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Abstract

BLAS3 operations have great potential for aggressive optimization. Unfortunately, they
usually need to be hand-coded for a speci�c machine and compiler to achieve near-peak per-
formance. We have developed a methodology whereby near-peak performance on a wide range
of systems can be achieved automatically for such routines. First, by analyzing current ma-
chines and C compilers, we've developed guidelines for writing Portable, High-Performance,
ANSI C (PHiPAC, pronounced \fee-pack"). Second, rather than code by hand, we produce
parameterized code generators. Third, we write search scripts that �nd the best parameters
for a given system. We report on a BLAS GEMM compatible multi-level cache-blocked matrix
multiply generator that produces code achieving performance in excess of 90% of peak on the
Sparcstation-20/61, IBM RS/6000-590, HP 712/80i, and 80% of peak on the SGI Indigo R4k.
On the IBM, HP, and SGI, the resulting routine is often faster than the vendor-supplied BLAS
GEMM.

1 Introduction

The use of a standard matrix-vector library interface, such as BLAS [LHKK79, DCHH88, DCDH90],

enables portable application code to obtain high-performance provided that an optimized library

(e.g., [AGZ94, KHM94]) is available and a�ordable. Developing an optimized library, however, is

a di�cult and time-consuming task.

Matrix-vector library routines have a large design space. Even excluding algorithmic variants

such as Strassen's method [BLS91] for matrix multiplication, blocking sizes, loop nesting permuta-

tions, register allocation, and instruction scheduling, can all be varied.

The routines could be manually written in assembly code, but fully exploring the design space

might be infeasible, and the resulting code might be unusable or sub-optimal on a di�erent system.

Alternatively, the routines could be written in a high-level language and fed to an optimiz-

ing compiler. There is a large literature on relevant compiler techniques, many of which use
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matrix-multiplication as a test case | a short list includes [WL91, LRW91, MS95, ACF95, CFH95,
SMP+96].1 While these compiler heuristics generate reasonably good code in general, they tend

not to generate near-peak code for any one operation. A high-level language's semantics might
also obstruct aggressive compiler optimizations. Moreover, it takes signi�cant time and investment
before compiler research appears in production compilers, so these capabilities are often simply

unavailable.
We have developed a methodology, named PHiPAC, for developing Portable High-Performance

matrix-vector libraries in ANSI C. Our goal is to produce, with minimal e�ort, high-performance
matrix-vector libraries for a wide range of systems. The PHiPAC methodology has three com-

ponents. First, we have developed a generic model of current C compilers and microprocessors
that provides guidelines for producing portable high-performance ANSI C code. Second, rather

than hand-code particular routines, we write parameterized generators [ACF95, MS95] that pro-
duce code according to our guidelines. Third, we write scripts that automatically tune code for a

particular system by varying the generators' parameters and benchmarking the resulting routines.
Using this methodology, we have produced a portable, BLAS-compatible matrix multiply gen-

erator. The resulting code can achieve over 90% of peak performance on a variety of current

workstations, and is often faster than the vendor-supplied optimized libraries. We concentrate on
matrix multiplication in this paper, but we have produced other generators including dot-product,

AXPY, and convolution, which have similarly demonstrated portable high performance.
Section 2 describes our generic C compiler and microprocessor model, and develops the resulting

guidelines for writing portable high-performance C code. Section 3 describes our generator and
the resulting code for a BLAS-compatible matrix multiply. Section 4 describes two strategies

for searching the matrix multiply parameter space, a brute force and a more intelligent search.
Section 5 lists performance results on several architectures, and, in some cases, compares them with

a vendor-supplied BLAS GEMM. Section 6 lists additional generators, describes the availability of
the distribution, and discusses future work.

2 PHiPAC Coding Methodology

To produce portable high-performance code, we must avoid targeting any single system. The
PHiPAC machine model is therefore an abstraction of modern microprocessor-based systems to-

gether with their ANSI C compilers. The compiler must also be part of our model because we
produce C code. Although ANSI C is our target language, most of the ideas behind our ma-

chine model also apply to other high level languages. By analyzing a range of machines such
as workstations and microprocessor-based SMP and MPP nodes, we distilled a list of common

microarchitectural features.

� Multiple integer registers, typically 32.

� Multiple 
oating-point registers, typically 16{32.

� A load/store architecture where it is advantageous to reuse register operands.

� A cached memory hierarchy, with up to three levels of data cache and where cache lines hold
multiple words. Cache misses are costly.

� A TLB holding a limited number of page table entries, typically 64 pages of 4 KB each. TLB

misses are costly.

1A longer list appears in [Wol96].
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� The cheapest memory addressing mode is base register plus immediate o�set.

� Branches are costly. Branches are cheaper using equality or zero comparisons rather than

magnitude comparisons.

� Integer multiplication and division is slower than integer addition.

� Independent 
oating-point add, 
oating-point multiply, and load/store units.

� Floating-point division is slower than 
oating-point addition and multiplication.

� Multiple instruction latency on 
oating-point operations, either due to long pipelines or su-

perscalar instruction issue.

In addition, we studied production ANSI C compilers and determined that we could usually rely

on reasonable register allocation, instruction selection, and instruction scheduling. However, more

sophisticated optimizations, including pointer alias disambiguation, register and cache blocking,

loop unrolling, and software pipelining, were found to be best performed manually.

We emphasize that for both microarchitectures and compilers we are determining a lowest

common denominator. Some microarchitectures or compilers will have superior characteristics in

certain attributes, but, if we code assuming these exist, performance will su�er on systems where

they do not. Conversely, coding for the lowest common denominator should not adversely a�ect

performance on more capable platforms. For example, both the superscalar UltraSPARC and the

single-issue MicroSPARC-II microprocessors have higher throughput when 
oating-point additions

are interleaved with 
oating-point multiplications, but the SuperSPARC microprocessor can execute

any permutation of independent 
oating-point multiplications and additions at the same rate. Also,

while a few production compilers might have sophisticated loop unrolling algorithms, many do not,

but a manually unrolled loop should still produce good code on a superior compiler.

2.1 PHiPAC Coding Guidlines

The following paragraphs exemplify PHiPAC coding guidelines. They can be used independently

of the rest of the methodology to portably tune C application code.

Use local variables to explicitly remove false dependencies.

Casually written C code often over-speci�es operation order. C compilers, constrained by C se-

mantics, must obey these over-speci�cations thereby reducing optimization potential. We therefore

remove these extraneous dependencies.

For example, the following code fragment contains a false Read-After-Write hazard:

a[i] = b[i]+c;

a[i+1] = b[i+1]*d;

The compiler may not assume &a[i] != &b[i+1] and is forced to �rst store a[i] to memory before

loading b[i+1]. We may re-write this with explicit loads to local variables:

float f1,f2;

f1 = b[i]; f2 = b[i+1];

a[i] = f1 + c; a[i+1] = f2*d;

The compiler can now interleave execution of both original statements thereby increasing paral-

lelism.

3



Exploit multiple integer and 
oating-point registers.

We explicitly keep values in local variables to reduce memory bandwidth demands. For example,

consider the following 3-point FIR �lter code:

while (...) {

*res++ = filter[0]*signal[0] + filter[1]*signal[1] + filter[2]*signal[2];

signal++; }

The compiler will usually reload the �lter values every loop iteration because of potential aliasing

with res. We can remove the alias by preloading the �lter into local variables that can be mapped

into registers:

float f0,f1,f2;

f0 = filter[0]; f1 = filter[1]; f2 = filter[2];

while ( ... ) {

*res++ = f0*signal[0] + f1*signal[1] + f2*signal[2];

signal++; }

Minimize pointer updates by striding with constant o�sets.

We replace pointer updates for strided memory addressing with constant array o�sets. For example:

f0 = *r8; r8 += 4; f1 = *r8; r8 += 4; f2 = *r8; r8 += 4;

should be converted to:

f0 = r8[0]; f1 = r8[4]; f2 = r8[8]; r8 += 12;

Compilers can fold the constant index into a register plus o�set addressing mode.

Hide multiple instruction FPU latency with independent operations.

We use local variables to expose independent operations so they can be executed independently in

a pipelined or superscalar processor. For example:

f1 = f5 * f9; f2 = f6 + f10; f3 = f7 * f11; f4 = f8 + f12;

Balance the instruction mix.

A balanced instruction mix has a 
oating-point multiply, a 
oating-point add, and 1{2 
oating-

point loads or stores interleaved. It is not worth decreasing the number of multiplies at the expense

of additions if the total 
oating-point operation count increases.

Aim for unit stride to exploit multi-word cache lines.

Cached machines perform poorly when accessing large data sets with non-unit stride. Whenever

possible, we arrange our code to have predominantly unit-stride memory accesses. See Section 3.1,

for our blocked matrix multiply example.

4



Convert integer multiplies to adds.

Integer multiplies and divides are slow relative to integer addition. Therefore, we use pointer

updates rather than subscript expressions. Rather than:

for (i= ... ) { row_ptr = &p[i*col_stride]; ... }

we produce:

for (i= ... ) { ... row_ptr += col_stride; }

Minimize branches, avoid magnitude compares.

Branches are costly, especially on modern superscalar processors. Therefore, we unroll loops to

amortize branch cost.

Also, on many microarchitectures, it is cheaper to perform equality or inequality loop termina-

tion tests than magnitude comparisons. For example, instead of:

for (i=0,a=start_ptr; i < ARRAY_SIZE; i++,a++} { ... }

we produce:

end_ptr = &a[ARRAY_SIZE];

for (a = start_ptr; a != end_ptr; a++) { ... }

This also removes one loop control variable.

Loop unroll manually to expose optimization opportunities.

We unroll loops manually to increase opportunities for other performance optimizations. For ex-

ample, our 3-point FIR �lter example above may be further optimized as follows:

float f0,f1,f2,s0,s1,s2;

f0 = filter[0]; f1 = filter[1]; f2 = filter[2];

s0 = signal[0]; s1 = signal[1]; s2 = signal[2];

*res++ = f0*s0 + f1*s1 + f2*s2;

while ( ... ) {

signal += 3;

s0 = signal[0]; res[0] = f0*s1 + f1*s2 + f2*s0;

s1 = signal[1]; res[1] = f0*s2 + f1*s0 + f2*s1;

s2 = signal[2]; res[2] = f0*s0 + f1*s1 + f2*s2;

res += 3;

}

In the inner loop, there are now only two memory access per �ve 
oating point operations whereas

in our unoptimized code, there were seven memory accesses per �ve 
oating point operations.
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Figure 1: Matrix blocking parameters

3 Matrix Multiply Generator

mm gen is a generator that produces matrix multiply code following the PHiPAC coding guidelines.

It generates code for the operation C = �op(A)op(B) + �C where op(A), op(B), and C, are

respectively M�K, K�N, and M�N matrices, � and � are scalar parameters, and op(X) is either

transpose(X) or just X . A collection of routines produced by mm gen can be used for a complete

BLAS-compatible GEMM.

mm gen produces a cache-blocked matrix multiply [GL89, LRW91, MS95], restructuring the

algorithm for unit stride, and reducing the number of cache misses and unnecessary loads and stores.

Under control of command line parameters, mm gen can produce blocking code for any number of

levels of memory hierarchy, including register, L1 cache, TLB, L2 cache, and so on. mm gen's code

can also perform copy optimization [LRW91], optionally with a di�erent accumulator precision.

A typical invocation of mm gen is:

mm_gen -cb M0 K0 N0 [ -cb M1 K1 N1 ] ...

where the register blocking isM0,K0, N0, the L1-cache blocking isM1,K1,N1, etc. The parameters

M0, K0, and N0 are speci�ed in units of matrix elements, i.e., single, double, or extended precision


oating-point numbers, M1, K1, N1 are speci�ed in units of register blocks, M2, K2, and K2 are

in units of L1 cache blocks, and so on. For a particular cache level, say i, the code accumulates

into a C destination block of size Mi�Ni units and uses A source blocks of size Mi�Ki units and

B source blocks of size Ki �Ni units (see Figure 1). The register block parameters M0, K0, and

N0 determine the extent of inner loop unrolling which signi�cantly increases optimization potential

but can also signi�cantly increase code size.

3.1 PHiPAC Matrix-Matrix Multiply Code

In this section, we examine the code produced by mm gen for the operation C = C + A*B where A

(respectively B, C) is an M�K (respectively K�N, M�N) matrix. We explain by example the code
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for L1 cache blocking and register blocking where M0 = 3, K0 = 2, and N0 = 3, and describe the

scheme used for further blocking levels.

Figure 2 lists the L1 cache blocking core code comprising the 3 nested loops, M, N, and K.2

mm gen does not vary the loop permutation [MS95, LRW91] because the resulting gains in locality

are subsumed by the method described below.

The outer M loop in Figure 2 maintains pointers c0 and a0 to rows of register blocks in the A and

C matrices. It also maintains end pointers (ap0 endp and cp0 endp) used for loop termination.

The middle N loop maintains a pointer b0 to columns of register blocks in the B matrix, and

maintains a pointer cp0 to the current C destination register block. The N loop also maintains

separate pointers (ap0 0 through ap0 2) to successive rows of the current A source block. It also

initializes a pointer bp0 to the current B source block. We assume local variables can be held in

registers, so our code uses many local pointers to minimize both memory references and integer

multiplies (see Figure 3).

The K loop iterates over source matrix blocks and accumulates into the sameM0�N0 destination

block. We assume that the 
oating-point registers can hold a M0 �N0 accumulator block, so this

block is loaded once before the K loop begins and stored after it ends. The K loop updates the set

of pointers to the A source block, one of which is used for loop termination.

Figure 4 lists the code for our fully-unrolled 3�2�3 core matrix multiply. The code is not unlike

the register-tiled code in [CFH95]. Local variables c00 through c22 hold a complete C destination

block. Variables A0 through A2 point to successive rows of the A source matrix block, and variable

B points to the �rst row of the B source matrix block. Elements in A and B are accessed using

constant o�sets from the appropriate pointers. Separate local variables, a0 through a2, are used

for each row of the A block to avoid false Write-After-Read hazards. This routine also updates the

current B source block pointer bp0.

The core code performs K0 outer products accumulating into the C destination block. The

parameter K0 controls the extent of loop-unrolling as can be seen in Figure 4. We code the

outer products by loading one row of the B block, one element of the A block, then performing

N0 multiply-accumulates. The C code uses N0 + M0 memory references per 2N0M0 
oating-

point operations in the inner K loop, while holding M0N0 + N0 + 1 values in local variables.

While the intent is that these local variables map to registers, the compiler is free to reorder

all of the independent loads and multiply-accumulates to trade increased memory references for

reduced register usage. The compiler also requires additional registers to name intermediate results

propagating through machine pipelines.

The code we so far have described is valid only when M, K, and N are integer multiples of

M0, K0, and N0 respectively. We also include code that operates on power-of-two sized fringe

strips, i.e., 20 through 2blog2 Lc where L is M0, K0, or N0. We can therefore manage any fringe size

from 1 to L�1 by executing an appropriate combination of fringe code. The resulting code size

growth is logarithmic in the register blocking (i.e., O(log(M0) log(K0) log(N0))) yet maintains good

performance. To reduce the demands on the instruction cache, we arrange the code into several

independent sections, the �rst handling the matrix core and the remainder handling the fringes.

The separation of the row-stride and matrix dimension parameters makes it possible to imple-

ment further levels of blocking as loops around calls to lower level routines with appropriately sized

sub-matrices.

Note that our procedure interface is lower level than BLAS GEMM. Each routine supports a

smaller set of operations and there is no error checking. For optimal e�ciency, error checking should

2In our terminology, the leading dimensions LDA, LDB, and LDC are called Astride, Bstride, and Cstride

respectively.
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void

mul_mfmf_mf(const int M, const int K, const int N,

const float *const A, const float *const B, float *const C,

const int Astride, const int Bstride, const int Cstride)

{

const float *a0,*b0; float *c0;

const float *ap0_0,*ap0_1,*ap0_2;

const float *bp0; float *cp0;

const int A_sbs_stride = Astride*3;

const int C_sbs_stride = Cstride*3;

const int k_marg_el = K & 1;

const int k_norm = K - k_marg_el;

const int m_marg_el = M % 3;

const int m_norm = M - m_marg_el;

const int n_marg_el = N % 3;

const int n_norm = N - n_marg_el;

float *const c0_endp = C+m_norm*Cstride;

register float c00,c01,c02,c10,c11,c12,c20,c21,c22;

for (c0=C,a0=A; c0!= c0_endp; c0+=C_sbs_stride,a0+=A_sbs_stride) {

const float* const ap0_endp = a0 + k_norm;

float* const cp0_endp = c0 + n_norm;

for (b0=B,cp0=c0; cp0!=cp0_endp; b0+=3,cp0+=3) {

ap0_0 = a0;

ap0_1 = ap0_0 + Astride;

ap0_2 = ap0_1 + Astride;

bp0=b0;

LOAD3x3(c00,c01,c02,c10,c11,c12,c20,c21,c22,cp0,Cstride);

for (; ap0_0!=ap0_endp; ap0_0+=2,ap0_1+=2,ap0_2+=2) {

mul_mf3x2mf2x3_mf3x3(c00,c01,c02,c10,c11,c12,c20,c21,c22,

ap0_0,ap0_1,ap0_2,bp0,Bstride);

}

STORE3x3(c00,c01,c02,c10,c11,c12,c20,c21,c22,cp0,Cstride);

}

}

}

Figure 2: M0 = 3, K0 = 2, N0 = 3 matrix multiply L1 routine.
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Figure 3: M0 = 3, K0 = 2, N0 = 3 register-blocked matrix multiply diagram.

be performed by the caller when necessary rather than unnecessarily by the callee. We nevertheless

have implemented a FORTRAN BLAS GEMM compatible interface to our routines [BAD+].

4 Search Scripts

For each combination of generator parameters and compilation options, the PHiPAC matrix multi-

ply search script calls the generator, compiles the resulting routine, links it with timing code, and

benchmarks the resulting executable. In our search scripts, we assume that we have all machine

speci�c information, such as the number of integer and 
oating-point registers and sizes of each

level of cache, available at the start of the search.

4.1 Naive Parameter Search

In the initial PHiPAC alpha release [BAD+], we use a simple brute force search. To produce a full

BLAS GEMM routine, we need to search three cases of op(A)� op(B) separately: A�B, AT �B,

and A � BT (AT � BT is the mirror image of A � B). For each transposition case, we search the

blocking parameters for register, L1 cache, and L2 cache.

The register block search evaluates all combinations of M0 and N0 where NR=4 �M0N0 � NR

and where NR is the number of machine 
oating-point registers. We search the above for 1 � K0 �

Kmax

0 where Kmax

0 = 20 but is adjustable. Empirically, Kmax

0 > 20 has never been bene�cial.

For the register block search, we do not want L1 cache e�ects to in
uence performance. There-

fore, for each set of blocking parameters, we benchmark all square matrices M = K = N = D,

where D runs over powers of 2, powers of 3, multiples of 10, and primes such that three D�D

matrices �t in L1 cache. From these timings we pick the best register blocking.

We perform the L1 cache blocking search after the best register blocking is known. The L1 blocks

should all �t in L1 cache. To reduce the number of L1 block boundaries, they should be made larger,
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#define mul_mf3x2mf2x3_mf3x3(c00,c01,c02,c10,c11,c12,c20,c21,c22, \

A0,A1,A2,B,Bstride) \

{ \

register float _b0,_b1,_b2; \

register float _a0,_a1,_a2; \

\

_b0 = B[0]; _b1 = B[1]; _b2 = B[2]; \

B += Bstride; \

_a0 = A0[0]; \

c00 += _a0*_b0; c01 += _a0*_b1; c02 += _a0*_b2; \

_a1 = A1[0]; \

c10 += _a1*_b0; c11 += _a1*_b1; c12 += _a1*_b2; \

_a2 = A2[0]; \

c20 += _a2*_b0; c21 += _a2*_b1; c22 += _a2*_b2; \

\

_b0 = B[0]; _b1 = B[1]; _b2 = B[2]; \

B += Bstride; \

_a0 = A0[1]; \

c00 += _a0*_b0; c01 += _a0*_b1; c02 += _a0*_b2; \

_a1 = A1[1]; \

c10 += _a1*_b0; c11 += _a1*_b1; c12 += _a1*_b2; \

_a2 = A2[1]; \

c20 += _a2*_b0; c21 += _a2*_b1; c22 += _a2*_b2; \

}

Figure 4: M0 = 3, K0 = 2, N0 = 3 register blocked matrix multiply code.
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but to minimize the probability of cache misses [LRW91], they should be made smaller. For the

D�D square case, this occurs roughly when 3D2 = L1 where L1 is the L1 cache size. We therefore

search this neighborhood setting M1 to the values a � D=M0 where a 2 0:25; 0:5; 1:0; 1:5; 2:0 and

D =
p
L1=3 (K1 and N1 are set similarly resulting in 125 combinations). The matrix sizes used

to test these blocking parameters either �t in L2 cache, or are within some upper bound if no L2

cache exists.

Unfortunately, this search strategy takes too long. Generated code can be lengthy and under

full optimization, compilation time is signi�cant. Timing all matrix sizes is also time-consuming,

particularly where the machine timer resolution is poor. We had initially hoped search time would

be unimportant because, once the parameters were known for a given system, they could be globally

published on the web. In fact, new machines and compilers are being introduced fairly often, and

some people are interested in �nding optimal parameters for their own matrix sizes. Furthermore,

parameter searching for a complete BLAS implementation should not take longer than the useful

life of the architecture. The next section describes a better search strategy.

4.2 Smarter Register Block Search

The core register-blocked code is the most important to optimize because it performs the majority

of the computation. The core code, however, consumes less then one fourth of the total code size.

Therefore, in our newer strategy, we produce code containing only the matrix multiply core and

benchmark only matrix sizes that are multiples of the register block size. This strategy produces

more accurate core performance results since timing values are not distorted by fringe code.

We do not reduce the space of possible values for M0, K0, and N0, but we believe performing

a best-�rst rather than a naive search should produce better numbers sooner. That is, we search

�rst the unseen neighbors of the best parameters seen so far, where the neighbors of a particular

tuple (M0, K0, N0) are de�ned as (fM0, M0 � 1g, fK0, K0 � 1g, fN0, N0 � 1g). We can further

reduce search time by terminating early after reaching an acceptable e�ciency.

While benchmarking each set of register blocking parameters, we �t a model of in-cache matrix

multiply performance to the timing �gures. We will later use this information to both �nd good

L1 blocking sizes and also to �nd the best portable routine across a range of systems. Observe the

basic structure of the core code:

initialization O(1)

for M

O(M) code

for N

O(M*N) code

for K

O(M*N*K) code

If the three matrices �t in L1 cache, and the matrix dimensions are multiples of the register block

sizes, the following simple four parameter linear model can accurately predict the running time:

T = a0 + a1
M

M0

+ a2
MN

M0N0

+ a3
MNK

M0N0K0

where T is the total time to execute an M�K�N matrix multiply.

We can estimate the parameters a0 through a3 by timing four matrix sizes and solving the

resulting system of four equations and four unknowns. We choose the following sizes to produce a

well-conditioned system of equations:
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Sparcstation-20/61 SGI Indigo R4K HP 712/80i IBM RS/6000-590

Processor SuperSPARC+ R4000 PA7100LC RIOS-2

Frequency (MHz) 60 100 80 71.5

Max Instructions/cycle 3 1 2 6

Peak MFLOPS (32b/64b) 60/60 67/50 160/80 266/266

FP registers (32b/64b) 32/16 16/16 64/32 32/32

L1 D-cache (KB) 16 8 128 256

L2 D-cache (KB) 1024 1024 - -

OS SunOS 4.1.3 Irix 4.0.5H HP-UX 9.05 AIX 3.2

C Compiler Sun acc 2.0.1 SGI cc 3.10 HP c89 9.61 IBM xlc 1.3

Table 1: Workstation system details.

� M =M0, N = N0, K = K0 giving information about a0 through a3.

� N = N0, K = K0, and M set such that A and C together are roughly the size of L1 cache.

We get information primarily about a1 through a3.

� M =M0, K = K0, and N set such that B and C together are roughly the size of L1 cache.

We get information primarily about a2 and a3.

� M = M0, N = N0, and K set such that A and B together are roughly the size of L1 cache.

We get information primarily about a3.

To summarize, the advantages of the new searching strategy include smaller code that takes

much less time to compile, more accurate core timing, better numbers sooner, fewer sample points

used for each register blocking parameter set, and derivation of a timing model for in-cache matrix-

multiply.

A preliminary implementation of the optimized search strategy shows a signi�cant reduction in

search time (from 24 hours down to 5) and produces comparable results.

5 Results

To evaluate our methodology, we chose four commercial workstation systems with di�erent in-

struction set architectures and widely varying microarchitectures and memory hierarchies. Table 1

summarizes pertinent details.

For each system, we ran the PHiPAC alpha release search script to �nd the best register and

L1 cache blocking parameters which are shown in Table 2 together with the compiler options used.

Sparcstation-20/61 SGI Indigo R4K HP 712/80i IBM RS/6000-590

M0,K0,N0 2,4,10 2,10,3 4,1,4 2,1,10

M1,K1,N1 26,10,4 30,4,10 25,100,25 105,70,28

CFLAGS -fast -O2 -mips2 +O2 -O3 -qarch=pwr2

Table 2: Parameters for the best matrix multiply found by PHiPAC search.
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Figure 5: Performance of single precision matrix multiply on a Sparcstation-20/61. The bottom

\naive" plot shows the performance for code containing three nested loops. The \2,4,10" plot

shows PHiPAC performance with just register blocking. The last plot shows the performance for

the PHiPAC L1 blocked routine.

Figures 5{8 plot the resulting performance for each system. The results are all for single

precision, except the IBM RS/6000-590 which uses double precision. We show data for the square

matrix sizes described in section 4. We include vendor-optimized BLAS GEMM performance where

available.

In each case, the PHiPAC yields a substantial fraction of peak performance, and is competitive

with the vendor BLAS. The PHiPAC matrix multiply routines have a simpler interface than BLAS

GEMM, but the standard GEMM argument checking should not appreciably in
uence performance,

especially on larger matrix sizes.

The PHiPAC methodology can also improve performance even if there is no scope for memory

blocking. In Figures 9 and 10 we plot the performance of a dot product code generated using

PHiPAC techniques. Although the parameters used were obtained using a short manual search, we

can see a signi�cant performance boost over naive code. For the SGI, we are competitive with the

assembly coded vendor BLAS.

The PHiPAC routines occasionally su�er from cache con
ict e�ects. Our measurements exagger-

ate this e�ect by including all power-of-2 sized matrices, and by allocating all regions contiguously

in memory. A drawback of the PHiPAC approach is that we can not control the order compilers

schedule independent loads. We've occasionally found that exchanging two loads in the assembly

output can halve the number of cache misses where con
icts occur, without otherwise impacting

performance.

6 Status, Availability, and Future Work

This paper has demonstrated our ability to write fast matrix-vector code in portable ANSI C via

parameterized code generators. Library writers might achieve signi�cant improvements by writing
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Figure 6: Performance of single precision matrix multiply on an 100 MHz SGI Indigo R4K. The

middle plot is the SGI-supplied mips2 assembly-coded SGEMM available from their ftp site. The

top plot is the PHiPAC generated code.

0 50 100 150 200 250 300
0

50

100

150

Square matrix size

M
F

LO
P

S

HP BLAS SGEMM

4,1,4

4,1,4_25,100,25

Figure 7: Performance of single precision matrix multiply on a HP 712/80i. The bottom plot is

the HP-supplied SGEMM from libvec.a in the compiler distribution. The \4,1,4" plot is the

performance of the PHiPAC routine with just register blocking. The last plot is the PHiPAC

routine with both register and L1 cache blocking.
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Figure 8: Performance of double precision matrix multiply on an IBM RS/6000-590. The bottom

plot is IBM's ESSL DGEMM.
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Figure 9: Performance of single precision unit-stride dot-product on a Sparcstation-20/61. The

bottom curve is the performance of a simple loop. The top curve is the performance of PHiPAC

generated code.
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Figure 10: Performance of single precision unit-stride dot-product on a 100 MHz SGI R4k. The

bottom curve is the performance of a simple loop. The other two curves are the vendor-supplied

SDOT routine, and the PHiPAC generated code.

a generator and searching a parameter space, instead of coding directly in a target language.

The PHiPAC alpha release [BAD+] contains the matrix multiply generator, the naive search

scripts written in perl, and timing libraries. We have also written parameterized generators for

matrix-vector and vector-matrix multiply, dot product, AXPY, convolution, and outer-product.

We have created a Web site on which we plan to list blocking parameters for many systems.

In future work, we will release the smarter search scripts. We plan to use the ai coe�cients

described in Section 4.2 to determine good L1 blocking sizes. We also plan to use the same

coe�cients to �nd a parameter set that works well on a set of systems. At some point, PHiPAC

will be integrated with Bo K�agstr�om's GEMM based BLAS3 package [BLL93]. The PHiPAC

routines might also be integrated into LAPACK [ABB+92].

In the more distant future, the matrix multiply code will dynamically adjust its L1 blocking

size according to various criteria [LRW91]. This will increase performance for certain pathological

combinations of matrix dimensions and cache structure. Other generators, such as FFT and sort,

are planned.

We wish to thank the International Computer Science Institute for its support. We also wish

to thank Nelson Morgan who provided the initial impetus for this project.
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