
CS 377P Assignment 4
Help Session

TA: Ruei-Bang Chen (slides adapted from Yi-Shan Lu)

CS, UT Austin

3/27/2019

1



Outline

• Guide for subproblems

• Notes on measurement

• Implementation tricks

2



Guides for Subproblems

3



MMM Loop Nests

for (i = 0; i < sz; i++) {

for (k = 0; k < sz; k++) {

for (j = 0; j < sz; j++) {

C[i][j] += A[i][k] * B[k][j];

}

}

}

You can use other loop ordering,

but be consistent across part (a) to (e)

A C

B

i i

k

jk

j

4



Micro-kernel: Register Tiling

• Be aware of the loop ordering.

• You can use MU and NU values from the Yotov paper.
• They suggest MU = 5 or 6, NU = 1 for JIK loop nests
• But feel free to use other values as long as they make sense
• Note that for the next part you have to use a multiple of 4 due to the vectorization

• To avoid cleanup code, matrix size N = c*LCM(MU, NU),

where c is an integer

• Allocate registers in a portable way.
• register type var = array[index];

• NB = N for now.
• Mini-kernel = full MMM in this case.

5

A C

B

i i

k

jk

j



Vectorization

• Sufficient to replace/merge scalar registers with vector registers.

• See https://software.intel.com/sites/landingpage/IntrinsicsGuide/ for 
the available vector intrinsic functions.

• See examples of using SSE/SSE2 intrinsic functions at 
https://www.cs.fsu.edu/~engelen/courses/HPC-
adv/MMXandSSEexamples.txt

• Note that we use float in this assignment

6

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.cs.fsu.edu/~engelen/courses/HPC-adv/MMXandSSEexamples.txt


Example of Using Vector Intrinsics

7

float A[size], B[size], C[size];

// assume that size is a multiple of 4

void vec_float_add(float* c, float* a, float* b) {

for (int i = 0; i < size; i += 4) {

__m128 vec_a = _mm_load_ps(a+i);

__m128 vec_b = _mm_load_ps(b+i);

_mm_store_ps(c+i, _mm_add_ps(vec_a, vec_b));

}

}

void some_func() {

...

vec_float_add(C, A, B);

...

}

The vector counterpart 
of a scalar register



Mini-kernel: L1 Cache Tiling

• To avoid cleanup code,
• NB = c * LCM(MU, NU).

• Matrix size N = c’ * NB, where c’ is an integer.

• Micro-kernel works inside mini-kernel, which processes tiles of NB by 
NB, NB <= N.

• Experiment with different NB and pick the one that works best

• Add 3 loops outside of the mini-kernel to have a full MMM.
• These loops control which tiles are used for computation.

8



Buffering the Tiles

• Key questions: 
• Which matrix needs only one element;

• Which matrix needs only one row/column;

• Which matrix needs to be fully in L1 cache; and

• When to copy a tile in to/out from a buffer.

• Figure out the above from the loop ordering 

• Copy back to the original C after finishing with C’s tile.

• Use memcopy for the copying

9

A C

B

i i

k

jk

j



MKL

• Example https://software.intel.com/en-us/mkl-tutorial-c-multiplying-matrices-using-
dgemm#9CEED00C-1A85-4AC0-8AF8-BE2AFEF0E603
• Note that the example uses double type
• Use cblas_sgemm instead of cblas_dgemm for float type
• https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm

• The trend for GFLOPS might be different
• Think about how GFLOPS is calculated
• Pay careful attention to your raw measurement values, especially total floating point 

operations
• Figure out an explanation
• Assume the number of floating point operations as 2𝑛3

• Divide it by the measured running time to get FLOPS

10

https://software.intel.com/en-us/mkl-tutorial-c-multiplying-matrices-using-dgemm#9CEED00C-1A85-4AC0-8AF8-BE2AFEF0E603
https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm


Notes on Measurement

11



Do Remember to (Lesson from Assignment 1)

• Flush all three levels of data caches.
• Get the same initial state across different runs.

• Allocate a large enough array, and walk through it to evict everything else.

• Use serializing instructions right before and right after the measured 
code.
• To avoid compiler optimization and hardware out-of-order execution.

• Example: __cupid() in <cupid.h>, see https://en.wikipedia.org/wiki/CPUID

12

https://en.wikipedia.org/wiki/CPUID


Performance

• FLOPS = Floating-point Operations Per Second

• Need to measure the absolute runtime and the number of total floating point 
operations

• Be careful when calculating the total number of floating point operations for 
vectorized code as stated in the next slide

13



Validating Your Measurement

• Use PAPI_FP_OPS for this purpose.

• For the same size of matrices, part (a) to (e) of your code should have 
roughly the same number of floating-point operations.
• Part (a) & (b): PAPI_FP_OPS

• Part (c), (d) & (e): vector_width * PAPI_FP_OPS
• We are counting # double/single-precision operations, but PAPI_FP_OPS reports # 

hardware operations.

• vector_width: 2 for double-precision FP, 4 for single-precision FP (128 bits in 
total)
• No AVX on the orcrists

14



Implementation Tricks

15



Navigating a Large Configuration Space

• Parameterize your program so it is easier to try different configurations 
through command-line arguments.
• Matrix size
• Tiling mode: five subproblems
• Measurement mode: runtime, PAPI events, etc.

• Build your code for different versions
• Makefile for compilation with make
• #ifdef, #if, etc. in your source to have conditional compilation 

(via C preprocessor, CPP)

• Use a (bash) script to iterate over configurations.
• Write or redirect your program output to files for post-processing.
• Use gcc and –O2 for part (a) to (e), you can separate part (f) from others

16



Useful Command-line Utilities

• Simplification of the I/O processing for your program
• Input redirection: <

• Output redirection: >, &>, etc.

• Comparison & correctness verification: diff / vimdiff

• Show file contents: head, tail, cat, etc.

• String/file manipulation: sed/awk, join, fgrep, sort, etc.

17


