
Hajime Fujita and Wesley Bland

04/25/2019

Senior Software Development Engineer, Intel Corporation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Who Am I?

Hajime Fujita, Senior Software Development Engineer, Intel

• Working on open source enabling for MPICH

Previously worked at The University of Chicago

• Developed a resilience framework on top of MPI

PhD from The University of Tokyo, Japan

• Developed a dependable single system image OS (Linux
kernel, TCP/IP)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

What Have You Covered So Far?

Make Algorithms Faster

Locality, performance counters/tuning

Parallelize Algorithms

Thread-based speedups within a single node (cache
coherency, synchronization)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

What’s Next?

Distributed Memory Programming

When the problem is too big for one node in
computational or memory capacity

Images from ALCF Incite Program: https://www.alcf.anl.gov/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

What is MPI?

A standard communication interface for distributed memory programming

The de-facto standard interface for modern supercomputers

§ Supercomputers: massively distributed (~O(100,000) nodes)

§ Programs have to communicate!

Image by Argonne National Laboratory

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

What Exactly is MPI?

MPI (the Message Passing Interface) is a standard, like C, C++, or Fortran.

• You don’t download MPI just like you don’t download C. It’s just a document.

MPI implementations come as libraries

• Standard defines C, C++, and Fortran bindings

• Many other unofficial languages bindings (e.g. Python)

• MPICH, MVAPICH2, and Open MPI are popular open source implementations
that you can install on your laptops.

• Vendor implementations from Intel, Cray*, IBM*, Microsoft*, etc.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Where Can I Use MPI?

Supercomputers

Public Clouds

University/lab clusters

Laptop/desktops

Stampede2 @TACC
https://www.tacc.utexas.edu/systems/stampede2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Who Uses MPI?

• Scientific computing

• Universities and national laboratories

• Commercial Users

• Oil & Gas companies are a big user

• Other programming models (as the runtime for communication)

• Parallel Global Address Space, Machine/Deep Learning Frameworks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

How Do I Solve These Big Problems?

1. Stage input data on high capacity storage

2. Distribute data across multiple machines interconnected by a high speed
network

3. Perform computation on the input data while communicating with other
processes

4. Write the output to stable storage for analysis (sometimes by another
distributed program!)

MPI helps 2. and 3.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Why Can’t I Solve This in the Same Way as Before?

Previously, everything was using a shared memory model.

• All memory is addressable.

• There are some programming models that simulate this even with
distributed memory (Parallel Global Address Space – PGAS).

Now we’re thinking of things as distinct nodes with their own local memory.

• Only local memory is accessible.

• Other memory must be retrieved via passing messages.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

How Would I Have Done This Before MPI?

• Somehow launch a bunch of processes on a bunch of nodes.

• Use BSD sockets (or something similar) to communicate data.

• Perform computation.

• Repeat. Repeat. Repeat.

• MPI makes all of the above easier.

12

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

MPI at a Glance

Job/process launching

§ mpiexec, MPI_SPAWN, …

Point-to-point Communications for Data Transfer

§ MPI_SEND, MPI_RECV, …

Collective Communications

§ MPI_BARRIER, MPI_BCAST, MPI_REDUCE, …

More Advanced Communications

§ One-sided (RMA), MPI-IO

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

How Do I Get MPI?

Remember that you’re getting an implementation of MPI, so it won’t be called MPI.

brew|yum|apt-get install mpich|open-mpi

This will install the libraries (libmpi.so) and the launcher (mpiexec).

As a student, you can get Intel® MPI Library for free with support for Linux, MacOS,
and Windows:

• https://software.intel.com/en-us/qualify-for-free-software/student

• Search for ”Intel MPI for Students” in your engine of choice

https://software.intel.com/en-us/qualify-for-free-software/student

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

How Do I Use MPI

2 Steps:

1. Compile your code with the compiler wrapper for your language.

§ C – mpicc, C++ - mpic++, Fortran – mpifort
§ E.g. mpicc –o my_prog my_prog.c
§ This will automatically link with all of the right libraries. Acts just like your normal

compiler (e.g. compiler flags).

2. Run your code with mpiexec (or something else – mpirun, srun, aprun).

§ mpiexec –n 4 ./my_prog

§ This will take care of launching your program multiple times and connecting all of them
up.

§ I’ll refer to this as a job for the rest of these slides.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

My First MPI Program
#include <stdio.h>
#include <mpi.h>
int main(int argc, char *argv[]) {

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf(“Hello, world! I’m no. %d”

“in %d ranks.\n”, rank, size);
MPI_Finalize();

}

$ mpicc –o hello hello.c

$ mpiexec –n 4 ./hello
Hello, world! I'm no. 0 in 4 ranks
Hello, world! I'm no. 2 in 4 ranks
Hello, world! I'm no. 3 in 4 ranks
Hello, world! I'm no. 1 in 4 ranks

Start up MPI

Every process
executes same code

“SPMD”; single
program multiple data

Get my rank (proc. ID)
and communicator

size (total no. of procs)

Shut down MPI

Outputs from 4
processes

16

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Let’s Look at a Simple Example: Sorting Integers

Each process has to send/receive data to/from other processes

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Process1 Process2

1 3 5 8 6713 19 23 24 30 35 45

O(N/2 log N/2) O(N/2 log N/2)

O(N log N)

O(N)

Process1

Process1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

How Would This
Look in Code?

#include <mpi.h>
int main(int argc, char *argv[]) {

int rank, numbers[100]; /* Initialize numbers somehow */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

MPI_Send(&numbers[50], 50, ..., 1, ...);
} else {

MPI_Recv(&numbers[0], 50, ..., 0, ...);
}
sort_numbers(numbers, 50);
if (rank == 0) {

MPI_Recv(&numbers[50], 50, ..., 1, ...);
} else {

MPI_Send(&numbers[0], 50, ..., 0, ...);
}
combine_arrays(&numbers[0], &numbers[50], 50);
MPI_Finalize();

}

8 23 19 67 45 35 1 24 13 30 3 5

Process1

8 19 23 35 45 67

Process1

1 3 5 13 24 30

Process2

1 3 5 8 6713 19 23 24 30 35 45

Process1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <mpi.h>
int main(int argc, char *argv[]) {

int rank, numbers[100]; /* Initialize numbers */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

MPI_Send(&numbers[50], 50, ..., 1, ...)
} else {

MPI_Recv(&numbers[0], 50, ..., 0, ...);
}
sort_numbers(numbers, 50);
if (rank == 0) {

MPI_Recv(&numbers[50], 50, ..., 1, ...);
} else {

MPI_Send(&numbers[0], 50, ..., 0, ...);
}
combine_arrays(&numbers[0], &numbers[50], 50);
MPI_Finalize();

}

20

Start up MPI

Get my “rank” (ID)

Distribute the initial
values from rank 0

to rank 1.

Send the results of
the sort back from
rank 1 to rank 0.

Shut down MPI

Sort

Combine the results

How Would This
Look in Code?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

That Seems Kinda Trivial. Can We Make It Bigger?

8 19 23

Process1

35 45 67

Process2

1 3 5 8 6713 19 23 24 30 35 45

Process1

8 23 19 67 45 35 1 24 13 30 3 5
Process1 Process2 Process3 Process4

1 3 5
Process3

13 24 30

Process4

Imagine this being billions of numbers

…

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

How Would This
Look in Code?

8 19 23

Process1

35 45 67

Process2

1 3 5 8 6713 19 23 24 30 35 45

Process1

8 23 19 67 45 35 1 24 13 30 3 5

Process1 Process2 Process3 Process4

1 3 5

Process3

13 24 30

Process4

[...snip...]
int rank, size, numbers[100];

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank == 0) {
for (i = 1; i < size; i++)

MPI_Send(&numbers[(100/size)*i], (100/size), …, i, …);
else

MPI_Recv(&numbers[0], (100/size), …);

sort_numbers(numbers, (100/size));

if (rank == 0) {
for (i = 1; i < size; i++)

MPI_Recv(&numbers[(100/size)*i], (100/size), …, i, …);
else

MPI_Send(&numbers[0], (100/size), …);

combine_arrays(&numbers[0], &numbers[(100/size)], (100/size));
[...snip...]

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

How Would This
Look in Code?

[...snip...]
int rank, size, numbers[100];

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank == 0) {
for (i = 1; i < size; i++)

MPI_Send(&numbers[(100/size)*i], (100/size), …, i, …);
else

MPI_Recv(&numbers[0], (100/size), …);

sort_numbers(numbers, (100/size));

if (rank == 0) {
for (i = 1; i < size; i++)

MPI_Recv(&numbers[(100/size)*i], (100/size), …, i, …);
else

MPI_Send(&numbers[0], (100/size), …);

combine_arrays(&numbers[0], &numbers[(100/size)], (100/size));
[...snip...]

Get my rank and size

Distribute the initial
values from rank 0

to all ranks.

Send the results of
the sort back from
all ranks to rank 0.

Start thinking now about why this might be slow

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

So What Have We Seen Here?

MPI_INIT / MPI_FINALIZE

• Set up and tear down the innards of MPI

MPI_COMM_RANK / MPI_COMM_SIZE

• Get the size of my job and my rank (ID) within it

MPI_SEND / MPI_RECV

• Do some basic communication between MPI ranks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Blocking vs. Non-blocking Communication

MPI_SEND/MPI_RECV are blocking communication calls
§ Return of the routine implies completion
§ When these calls return the memory locations used in the message transfer can be

safely accessed for reuse
§ For “send” completion implies variable sent can be reused/modified

– Modifications will not affect data intended for the receiver
§ For “receive” variable received can be read

MPI_ISEND/MPI_IRECV are nonblocking variants
§ Routine returns immediately – completion has to be separately tested for
§ These are primarily used to overlap computation and communication to improve

performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

What’s the Cost of Doing Computation?

Cache Reads/Writes

Memory Reads/Writes

Want to spend time here

Not Here

Computation

Network Reads/Writes

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

if (rank == 0) {
MPI_SEND(..to rank 1..)
MPI_RECV(..from rank 1..)

} else if (rank == 1) {
MPI_SEND(..to rank 0..)
MPI_RECV(..from rank 0..)

}

This will usually deadlock!

28

In blocking communication:

§ MPI_SEND does not return until buffer is
empty (available for reuse)

§ MPI_RECV does not return until buffer is
full (available for use)

Exact completion semantics of
communication generally depends on
the message size and the system
buffer size

Blocking communication is simple to
use but can be prone to deadlocks

Blocking Communication

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Non-Blocking Communication

Non-blocking (asynchronous) operations return requests that can be queried

§ MPI_Isend(buf, count, datatype, dest, tag, comm, request)

§ MPI_Irecv(buf, count, datatype, src, tag, comm, request)

§ MPI_Wait(request, status)

§ MPI_Test(request, flag, status)

Non-blocking operations allow overlapping computation and communication

Anywhere you use MPI_SEND or MPI_RECV, you can use the pair of MPI_ISEND and
MPI_WAIT or MPI_IRECV and MPI_WAIT

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Multiple Completions

It is sometimes desirable to wait on multiple requests:

§ MPI_Waitall(count, array_of_requests, array_of_statuses)

§ MPI_Waitany(count, array_of_requests, &index, &status)

§ MPI_Waitsome(incount, array_of_requests, outcount,

array_of_indices, array_of_statuses)

There are corresponding versions of MPI_TEST for each of these

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Message Completion and Buffering
A send has completed when the user supplied buffer can be reused

Just because the send completes does not mean that the receive has
completed

§ Message may be buffered by the system
§ Message may still be in transit

*buf = 3;
MPI_Send(buf, 1, MPI_INT …)
buf = 4; / OK, receiver will always

receive 3 */

*buf = 3;
MPI_Isend(buf, 1, MPI_INT …)
buf = 4; / Receiver may get 3, 4, or

anything else */
MPI_Wait(…);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

A Non-Blocking communication example
[...snip...]

/* Compute each data element and send it out */
if (rank == 0) {

for (i=0; i< 100; i++) {
data[i] = compute(i);
MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &request[i]);

}
MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

} else if (rank == 1) {

for (i = 0; i < 100; i++)
MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

[...snip...]

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Let’s imagine communicating with a
mesh of processes.

Very common type of application
communication pattern.

• Also known as a stencil (can be
multiple dimensions)

Mesh Exchange

9 1110

6 7 8

3 4 5

0 1 2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Sample Code

What is wrong with this code?

for (i = 0; i < n_neighbors; i++) {
MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}
for (i = 0; i < n_neighbors; i++) {

MPI_Recv(edge, len, MPI_DOUBLE, nbr[i], tag, comm, status);
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Sample Code

What is wrong with this code?

for (i = 0; i < n_neighbors; i++) {
MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}
for (i = 0; i < n_neighbors; i++) {

MPI_Recv(edge, len, MPI_DOUBLE, nbr[i], tag, comm, status);
}

Deadlocks!
All of the sends may block, waiting for a matching receive (will if large enough messages)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Fix 1: Swap Send and Recv

This variation solves the problem.

But it introduces a performance problem.

Can anyone say what it is?

if (has up neighbor)
MPI_Recv(…up…)

else
MPI_Send(…down…)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Sequentializes Communication

9 1110

6 7 8

3 4 5

0 1 2

1

2

3

6

5

4

7 8

9 10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Fix 2: Use Isend and Irecv

for (i = 0; i < n_neighbors; i++) {
MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag,

comm, requests[i]);
}
for (i = 0; i < n_neighbors; i++) {

MPI_Isend(edge, len, MPI_DOUBLE, nbr[i], tag, comm,
requests[n_neighbors + i]);

}
MPI_Waitall(2 * n_neighbors, requests, statuses);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

Parallelizes Communication

9 1110

6 7 8

3 4 5

0 1 2

1

1

1

1

1

1

1 1

1 1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Lesson: Defer Synchronization

Send-receive accomplishes two things:

§ Data transfer

§ Synchronization

In many cases, there is more synchronization than required

Use non-blocking operations and MPI_Waitall to defer synchronization

Tools can help out with identifying performance issues

§ Intel® Trace Analyzer and Collector (ITAC), Tau, HPCToolkit, and Scalasca are
popular profiling tools

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

What Are Collectives?

A group of processes works together to
accomplish something.

• E.g. Calculate a value, distribute some data,
gather a result, synchronize operations, etc.

Instead of sending a value to each process in a
for loop, use one collective call and let MPI
optimize doing that for you.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Sorting Example
(Again)

[...snip...]
int rank, size, numbers[100];

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank == 0) {
for (i = 1; i < size; i++)

MPI_Send(&numbers[(100/size)*i], (100/size), …, i, …);
else

MPI_Recv(&numbers[0], (100/size), …);

sort_numbers(numbers, (100/size));

if (rank == 0) {
for (i = 1; i < size; i++)

MPI_Recv(&numbers[(100/size)*i], (100/size), …, i, …);
else

MPI_Send(&numbers[0], (100/size), …);

combine_arrays(&numbers[0], &numbers[(100/size)], (100/size));
[...snip...]

Distribute the initial
values from rank 0

to all ranks.

Send the results of
the sort back from
all ranks to rank 0.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

Why is the right side better?

1 2 3 4 5 6

1 2

3 4 43

O(n) serial communications
2 serial communications (best case)

4 serial communications (worst case)
O(log(n)) (average case)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Collective Data Movement

A

B

D

C

A

A

A

A

Broadcast

Scatter

Gather

A

B C DA

P0

P1

P2

P3

P0

P1

P2

P3

45
This is why sending and receiving integers individually for sorting is slow

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

More Collective Data Movement (“All”-Variants)
A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

46

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
47

Collective Computation
P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

f(A,B,C,D)

f(A,B,C,D)

f(A,B,C,D)

f(A,B,C,D)

f(A,B,C,D)

Reduce

AllReduce

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
48

What Is That Reduction Thing Again?

Perform operations on data while communicating to one (or all) processes(es)

MPI_MAX
MPI_MIN
MPI_PROD
MPI_SUM
MPI_LAND
MPI_LOR
MPI_LXOR

Maximum

Minimum

Product

Sum

Logical AND

Logical OR

Logical Exclusive OR

MPI_BAND
MPI_BOR
MPI_BXOR
MPI_MAXLOC
MPI_MINLOC
USER

Bitwise AND

Bitwise OR

Bitwise Exclusive OR

Maximum and location

Minimum and location

User defined operation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Example: Calculating π

Calculating π via numerical integration

§ Divide interval up into subintervals

§ Assign subintervals to processes

§ Each process calculates partial sum

§ Add all the partial sums together to get π
1

1

“n” segments

1. Width of each segment (w) will be 1/n
2. Distance (d(i)) of segment “i” from the origin will be “i * w”
3. Height of segment “i” will be sqrt(1 – [d(i)]^2)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <mpi.h>
#include <math.h>
int main(int argc, char *argv[]) {

double mypi = 0.0;
[...snip...]

MPI_Bcast(&num_segs, 1, MPI_INT, 0, MPI_COMM_WORLD);

double width = 1.0 / (double) num_segs;
for (int i = rank + 1; i <= n; i += size)

mypi += width * sqrt(1 – (((double) i / num_segs) * ((double) i / num_segs));

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (rank == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

4 * pi, fabs((4 * pi) - PI25DT));
[...snip...]

}

50

Example: Pi in C

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <mpi.h>
#include <math.h>
int main(int argc, char *argv[]) {

double mypi = 0.0;
[...snip...]

MPI_Bcast(&num_segs, 1, MPI_INT, 0, MPI_COMM_WORLD);

double width = 1.0 / (double) num_segs;
for (int i = rank + 1; i <= n; i += size)

mypi += width * sqrt(1 – (((double) i / num_segs) * ((double) i / num_segs));

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (rank == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

4 * pi, fabs((4 * pi) - PI25DT));
[...snip...]

}

51

Tell all processes how
many rectangles there are

Calculate my
share of pi

Send the result to
rank 0 and calculate

the total at the
same time

Example: Pi in C

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
53

That Was A Lot!

We covered:

• What is MPI (and the implementations of it)?

• Startup & Finalize

• Blocking Send & Receive

• Non-blocking Send & Receive

• Collectives

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
54

Next Time

• Communicators

• Datatypes

• Brief look at advanced topics (RMA, threads, topology)

• Analyzing the performance of MPI

