float)1.0;

}

for (i = 1; i < N: ++i) {
d[i] = a[i+1] + (float)1.0;
a[i] = b[i] + c[i];

}

reordered

55

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that Impact Compiler Vectorization

Loop-carried dependencies

• There should be no loop-carried dependencies.
• For example, the loop must not require statement of iteration 1 to be

executed before statement of iteration 2 for correct results.
• This allows consecutive iterations of the original loop to be executed

simultaneously in a single iteration of the unrolled, vectorized loop.

for (i = 1; i < N: ++i) {
a[i] = a[i-1] + b[i];

}

56

Data dependences and transformations

• When cycles are present, vectorization can be achieved by:

– Separating (distributing) the statements not in a cycle

– Removing dependences

– Freezing loops

– Changing the algorithm

57

Distributing

58

for (i=1; i<n; i++){
b[i] = b[i] + c[i];
a[i] = a[i-1]*a[i-2]+b[i];
c[i] = a[i] + 1;

}

S1
S2
S3

S1

S2

S3

b[1:n-1] = b[1:n-1] + c[1:n-1];
for (i=1; i<n; i++){

a[i] = a[i-1]*a[i-2]+b[i];
}

c[1:n-1] = a[1:n-1] + 1;

Removing dependences (Scalar Expansion)

59

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

}

S1

S

2

S1

S2

for (i=0; i<n; i++){
a’[i] = b[i] + 1;
c[i] = a’[i] + 2;

}
a=a’[n-1]

S1

S

2

S1

S2

a’[0:n-1] = b[0:n-1] + 1;
c[0:n-1] = a’[0:n-1] + 2;
a=a’[n-1]

S1

S

2

Removing dependences

(Induction variables)

• Induction variable is a variable that can be expressed as
a function of the loop iteration variable

60

for (int i=0;i<LEN;i++){
a[i] = (float)2.*(i+1)*b[i];

}

S1

S2

float s = (float)0.0;
for (int i=0;i<LEN;i++){
s += (float)2.;
a[i] = s * b[i];

}

S1

Freezing Loops

61

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j]+a[i-1][j];

}
}

S1

1,

0

for (j=1; j<n; j++) {
a[i][j]=a[i][j]+a[i-1][j];

}

S1

Ignoring (freezing) the outer loop:

for (i=1; i<n; i++) {
a[i][1:n-1]=a[i][1:n-1]+a[i-1][1:n-1];

}

There are Many Different Kinds of Loop

Transformations that can Enable Vectorization:

• Loop Distribution or loop fission

• Reordering Statements

• Node Splitting

• Scalar expansion

• Loop Peeling

• Loop Fusion

• Loop Unrolling

• Loop Interchanging

62

Node Splitting

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;

}

S1
S2

for (int i=0;i<LEN-1;i++){
temp[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+temp[i])*(float) 0.5;

}

S1

S2

S1

S2

S0

S0
S1

S2

63

Changing the algorithm

• When there is a recurrence, it is necessary to change the algorithm in order to

vectorize.

• Compilers use pattern matching to identify the recurrence and then replace it

with a parallel version.

• Examples or recurrences include:

– Reductions (S+=A[i])

– Linear recurrences (A[i]=B[i]*A[i-1]+C[i])

– Boolean recurrences (if (A[i]>max) max = A[i])

64

Changing the algorithm (cont.)

65

a[0:n-1]=b[0:n-1];

for (i=0;i<k;i++) /* n = 2k */

a[2**i:n-1]=a[2**i:n-1]+b[0:n-2**i];

a[0]=b[0];

for (i=1; i<n; i++)

a[i]=a[i-1]+b[i];
S1

S1

S2

.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that Impact Compiler Vectorization

Function calls

• There should be no special operators and no function or subroutine calls,
unless these are inlined, either manually or automatically by the compiler, or
they are SIMD (vectorized) functions.

• Intrinsic math functions such as sin(), log(), fmax(), etc. may be allowed, since
the compiler runtime library may contain SIMD (vectorized) versions of
these functions.

for (i = 1; i < nx; i++) {
x = x0 + i * h;
sumx = sumx + func(x, y, xp);

}

66

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that Impact Compiler Vectorization

Pointer aliasing

• Sometimes the compiler cannot safely vectorize a loop if there is even a potential
dependency. The compiler must ask itself whether, for some iteration i, b[i] might refer
to the same memory location of a[i] for a different iteration.

• For example, if a[i] pointed to the same memory location as b[i-1], there would be a
read-after-write dependency as in the earlier example.

• If the compiler cannot exclude this possibility, it will not vectorize the loop (at least, not
without help, we might help by using #pragma ivdep or the restrict keyword.

void scale(int *a, int *b, int size)
{

for (int i = 0; i < size; i++)
b[i] = z * a[i];

}

67

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that Impact Compiler Vectorization

Unknown/aliased loop iteration count

• The loop must be countable, i.e. the number of iterations must be
known before the loop starts to execute, though it need not be known
at compile time.

• Consequently, there must be no data-dependent exit conditions.

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)
{

for(int i = 0; i < x->bound; i++)
a[i] = 0;

}

68

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that Impact Compiler Vectorization

• The following do not always prevent vectorization, but frequently either prevent it or cause the
compiler to decide that vectorization would not be worthwhile.

• Four consecutive ints or floats, or two consecutive doubles, may be loaded directly from
memory in a single SSE instruction. But if the four ints are not adjacent, they must be loaded
separately using multiple instructions, which is considerably less efficient.

• The most common example of non-contiguous memory access are loops with non-unit stride or
with indirect addressing, as in the example. The typical message from the vectorization report is
"vectorization possible but seems inefficient“.

• Although indirect addressing may also result in “Existence of vector dependence”.

Indirect memory access

for (i = 0; i < N; ++i) {
a[b[i]] += c[i]*d[i];

}

69

Leistungs- und Korrektheitsanalyse Paralleler Programme

Prof. Matthias Müller

Example: Load 4 float from arbitrary memory

• SSE2 version:

70

d … c … … b … … a

d

ac

b

d c b a

d c b a

Used by permission of Pablo Reble

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
71

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
72

Vectorization needs to be legal and profitable

• Eliminating dependences make it legal but not necessarily profitable

• Memory issues are a big source of extra cost that can impact profitability

• The main issues are

• alignment (16 bytes for SSE, 32 bytes for AVX/AVX2, 64 bytes for AVX 512)

• aliasing

• and non-consecutive layout in memory (non-unit strides)

Data Alignment

• SSE Vector loads/stores 128 consecutive bits to/from a vector register.

• Data addresses need to be 16-byte (128 bits) aligned to be loaded/stored for

SSE, 32-byte aligned for AVX/AVX2 and 64-byte aligned for AVX512

- Intel platforms support aligned and unaligned load/stores, but unaligned is

slower

73

void test1(float *a,float *b,float *c)
{

for (int i=0;i<LEN;i++){
a[i] = b[i] + c[i];

}

b

0 1 2 3

Is &b[0] 16-byte aligned?

vector load loads b[0] … b[3]

Why data alignment may improve efficiency

• Vector load/store from aligned

data requires one memory access

• Vector load/store from unaligned

data requires multiple memory

accesses and some shift

operations

74

Reading 4 bytes from address 1

requires two loads

Data Alignment

• To know if a pointer is 16-byte aligned, the last digit of the

pointer address in hex must be 0.

• Note that if &b[0] is 16-byte aligned, and is a single precision

array, then &b[4] is also 16-byte aligned

75

Output:

0x7fff1e9d8580, 0x7fff1e9d8590

__attribute__ ((aligned(16))) float B[1024];

int main(){
printf("%p, %p\n", &B[0], &B[4]);

}

Data Alignment

• In many cases, the compiler cannot statically know the

alignment of the address in a pointer

• The compiler assumes that the base address of the pointer is

16-byte aligned and adds a run-time checks for it

– if the runtime check is false, then it uses another code

(which may be scalar)

76

Data Alignment

• Manual 16-byte alignment can be achieved by forcing the base

address to be a multiple of 16.

77

__attribute__ ((aligned(16))) float b[N];
float* a = (float*) memalign(16,N*sizeof(float));

• When the pointer is passed to a function, the compiler should be

aware of where the 16-byte aligned address of the array starts.

void func1(float *a, float *b, float *c)
{
__assume_aligned(a, 16);
__assume_aligned(b, 16);
__assume_aligned(c, 16);
for int (i=0; i<LEN; i++) {
a[i] = b[i] + c[i];

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Aligning Data in C/C++
●Aligning memory allocated on heap

void* _mm_malloc(int size, int n)

int posix_memaligned(void **p, size_t n, size_t size)

●Aligning memory on stack

__attribute__((aligned(n))) var_name or

__declspec(align(n)) var_name (Windows)

●Automatically-aligned dynamic allocation

No need to do new (_mm_malloc(sizeof(X), alignof(X))) X

Instead #include <aligned_new>

Then void *operator new (size_t, align_val_t);

Or void *operator new[] (size_t, align_val_t);

AND TELL the compiler at use…
#pragma vector aligned or #pragma simd aligned or #pragma omp simd aligned

__assume_aligned(array, n)

• Compiler may assume array is aligned to n byte boundary

• May cause fault if data are not aligned

http://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization

78

n=64 for AVX-512, n=32 for AVX/AVX2, n=16 for SSE

http://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization

Data Alignment - Example

79

float A[N] __attribute__((aligned(16)));
float B[N] __attribute__((aligned(16)));
float C[N] __attribute__((aligned(16)));

void test(){
for (int i = 0; i < N; i++){

C[i] = A[i] + B[i];
}}

Data Alignment - Example

80

float A[N] __attribute__((aligned(16)));
float B[N] __attribute__((aligned(16)));
float C[N] __attribute__((aligned(16)));

void test1(){
__m128 rA, rB, rC;
for (int i = 0; i < N; i+=4){
rA = _mm_load_ps(&A[i]);
rB = _mm_load_ps(&B[i]);
rC = _mm_add_ps(rA,rB);
_mm_store_ps(&C[i], rC);

}}

void test2(){
__m128 rA, rB, rC;
for (int i = 0; i < N; i+=4){
rA = _mm_loadu_ps(&A[i]);
rB = _mm_loadu_ps(&B[i]);
rC = _mm_add_ps(rA,rB);
_mm_storeu_ps(&C[i], rC);

}}

void test3(){
__m128 rA, rB, rC;
for (int i = 1; i < N-3; i+=4){
rA = _mm_loadu_ps(&A[i]);
rB = _mm_loadu_ps(&B[i]);
rC = _mm_add_ps(rA,rB);
_mm_storeu_ps(&C[i], rC);

}}

Nanosecond per iteration

Core 2 Duo Intel i7

Aligned 0.577 0.580

Aligned (unaligned ld) 0.689 0.581

Unaligned 2.176 0.629

Alignment in a struct

• Arrays B and D are not 16-bytes aligned (see the address)

81

struct st{
char A;
int B[64];
float C;
int D[64];

};

int main(){
st s1;
printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);}

Output:

0x7fffe6765f00, 0x7fffe6765f04, 0x7fffe6766004, 0x7fffe6766008

Alignment in a struct

• Arrays A and B are aligned to 16-byes (notice

the 0 in the 4 least significant bits of the address)

• Compiler automatically does padding
82

struct st{
char A;
int B[64] __attribute__ ((aligned(16)));
float C;
int D[64] __attribute__ ((aligned(16)));

};

int main(){
st s1;
printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);}

Output:

0x7fff1e9d8580, 0x7fff1e9d8590, 0x7fff1e9d8690, 0x7fff1e9d86a0

Aliasing

• Can the compiler vectorize this loop?

83

void func1(float *a,float *b, float *c){
for (int i = 0; i < LEN; i++) {

a[i] = b[i] + c[i];
}

Aliasing

• Can the compiler vectorize this loop?

84

void func1(float *a,float *b, float *c)
{

for (int i = 0; i < LEN; i++)
a[i] = b[i] + c[i];

}

float* a = &b[1];

…

b[1]= b[0] + c[0]

b[2] = b[1] + c[1]

Aliasing

• Can the compiler vectorize this loop?

85

void func1(float *a,float *b, float *c)
{

for (int i = 0; i < LEN; i++)
a[i] = b[i] + c[i];

}

float* a = &b[1];

…

a and b are aliasing

There is a self-true dependence

Vectorizing this loop would be illegal

void func1(float *a, float *b, float *c){
for (int i=0; i<LEN; i++)
a[i] = b[i] + c[i];

}

• To vectorize, the compiler needs to guarantee that the
pointers are not aliased.

• When the compiler does not know if two pointer are
alias, it still vectorizes, but needs to add up-to 𝑂 𝑛2

run-time checks, where n is the number of pointers

When the number of pointers is large, the compiler
may decide to not vectorize

Aliasing

86

Aliasing

• Two solutions can be used to avoid the run-time checks

1. static and global arrays

2. __restrict__ attribute

87

Aliasing

1. Static and Global arrays

88

__attribute__ ((aligned(16))) float a[LEN];
__attribute__ ((aligned(16))) float b[LEN];
__attribute__ ((aligned(16))) float c[LEN];

void func1(){
for (int i=0; i<LEN; i++)
a[i] = b[i] + c[i];

}

int main() {
…

func1();
}

Aliasing

1. __restrict__ keyword

89

void func1(float* __restrict__ a,float* __restrict__ b, float*
__restrict__ c) {
__assume_aligned(a, 16);
__assume_aligned(b, 16);
__assume_aligned(c, 16);
for int (i=0; i<LEN; i++)

a[i] = b[i] + c[i];
}

int main() {
float* a=(float*) memalign(16,LEN*sizeof(float));
float* b=(float*) memalign(16,LEN*sizeof(float));
float* c=(float*) memalign(16,LEN*sizeof(float));
…
func1(a,b,c);

}

Aliasing – Multidimensional arrays

• Example with 2D arrays: pointer-to-pointer declaration.

90

void func1(float** __restrict__ a,float**
__restrict__ b, float** __restrict__ c) {
for (int i=0; i<LEN; i++)

for (int j=1; j<LEN; j++)
a[i][j] = b[i][j-1] * c[i][j];

}

Aliasing – Multidimensional arrays

• Example with 2D arrays: pointer-to-pointer declaration.

91

void func1(float** __restrict__ a,float** __restrict__ b,
float** __restrict__ c) {
for (int i=0; i<LEN; i++)

for (int j=1; j<LEN; j++)
a[i][j] = b[i][j-1] * c[i][j];

}

c c[0]

c[1]

c[2]

c[3]

c[0][0] c[0][1] …

c[1][0] c[1][1] …

c[2][0] c[2][1] …

c[3][0] c[3][1] …

__restrict__ only qualifies

the first dereferencing of c;

Nothing is said about the

arrays that can be accessed

through c[i]

Aliasing – Multidemensional Arrays

• Three solutions when __restrict__ does not enable

vectorization

1. Static and global arrays

2. Linearize the arrays and use __restrict__ keyword

3. Use compiler directives

92

Aliasing – Multidimensional arrays

1. Static and Global declaration

93

__attribute__ ((aligned(16))) float a[N][N];
void t(){

a[i][j]….
}

int main() {

…
t();

}

Aliasing – Multidimensional arrays

2. Linearize the arrays

94

void t(float* __restrict__ A){
//Access to Element A[i][j] is now A[i*128+j]
….

}

int main() {
float* A = (float*) memalign(16,128*128*sizeof(float));
…
t(A);

}

Aliasing – Multidimensional arrays

3. Use compiler directives:

#pragma ivdep (Intel compiler)

95

void func1(float **a, float **b, float **c) {
for (int i=0; i<m; i++) {

for (int j=0; j<LEN; j++)
c[i][j] = b[i][j] * a[i][j];

}}

#pragma ivdep

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
96

#pragma ivdep
• To ensure correctness, the correct treats an assumed dependence as a

proven dependence, which can prevent vectorization

• Also, a compiler may decide a loop is not profitable to vectorize

• In either case, using #pragma ivdep overrides the compilers decision

void ignore_vec_dep(int *a, int k, int c, int m) {

#pragma ivdep

for (int i = 0; i < m; i++)

a[i] = a[i + k] * c;

}

#pragma ivdep

for (j=0; j<n; j++) {

a[b[j]] = a[b[j]] + 1;

}

We know there is no loop carried dependence, since k >= 0

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
97

#pragma ivdep
• To ensure correctness, the correct treats an assumed dependence as a

proven dependence, which can prevent vectorization

• Also, a compiler may decide a loop is not profitable to vectorize

• In either case, using #pragma ivdep overrides the compilers decision

void ignore_vec_dep(int *a, int k, int c, int m) {

#pragma ivdep

for (int i = 0; i < m; i++)

a[i] = a[i + k] * c;

}

#pragma ivdep

for (j=0; j<n; j++) {

a[b[j]] = a[b[j]] + 1;

}

We know there is no loop carried dependence,
since we know the contents of b do not allow that

Non-unit Stride – Example I

• Array of a struct

98

typedef struct{int x, y, z} point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0 x1 y1
z1 x2 y2

z2 x3 y3
z3

pt[0] pt[1] pt[2] pt[3]

Non-unit Stride – Example I

• Array of a struct

99

typedef struct{int x, y, z} point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0 x1 y1
z1 x2 y2

z2

vector load vector load

x3 y3
z3

vector load

pt[0] pt[1] pt[2] pt[3]

Non-unit Stride – Example I

• Array of a struct

100

typedef struct{int x, y, z} point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0 x1 y1
z1 x2 y2

z2

vector load

vector register

(I need)
y0 y1 y2

vector load

y

3

x3 y3
z3

vector load

Non-unit Stride – Example I

• Array of a struct

101

typedef struct{int x, y, z} point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0 x1 y1 z1 x2 y2 z2

vector load

vector register

(I need)
y0 y1 y2

vector load

y

3

int ptx[LEN], int pty[LEN],
int ptz[LEN];

for (int i=0; i<LEN; i++) {
pty[i] *= scale;

}

• Arrays

y0 y1 y3 y4
y5 y6 y7

y0 y1 y2 y

3

y2

vector load vector load

Non-unit Stride – Example II

102

for (int i=0;i<LEN;i++){
sum = 0;
for (int j=0;j<LEN;j++){

sum += A[j][i];
}
B[i] = sum;
}

j

i

for (int i=0;i<size;i++){
sum[i] = 0;
for (int j=0;j<size;j++){

sum[i] += A[j][i];
}
B[i] = sum[i];
}

Loop interchange…

Compiler Directives

• Compiler vectorizes many loops, but many more can be

vectorized if the appropriate directives are used

103

Compiler Hints for Intel ICC Semantics

#pragma ivdep Ignore assume data dependences

#pragma vector always override efficiency heuristics

#pragma novector disable vectorization

__restrict__ assert exclusive access through pointer

__attribute__ ((aligned(int-val))) request memory alignment

memalign(int-val,size); malloc aligned memory

__assume_aligned(exp, int-val) assert alignment property

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
104

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study

Access the SIMD through intrinsics

• Intrinsics are vendor/architecture specific

• We will focus on the Intel vector intrinsics

• Intrinsics are useful when

– the compiler fails to vectorize

– when the programmer thinks it is possible to generate better code than

the one produced by the compiler

105

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
106

Where to get detailed info:

• The Intel® 64 and IA-32 Architectures Software Developer Manuals:
https://software.intel.com/en-us/articles/intel-sdm

• The Intel® Intrinsics Guide:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

The Intel SSE intrinsics Header file

• SSE can be accessed using intrinsics.

• You must use one of the following header files:

#include <xmmintrin.h> (for SSE)

#include <emmintrin.h> (for SSE2)

#include <pmmintrin.h> (for SSE3)

#include <smmintrin.h> (for SSE4)

• These include the prototypes of the intrinsics.

107

Intel SSE intrinsics Data types

• We will use the following data types:

__m128 packed single precision (vector XMM register)

__m128d packed double precision (vector XMM register)

__m128i packed integer (vector XMM register)

• Example

#include <xmmintrin.h>

int main () {

...

__m128 A, B, C; /* three packed s.p. variables */

...

}

108

Intel SSE intrinsic Instructions
• Intrinsics operate on these types and have the format:

_mm_instruction_suffix(…)

• Suffix can take many forms. Among them:

ss scalar single precision

ps packed (vector) singe precision

sd scalar double precision

pd packed double precision

si# scalar integer (8, 16, 32, 64, 128 bits)

su# scalar unsigned integer (8, 16, 32, 64, 128 bits)

109

Intel SSE intrinsics

Instructions – Examples

• Load four 16-byte aligned single precision values in a

vector:

float a[4]={1.0,2.0,3.0,4.0};//a must be 16-byte aligned

__m128 x = _mm_load_ps(a);

• Add two vectors containing four single precision values:

__m128 a, b;

__m128 c = _mm_add_ps(a, b);

110

Intrinsics (SSE)

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

111

#define n 1024

__attribute__ ((aligned(16)))
float a[n], b[n], c[n];

int main() {

for (i = 0; i < n; i++) {

c[i]=a[i]*b[i];

}

}

Intrinsics (SSE)

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

112

#define n 1024

__attribute__ ((aligned(16)))
float a[n], b[n], c[n];

int main() {

for (i = 0; i < n; i++) {

c[i]=a[i]*b[i];

}

}

Header file

Intrinsics (SSE)

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

113

#define n 1024

__attribute__ ((aligned(16)))
float a[n], b[n], c[n];

int main() {

for (i = 0; i < n; i++) {

c[i]=a[i]*b[i];

}

}

Declare 3

vector registers

Intrinsics (SSE)

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

114

#define n 1024

__attribute__ ((aligned(16)))
float a[n], b[n], c[n];

int main() {

for (i = 0; i < n; i++) {

c[i]=a[i]*b[i];

}

}

Execute vector

statements

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
115

Outline
• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP simd pragmas

• A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
116

Ways to Write Vectorizable Code

for(i = 0; i < num_elem; i++){

A[i] = B[i] + C[i];

}

Auto-Vectorization

#pragma ivdep

for(i = 0; i < num_elem; i++){

A[i] = B[i] + C[i];

}

Semi-Auto-Vectorization*

#pragma omp simd

for(i = 0 i < num_elem; i++) {

A[i] = B[i] + C[i];

}

SIMD Pragma/Directive

#pragma omp declare simd

float work(float b, float c)

{

return b + c;

}

…

#pragma omp simd aligned(A,B,C)

for(i = 0; i < num_elem; i++) {

A[i] = work(B[i],C[i]);

}

SIMD Function

Explicit vector programming using OpenMP

Clauses to help recognize and
vectorize idioms… examples:
Compress/Expand
Reduction
Search
Histogram …

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to write code to use the SIMD units?
1. Inline Assembly Language support

– Most control but much harder to learn, code, debug, maintain…

2. SIMD intrinsics

– Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

– Auto-Vectorization
– No code-changes; compiler vectorizes automatically for specified processor(s)

– Semi-Auto-Vectorization*
– Use simple pragmas to guide compiler for missed auto-vectorization opportunities
– Still hints to compiler, NOT mandatory!

– Explicit Vector Programming
– OpenMP SIMD-pragma, SIMD functions w/ powerful clauses… express code behavior better
– Go after the performance opportunities that’re missed by auto and semi-auto vectorization

Or, use a library that exploits the SIMD capabilities for you
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

117

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

118

void work(float* a, float *b, float *c, int num_elem) {

#pragma ivdep

for (int i=0; i<num_elem; i++)

c[i] = a[i] + b[i];

}

$ icpc -c -xAVX -qopt-report:1 -qopt-report-phase:vec -qopt-report-file:stdout work.cpp

remark #15300: LOOP WAS VECTORIZED

Semi-Auto-Vectorization* Example
Guiding compiler to help vectorize w/o multiversioning

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

118

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

119

static double N(const double& z) {

return (1.0/sqrt(2.0*PI))*exp(-0.5*z*z);

}

double option_price_call_black_scholes(

double S, double K, double r, double sigma, double time) {

double time_sqrt = sqrt(time);

double d1 = (log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;

double d2 = d1-(sigma*time_sqrt);

return S*N(d1) - K*exp(-r*time)*N(d2);

}

void test_option_price_call_black_scholes(

double S[], double K[], double r, double sigma, double time[],

double call[], int num_options) {

#pragma ivdep

for (int i=0; i < num_options; i++) {

call[i] = option_price_call_black_scholes(S[i],K[i],r,sigma,time[i]);

}

}

$ icpc -c -xAVX -qopt-report:5 BlackScholes.cpp
remark #15300: LOOP WAS VECTORIZED

BUT… what if invoked functions in loop are in different files and not inlined?

Semi-Auto-Vectorization* – Black Scholes
Using hint #pragma ivdep to help auto-vectorize
// This sample is derived from code published by Bernt Arne Odegaard http://finance.bi.no/~bernt/gcc_prog/recipes/recipes/

119

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to write code to use the SIMD units?
1. Inline Assembly Language support

– Most control but much harder to learn, code, debug, maintain…

2. SIMD intrinsics

– Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

– Auto-Vectorization
– No code-changes; compiler vectorizes automatically for specified processor(s)

– Semi-Auto-Vectorization*
– Use simple pragmas to guide compiler for missed auto-vectorization opportunities
– Still hints to compiler, NOT mandatory!

– Explicit Vector Programming
– OpenMP SIMD-pragma, SIMD functions w/ powerful clauses… express code behavior better
– Go after the performance opportunities that’re missed by auto and semi-auto vectorization

Or, use a library that exploits the SIMD capabilities for you
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

120

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD
Programming
Explicit Vector Programming

121

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The OpenMP* API (www.openmp.org)

Has been an industry standard API for parallel programming since 1997

Defines pragmas for shared-memory parallel programming, including parallel
regions, parallel loops, tasks, etc… (this will be covered in the threading part of
the course)

Defines pragmas for offload to accelerators

And defines pragmas for vectorization

1
2
2

122

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The OpenMP* API (www.openmp.org)

Pragmas for vectorization

Pragmas are commands to the compiler, not hints

 E.g. #pragma omp simd

 Compiler does no dependency and cost-benefit analysis !!

 Programmer is responsible for correctness
 Available in OpenMP since version 4.0 (2013) portable

 -qopenmp or -qopenmp-simd to enable

1
2
3

We will discuss some clauses, but everything is described in the OpenMP standard

123

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit Vector Programming
using OpenMP SIMD for C/C++ & Fortran

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Express/expose vector parallelism

SIMD pragma/directive

Combine with Threading,
Data Alignment,

Processor specific attributes

Semi Automatic
Using vectorization Hints
(ivdep/vector pragmas)

Fully Automatic
analysis

SIMD function

Map vector parallelism to vector ISA

E
x
p

li
c
it

 V
e
c
to

r
iz

a
ti

o
n

u
s
in

g
 O

p
e
n

M
P

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e

SIMD pragma/directive
Clauses for idioms

(compress, reduction, histo…)

combine with Threading,
Data Alignment

SIMD function
vecabi / processor-specifics

Vectorizer

Intel® SSE Intel® AVX Intel® AVX-512

Optimize and
Code Generation

Optimize and
Code Generation

124

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD pragma

Use #pragma omp simd with -qopenmp-simd

Use when you KNOW that a given loop is safe to vectorize
The Intel® Compiler will vectorize if at all possible

 (ignoring dependency or efficiency concerns)

 Minimizes source code changes needed to enforce vectorization

void addit(double* a, double* b, int m, int n, int x)
{

for (int i = m; i < m+n; i++) {
a[i] = b[i] + a[i-x];

}
}

void addit(double* a, double * b, int m, int n, int x)
{

#pragma omp simd // I know x<0

for (int i = m; i < m+n; i++) {
a[i] = b[i] + a[i-x];

}
}

loop was NOT vectorized:
existence of vector
dependence.

SIMD LOOP WAS VECTORIZED.

125

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for OMP SIMD directives

The programmer (i.e. you!) is responsible for correctness

 Just like for race conditions in loops with OpenMP* threading that will discuss later

Available clauses:

 private (variables that can be privatized, e.g. scalar expansion)

 lastprivate (private but last value is needed)

 reduction (ok to use associativity of operation)

 collapse (combine nested loops)

 linear (used to describe induction variables)

 simdlen (preferred number of iterations to execute concurrently)

 safelen (max iterations that can be executed concurrently)

 aligned (tells compiler about data alignment)

126See www.openmp.org for details

126

http://www.openmp.org/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why use OpenMP* simd instead of intrinsics?

Intel Confidential 127

• OpenMP is portable

• Intrinsics are compiler / architecture specific

• With OpenMP, you do not select an ISA (i.e. SSE, AVX, etc..)

• With OpenMP, you describe the properties of the loop and instruct the
compiler to vectorize it, but in a portable fashion

• You therefore do not need to modify your code every time you move to a
different machine / compiler

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit Vector Programming with OpenMP #pragma

omp simd

Programmer asserts:

*p is loop invariant

A[] not aliased with B[], C[], & sum

sum not aliased with B[] and C[]

+ operator is associative

(compiler can reorder for better vectorization)

Vectorized code generated even if efficiency heuristic does not indicate a gain

float add(float* A, float* B, float* C, int* p) {
float sum = 0.0f;

#pragma omp simd reduction(+:sum)
for(int i = 0; i < *p; i++) {

A[i] = B[i] * C[i];
sum = sum + A[i];

}
return sum;

}

Explicit Vector Programming
lets you express what you mean!

icpc -c -xAVX –qopenmp –qopt-report:5 add-simd.cpp

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

128

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#pragma omp simd using different clauses

#pragma omp simd

<Peeled loop for vectorization>
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15478: estimated potential speedup: 3.760
<Remainder loop for vectorization>

3/5/2018
129

NO #pragma omp simd depending on auto-vectorization!

<Peeled loop for vectorization, Multiversioned v1>
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
remark #15478: estimated potential speedup: 3.760
<Remainder loop for vectorization, Multiversioned v1>
<Multiversioned v2>

remark #15304: loop was not vectorized: non-vectorizable loop instance from
multiversioning
<Remainder, Multiversioned v2>

129

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#pragma omp simd using different clauses

3/5/2018
130

#pragma omp simd reduction(+:sum)

<Peeled loop for vectorization>
remark #15388: vectorization support: reference A has aligned access
remark #15389: vectorization support: reference B has unaligned access
remark #15389: vectorization support: reference C has unaligned access

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15478: estimated potential speedup: 4.310
remark #15301: REMAINDER LOOP WAS VECTORIZED

#pragma omp simd reduction(+:sum) aligned(A,B,C)

remark #15388: vectorization support: reference A has aligned access
remark #15388: vectorization support: reference B has aligned access
remark #15388: vectorization support: reference C has aligned access

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15478: estimated potential speedup: 7.560
remark #15301: REMAINDER LOOP WAS VECTORIZED

130

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD functions
A way to vectorize loops containing calls to functions that can’t be inlined

131

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Function calls can have side effects that introduce a loop-carried
dependency, preventing vectorization

Possible remedies:
 Inlining
 best for small functions
 Must be in same source file, or else use -ipo

 OMP SIMD pragma or directive to vectorize rest of loop, while preserving scalar
calls to function (last resort)

 SIMD-enabled functions
 Good for large, complex functions and in contexts where inlining is difficult
 Call from regular “for”

1
3
2

Loops Containing Function Calls

132

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for OMP declare simd

Asks compiler to create a vectorized version of a function

 i.e. parameters become vector registers

Again, the programmer (i.e. you!) is responsible for correctness

Available clauses:

 Same as #pragma omp simd plus…

 notinbranch, inbranch (generate or do not generate masking code)

 uniform (constants, i.e. non vector arguments)

133See www.openmp.org for details

133

http://www.openmp.org/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Function

Compiler generates SIMD-enabled (vector) version of a scalar function
that can be called from a vectorized loop:

#pragma omp declare simd uniform(y,z,xp,yp,zp)
float func(float x, float y, float z, float xp, float yp, float zp)
{
float denom = (x-xp)*(x-xp) + (y-yp)*(y-yp) + (z-zp)*(z-zp);
denom = 1./sqrtf(denom);
return denom;

}

…
#pragma omp simd private(x) reduction(+:sumx)
for (i=1; i<nx; i++) {

x = x0 + (float) i * h;
sumx = sumx + func(x, y, z, xp, yp, zp);

}

#pragma omp simd may not be needed in simpler cases

134

These clauses are required for
correctness, just like for OpenMP*

FUNCTION WAS VECTORIZED with ...

SIMD LOOP WAS VECTORIZED.

y, z, xp, yp and zp are constant,
x can be a vector

134

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Special Idioms
Compiler must recognize to handle apparent dependencies

135

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
136

Special Idioms

Dependency on an earlier iteration usually makes vectorization unsafe

 Some special patterns can still be handled by the compiler
– Provided the compiler recognizes them (auto-vectorization)

– Often works only for simple, ‘clean’ examples

– Or the programmer tells the compiler (explicit vector programming)

– May work for more complex cases

– Examples: reduction, compress/expand, search, histogram/scatter,
minloc

 Sometimes, the main speed-up comes from vectorizing the rest of a
large loop, more than from vectorization of the idiom itself

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-vectorizes with any instruction set:
icc -std=c99 -O2 -qopt-report-phase=loop,vec -qopt-report-file=stderr reduce.c;
…

LOOP BEGIN at reduce.c(17,6))

remark #15300: LOOP WAS VECTORIZED

1
3
7

Reduction – simple example

double reduce(double a[], int na) {

/* sum all positive elements of a */

double sum = 0.;

for (int ia=0; ia <na; ia++) {

if (a[ia] > 0.) sum += a[ia]; // sum causes cross-iteration dependency

}

return sum;

}

137

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

icc -std=c99 -O2 -fp-model precise -qopt-report-phase=loop,vec -qopt-report-file=stderr reduce.c;
…

LOOP BEGIN at reduce.c(17,6))

remark #15331: loop was not vectorized: precise FP model implied by the command line or a directive prevents

vectorization. Consider using fast FP model [reduce.c(18,26)

Vectorization would change order of operations, and hence the result
 Can use a SIMD pragma to override and vectorize:

icc -std=c99 -O2 -fp-model precise –qopenmp-simd -qopt-report-file=stderr reduce.c;

LOOP BEGIN at reduce.c(18,6)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED 1
3
8

Reduction – when auto-vectorization doesn’t work

#pragma omp simd reduction(+:sum)

for (int ia=0; ia <na; ia++) {

sum += …

138

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Another OpenMP Example
with optimization reports

139

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icpc -c -qopt-report=4 -qopt-report-phase=vec -qopt-report-file=stderr foo.cpp

LOOP BEGIN at foo.cpp(4,3)
<Peeled loop for vectorization, Multiversioned v1>
LOOP END

LOOP BEGIN at foo.cpp(4,3)
<Multiversioned v1>

remark #15388: vectorization support: reference theta[i] has aligned access [foo.cpp(5,21)]
remark #15388: vectorization support: reference sth[i] has aligned access [foo.cpp(5,8)]
remark #15305: vectorization support: vector length 4
remark #15309: vectorization support: normalized vectorization overhead 0.094
remark #15417: vectorization support: number of FP up converts: single precision to double precision 1 [foo.cpp(5,17)]
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1 [foo.cpp(5,8)]
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 112
remark #15477: vector cost: 40.000

remark #15478: estimated potential speedup: 2.730
remark #15482: vectorized math library calls: 1
remark #15487: type converts: 2
remark #15488: --- end vector cost summary ---

LOOP END

LOOP BEGIN at foo.cpp(4,3)
<Alternate Alignment Vectorized Loop, Multiversioned v1>
LOOP END

LOOP BEGIN at foo.cpp(4,3)
<Remainder loop for vectorization, Multiversioned v1>
LOOP END

LOOP BEGIN at foo.cpp(4,3)
<Multiversioned v2>

remark #15304: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END

140

Example of
Optimization
Report - 1

#include <cmath>

void foo (float * theta, float * sth, int count) {
for (int i = 0; i < count; i++)

sth[i] = sin(theta[i]+3.1415927);
}

• Note multiversioning

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icpc -c -qopenmp -qopt-report=4 -qopt-report-phase=vec -qopt-report-file=stderr foo.cpp

LOOP BEGIN at foo.cpp(5,3)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at foo.cpp(5,3)
remark #15388: vectorization support: reference theta[i] has aligned access [foo.cpp(6,21)]
remark #15388: vectorization support: reference sth[i] has aligned access [foo.cpp(6,8)]
remark #15305: vectorization support: vector length 4
remark #15309: vectorization support: normalized vectorization overhead 0.094

remark #15417: vectorization support: number of FP up converts: single precision to double precision 1 [foo.cpp(6,17)]
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1 [foo.cpp(6,8)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 112
remark #15477: vector cost: 40.000

remark #15478: estimated potential speedup: 2.730
remark #15482: vectorized math library calls: 1

remark #15487: type converts: 2
remark #15488: --- end vector cost summary ---

LOOP END

LOOP BEGIN at foo.cpp(5,3)
<Alternate Alignment Vectorized Loop>
LOOP END

LOOP BEGIN at foo.cpp(5,3)
<Remainder loop for vectorization>
LOOP END

141

Example of New Optimization Report - 2

#include <cmath>

void foo (float * theta, float * sth, int count) {
#pragma omp simd
for (int i = 0; i < count; i++)

sth[i] = sin(theta[i]+3.1415927);
}

• OMP SIMD take care of multiversioning
• Next focus on FP converts

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icpc -c -qopenmp -qopt-report=4 -qopt-report-phase=vec -qopt-report-file=stderr foo.cpp

LOOP BEGIN at foo.cpp(5,3)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at foo.cpp(5,3)
remark #15388: vectorization support: reference theta[i] has aligned access [foo.cpp(6,21)]
remark #15388: vectorization support: reference sth[i] has aligned access [foo.cpp(6,8)]

remark #15305: vectorization support: vector length 4
remark #15309: vectorization support: normalized vectorization overhead 0.190
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 109
remark #15477: vector cost: 19.750

remark #15478: estimated potential speedup: 5.190
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector cost summary ---

LOOP END

LOOP BEGIN at foo.cpp(5,3)
<Alternate Alignment Vectorized Loop>
LOOP END

LOOP BEGIN at foo.cpp(5,3)
<Remainder loop for vectorization>
LOOP END

142

Example of New Optimization Report - 3

#include <cmath>

void foo (float * theta, float * sth, int count) {
#pragma omp simd
for (int i = 0; i < count; i++)

sth[i] = sin(theta[i]+3.1415927f);
}

• FP Pi takes care of FP converts
• Next focus on vector length 4 (using SSE)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icpc -c -xCORE-AVX2 -qopenmp -qopt-report=4 -qopt-report-phase=vec -qopt-report-file=stderr foo.cpp

LOOP BEGIN at foo.cpp(5,3)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at foo.cpp(5,3)

remark #15389: vectorization support: reference theta[i] has unaligned access [foo.cpp(6,21)]
remark #15389: vectorization support: reference sth[i] has unaligned access [foo.cpp(6,8)]
remark #15381: vectorization support: unaligned access used inside loop body

remark #15305: vectorization support: vector length 8
remark #15309: vectorization support: normalized vectorization overhead 0.175
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 109
remark #15477: vector cost: 10.000

remark #15478: estimated potential speedup: 7.780
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector cost summary ---

LOOP END

LOOP BEGIN at foo.cpp(5,3)
<Remainder loop for vectorization>
LOOP END

143

Example of New Optimization Report - 4

#include <cmath>

void foo (float * theta, float * sth, int count) {
#pragma omp simd
for (int i = 0; i < count; i++)

sth[i] = sin(theta[i]+3.1415927f);
}

• CORE-AVX2 target takes vector length to 8
• Next focus on data alignment

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icpc -c -xCORE-AVX2 -qopenmp -qopt-report=4 -qopt-report-phase=vec -qopt-report-file=stderr foo.cpp

LOOP BEGIN at foo.cpp(5,3)

remark #15388: vectorization support: reference theta[i] has aligned access [foo.cpp(6,21)]
remark #15388: vectorization support: reference sth[i] has aligned access [foo.cpp(6,8)]
remark #15305: vectorization support: vector length 8
remark #15309: vectorization support: normalized vectorization overhead 0.013
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 109
remark #15477: vector cost: 9.870

remark #15478: estimated potential speedup: 9.730
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector cost summary ---

LOOP END

LOOP BEGIN at foo.cpp(5,3)
<Remainder loop for vectorization>
LOOP END

144

Example of New Optimization Report - 5

#include <cmath>

void foo (float * theta, float * sth, int count) {
#pragma omp simd aligned(theta,sth:64)
for (int i = 0; i < count; i++)

sth[i] = sin(theta[i]+3.1415927f);
}

• OMP aligned clause helps
• Overall speedup 2.73x 9.73x

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

-O0 no optimization; sets -g for debugging

-O1 scalar optimizations

• Excludes optimizations tending to increase code size

-O2 default for icc & ifort (except with -g)

• includes vectorization; some loop transformations such as unrolling;
inlining within source file;

• Start with this (after initial debugging at -O0)

-O3 more aggressive loop optimizations

• Including cache blocking, loop fusion, loop interchange, …

• May not help all applications; need to test

145

Basic Optimizations with Intel C/C++ compiler

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Enabled with –O3 (/O3 on Windows)

– With auto-vectorization does more aggressive data dependency analysis than at /O2

– Exploits properties of source code (loops & arrays)

– Best chance for performing loop transformations

Loop optimizations:
 Automatic vectorization‡ (use of packed SIMD instructions)
 Loop interchange ‡ (for more efficient memory access)
 Loop unrolling‡ (more instruction level parallelism)
 Prefetching (for patterns not recognized by h/w prefetcher)
 Cache blocking (for more reuse of data in cache)
 Loop versioning ‡ (for loop count; data alignment; runtime dependency tests)
 Memcpy recognition ‡ (call Intel’s fast memcpy, memset)
 Loop splitting ‡ (facilitate vectorization)
 Loop fusion (more efficient vectorization)
 Scalar replacement‡ (reduce array accesses by scalar temps)
 Loop rerolling (enable vectorization)
 Loop peeling ‡ (allow for misalignment)
 Loop reversal (handle dependencies)
 etc.

‡ all or partly enabled at -O2

146

High-Level Optimizations (HLO)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

147

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

