Software

INTEL"PERFORMANCE TOOLS

aaaaaaaaaaaaaaaaaaaa

INTEL" VTUNE™ AMPLIFIER

Agenda

Introduction to Performance Tuning
Introduction to Intel VTune Amplifier
System-Level Profiling
* HPC Characterization
* Disk I/O Analysis
Application Performance Tuning Process
* Find Hotspots

Determine Efficiency

Address Parallelism Issues

Address Hardware Issues

Rebuild and Compare
Summary

Optimization Notice

Copyright © 2018, Intel Co i rights reserved.
*Other names and brands ed as the property of others.

Two Great Ways to Collect Data

Intel” VTune™ Amplifier

Uses OS interrupts Uses the on chip Performance Monitoring Unit (PMU)
Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution ~1ms default resolution (finer granularity - finds small functions)
Either an Intel’ or a compatible processor | Requires a genuine Intel” processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in a VM only when supported by the VM

Works in virtual [t
orks in virtual environments (.., vSphere*, KVM)

- Easy to install on Windows

No driver reqUIred Requires a driver - Linux requires root (or use default perf driver)

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A Rich Set of Performance Data

Intel” VTune™ Amplifier
Software Collector Hardware Collector
Hotspots Hotspots

Which functions use the most time?

) . R
Which functions use the most time Where to inline? — Statistical call counts

Threading Microarchitecture Exploration
Tune parallelism. Where is the biggest opportunity?
Colors show number of cores used. Cache misses? Branch mispredictions?

Tune the #1 cause of slow threaded performance:

— waiting with idle cores. Advanced Analysis

Memory-access, HPC Characterization, etc...

Any |IA86 processor, any VM, no driver Higher res., lower overhead, system wide

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Example: Hotspots Analysis

Summary View

Elapsed Time : 5.554s

CPU Usage Histogram

This histogram displays a percentage ofthe wall time the specific number of CPUs were

M . 10.504s running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.
Instructions Retired: 21,698.000.000
CPlRate 1257 & 26—
CPU Frequency Ratio 1.041 £ .§:
Total Thread Count: 9 % E |
Paused Time Os 15z 2 §|
i Bl
.El
Top Hotspots 151 :
This section lists the most active functions in your application. Optimizing these hotspot |
functions typically results in improving overall application performance. 05e |
= |
Function Module CPU Time |
grid_intersect 3_tachyon_omp.exe 5539s Os

sphere intersect 3_tachyon_omp.exe 3247s
func@0x1002e59d

] 1 2 3 4
libiomp5md.dll 0.148s -ﬂ_m m
shader 3_tachyon_omp.exe 0117s
KeDelayExecutionThread ntoskrnl.exe 0.091s Simultaneously Utilized Logical CFUs

"M is applied to non-summable metrcs.

Collection and Platform Info

This section provides information about this collection, including result set size and collection
platform data.

Average Bandwidth
Package Total, GBfsec Read GBjsec Write, GB/sec
package 0 5715 3504 2212

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Example: Threading Analysis

Bottom-up View

@ Analysis Target ction Log| | Kl Summary % Caller/Callee| | #% To wn Tree| | B8 Tasks and Frames
Grouping: |Function / Call Stack v (G Data Of Interest (CPU Metrics) Y]
e Viewing 4 10of 21 b selected stack
CPU Time by Utilizations v Wait Time by Utilization ov.® Thre... Start e TR selected stack(s]
Functien / Call Stack an Ove Module Address Functien (Full) 31.8% (1.7D3s of 5.3605)

Didle @Poor 0Ok W Ideal @ Over D idle @Poor 0Ok [Ideal [Over ' . . .
grld_mt.ersect 5.3605 0s 45275 3_tachyon_omp.exe (xd0c7f0 grld_lnt.ersect 3 tachyon_omp.exelgrid_intersect - grid.. -
[Flsphere_intersect 3.5425-:- 0s 29145 3_tachyon_omp.exe (xd0acal sphere_intersect

" .
M SwitchToThread 0.926< (IR0 0.986s 0.901c KERMELBASEdI Ox10047ed9 SwitchToThread 3_tachyon_omp.exelintersect_objects+0x...
kmp_launch_thread 0.874< I 2.104s [N 0.874s 0.0085 libiompSma.dil 0x1004b0d0 __kmp_launch_thread 3_tachyon_omp.exelshader+ (357 - cha...
[# grid_bounds_intersect 0.297s [0s 02135 3_tachyon_omp.exe (xd0cdfl grid_bounds_intersect 3_tachyon_omp.exeltrace+ 0u2f - trace_re..
[Fshader 0.106s] 0s 0.066s 3_tachyon_omp.exe (x406b30 shader(struct ray %) 3_tachyon_omp.exelrender_one_pixel+0...
[# GdipDrawlmagePointRect! 0.098s | 0s 0.008s gdiplus.dil 0x10060336 GdipDrawlmagePointRect! 3_tachyon_omp.exelthread_trace+(x2c9..
[#l pos2grid 0.000s] 0s 0.074s 3 tachyon_omp.exe (x40c410 pos2grid libiompSmd.dil!_kmp,_invoke_microta...
Selected 1 row(s): 5.360s 0s| 4.527s - | X
= > l< libiemp5md.dlll[OpenMP dispatcher]+... v
T S S e —— T ——
QUoHrQe 0.55 1s 1.55 2 2.5 35 355 45 455 35 5.55 b5 Hulesirsa ~
OMP Worker Thread =1 7= Regionl...
Omp Wgrker Thread #2 Thread =
thread_video (TID: 5712
= [OMP Worker Thread #3 [0 Running
gmeainCRTStartupm 210 Waits
if 0 100097fe (TID:
unc@ =0] ks CPU Time
Uuk Overhea...
[]= CPU Sample
Fl Transitions
CPU Usage CPUU
- Huk Overhea...

No filters are applied. Any Process

W I Any Thread

W I Any Module

Any Utilization

W I User functions + 1

bl Inline :

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

W I Functions only

B

.
v

Find Answers
Intel” VTune™ Amplifier

A dj ust Data G ro u pi ng Grouping: [Funcﬁon;‘call Stack Data Of Interest (CPU Metrics)
. |3 Viewing 4 10f49 b selected stacki
F . Call S K Function / Call Stack CPU Time by Utilizationw % Cwverhead =i ° = SEE
unction - Call Stac ! Tidie @ Poor 0Ok @Ideal @ Over and Spin Time | 22.8% (10295 of 4.507s)
= 1 = [# FireObject:checkCollisi 4.507 0
Module - Function - Call Stack = !re J.EC Ehed U_ B0 . 2 2 SystemProceduralFire.DLL!FireCbject: c..,
) . [FireObject:ProcessFireCollisionsRange o 0s - ~
Scurce File - Function - Call Stack I NtWaitForSingleObject A e | 34085 SystemProceduralFire. DLL!FireObject:Pr...
Thread - Function - Call Stack [. WaitForSingleObjectEx+ WaitForSin| 3399 (NN 0 33995 SystemProceduralFire.DLLIFireObject:Fi...
L F. RtlpWaitOnCriticalSection< RtlEnte| 0.007s| 0.007s Smoke.exe!ParallelForBody::operator()+ ...
o (Pamal list shown) EJste:basic_ifstream<char,struct std:char) 33595 [0 { 0Os Smoke.exel[TBE parallel_for on class Para...
- . " OgresFileSystemArchiveropen 33595:— 0s Smoke.exeltbb:internalistart_for<class ..
ice: LIGH B !)
DOUbIe CIICk Functlon ¥ CBaseDevice:Present 30085 p67ls Smoke.exe!TaskManagerTEE: ParallelFo...
Selected 1 row(s): 4.507s) & 0s -
to VieW Source q gl o = / D SystemProceduralFire.DLLIFireObject:Em... _
LB LSS Iy
QO C= O 500ms 25600ms 25700ms 25800ms 25000ms Ruler Area -

=] Smoke.exe - P Frame

Click [+] for Ca" StaCk E EHw\WinMainCRTSta Process [Thread / Module |z| L
. . . . § [H _endthreadesx (TID v R i
Filter by Timeline Selection £ eriivesionm d S

ik Overhead and Spin Time
[]% CPU Sample
P Tasks

(or by Grid Selection)

Zoom In And Filter On Selection
Filter In by Selection D%

Frame Rate

= i

oy v I i o AR S alenety
: 4

E Any Module
A Functions only |z|

Mo filters are applied. Any Process i Any Thread E Any Utilization |z|

User functip / |z|

Rermowe All Filters

Tuning Opportunities Shown in Pink.
Hover for Tips

Filter by Process
& Other Controls

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

See Profile Data On Source / Asm

Double Click from Grid or Timeline

View Source / Asm or both CPU Time Right click for instruction reference manual

+% Botf

-down Tree| | BB Tasks an

Bl Summary 1| | #% Caller/Callee

Log

rames gridepp

L lAssemny grouping: [Address I ']
Sler:;e . Source CPU Time: Total ... fl Address a SEiL:E... Asselibly CPU Time: Total ... i =
D ldle @ Poor 0Ok L Didle @ Poor OOk _
. . . 0.017s| 0x418b6d 580 crp dword pti ep-0x130], 0x 0.120s] =
Qu ICk Asm naV|g atlo n : 0x418b74 580 jz Ox418bed < 3ok 58> 0379s[0 f
0x418b76 Block 54:
Select SOU rce to h ig h I ig ht Asm & _— 0x418b76 581 mov edx, dword ptr [ebp-0x190 0.090s| %
o |7 0:d18b7c 581 mov eax, dword ptr [edx+Oxd] 0.020s] —|
579 cur = g-»cells[voxindex]: o 0d18b7f 581 mov ecx, dword ptr [eax] 3.8535_ =
580 while {cur != NULL) { 04995y 0:418b81 581 mov edx, dword ptr [ebp+Oxc] | 2.500= (DD _
if (ry-»mbox[cur-»obj-»id] ! 0xd18b84 581 mov eax, dword ptr [edx+0x10] 0.0305| E
582 ry->rbox [cur->obj-»id] = | 0.547s0 0:d18b87 581 mov edx, dword ptr [ebp+Oxc] E
583 cur->cbj->methods->interse 1.?695. _ | 0x418b8a 581 mov eax, dword ptr [eaxt+eck*4 U.U4Us| l ‘I
584 1 = 0:418b8d 581 cmp eax, dword ptr [edw+0xc] 1.262< [0 E
585 cur = cur->next; 0.5685' = 0:418b30 581 jz Ox418bdé <Block 57> =
586 1 0.070s| |:|! 0x418h92 Block 55: =
587 CUrvox.z += Step.z; 0.0?05| =! 0x418b92 582 mov ecx, dword ptr [e nx190 0.3315.
588 if (ry->maxdist < tmax.z || cu 0.1005| "[]x418h98 582 mov edx, dword ptr [e(w4] G.llﬁsl
Selected 1 row(s): 77955 -/ Highlighted 9 re fs): 7.7955 -
< b ||« [8 __ < [« [’

Scroll Bar “Heat Map” is an overview of hot spots Click jump to scroll Asm

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte‘ . 9

*Other names and brands may be claimed as the property of others.

Command Line Interface

Automate analysis

amplxe-cl is the command line:
-Windows: C:\Program Files (x86)\IntelSWTools\VTune
Amplifier\bin[32]|64]\amplxe-cl.exe
—Linux: /opt/intel/vtune amplifier/bin[32]64]/amplxe-cl

& Configure Analysis INTEL VTUNE AMPLIFIER 2019
T

H e |. p: amp l Xe—C l — he lp Command Line @ Local Host o Threading

Use Ul to setup >
1) Configure analysis in Ul

2) Press “Command Line..."” button
3) Copy & paste command

00 L=

Great for regression analysis — send results file to developer
Command line results can also be opened in the Ul

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Compare Results Quickly - Sort By Difference

Intel” VTune™ Amplifier

Quickly identify cause of regressions.

= Run a command line analysis daily

= |dentify the function responsible so you know who to alert
Compare 2 optimizations — What improved?

Compare 2 systems — What didn't speed up as much?

Grouping: [Funcﬁnn [Call Stack

Function / Call Stack CPU TimeDifference

E FireObject::checkCollision SystemProceduralFire.DLL
FireQObject::ProcessFireCollisionsRange) 4.644s SysternProceduralFire.DLL S643s - 0.999< l
dllStopPlugin 3.765s RenderSystem_Direct3D9.0LL 9.184s [(]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Introduction to Performance Tuning

[|
e
]

1 !

Op zation Notice

Copyright © 2018, Intel Corporation. All rights reserved.

_ Think performance wise
> (app/sys level)

i

]]

! A4

i - Choose performance.
i.-;a» Prototyping effective solutions

I

I T

i Y Apply performance

Ir N Implementation - optimization and check
| results

! Add performance

b=> - regressions to test stage
7l

i v

i Collect and analyze
im;;- _ performance related

. issues from users

*Other names and brands may be claimed as the property of others.

Introduction to Intel VTune Amplifier

il General Exploration Hotspots viewpoint (change) @
 Accurate Data - Low Overhead R e

« CPU, GPU, FPU, threading,
bandwidth, and more...

9 3 Analysis Target % Analysis Type Collection Log i) Summary &% Bottom-up & Caller/Callee ¢ Top-down Tree == Platform
Grouping:| Function / Call Stack

CPUTime ¥ «
° Profile applications or systems Function / Call Stack Effective Time by Utilization *| pintime | overneagTime | Inetuctions Retired | CPIRate
° Meanin fUlAnal SiS Qidle @Poor [Ok @ideal W Over
& y G 12,956,100.000
* Threading and hardware utilization [." e intersect 3.6855 QD - 0s 0s 8.988,900,000 1.049
efficienc b grid_bounds_intersect || 0.434s @0l 0s 0s 638,400,000 1.714
ff y
+ Memory and storage device analysis |” shadr 0.101s || 0s 0s 165300,000) 1414
p tri_intersect 0.098s || Os Os 180,500,000 1.108
° Easy » pos2grid 0.094s | 0s 0s 169,100,000 1.213
° Data dlsplayed by source Code » Raypnt 0.073s || 0s 0s 148,200,000 1.308
+ Expert advice built-in - s, .
« Easy set-up, no special compiles T DD A DU e PTT SU AP o A S
OMP Worker Thread ...
OMP Worker Thread ...
OMP Worker Thread ...

OMP Master Thread #...
Thread (TID: 15956)
Thread (TID: 9288)
Thread (TID: 16148)
Thread (TID: 1488)

> amplxe-cl -help collect

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

System-Level Profiling — High-level Overviews

)))) O O O O B (R R R R
i General Exploration General Exploration viewpoint (change) @ (o=l IO T 0.55 1s 1.5s 25 25 Is 3.5s 4,55 55 5.9s
Qo oooo0ooooloooonoonoloooonoooolonnonan To 0 oo ool oo oonog
4 [E] Collection Log @Analysis'largel A Analysis Type | [# Summary | &% Bottom-up B core 1
(“) Elapsed Time ' 6.306s cpu_2
Clockticks: 30,869,300,000 cpu_3
Instructions Retired: 25.745.000,000 0
CPI Rate ©: 1199 & Bles
MUX Reliability - 0.972 cpu_ﬂl
5 Front-End Bound - 7.2% of Pipeline Slots
© B . . . 'Ej' cpu_T1
~) Bad Speculation = 6.0% M of Pipeline Slots g
Branch Mispredict *- 5.9% R of Pipeline Slots —
Machine Clears ~: 0.1% of Pipeline Slots
) Back-End Bound - 64.1% & A —
Fey . i o,
> Memory Eloun_d : 33.3:’0 3 @ CPU Usage Histogram
& Core Bound = 30.8% K This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead
Divider = 0.0% time adds to the ldle CPU usage value.
(¥ Port Utilization 295% K
() Retiring“: 22 7% i 5!
Total Thread Count: 9 1500msd = E:
Paused Time “: 0s o =1
:
1000ms)_I
|
|
500ms
Oms -

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

System-Level Profiling — Process/Module Breakdowns

EHotspots viewpoint (change) @ I
q Collection Log &2} Analysis Target % Analysis Type [# Summary && Bottom-up & Caller/Callee &% Top-down Tree fi=) Platform P
Grouping:| Process / Module / Function / Thread / Call Stack

Process / Module / Function / Thread / Call Stack CPUTime ¥ = | Instructions Retired | CPlRate CPU Frequency Ratio Module

w chrome.exe 3.443s 15.4% 1.441 0.963
» chrome_child.dll 3.022s N 14.6% 1.301 0.944
p ntdll.dll 0.2425 0 0.6% 317 1.103
p ntoskrnl exe 0179s 1 0.2% 7143 1.064
» EXCEL.EXE 2.750s (N 14.3% 1.312 1.022
» Explorer. EXE 2.598s (D 10.3% 1.677 0.998
» Syncplicity.exe 1.140: D 4.1% 1.923 1.039
w OUTLOOK.EXE 0.891s 0 1.5% 3.723 0.918
» mso.dll 0.141s | 0.2% 4719 0.812
W ntoskrnl exe 0.080s | 0.2% 2.884 1.181
» ExEnterPriorityRegionAndAcquireResourceExclusive || 0.004s 0.0% 0.400 | ntoskrnl.exe ExEnterPriorityRegionAndAcquireResourcel
» ExAllocatePoolWithTag 0.004s 0.0% 1.000 1.000 | ntoskrnl.exe ExAllocatePoolWithTag
- » KeSetEvent 0.004s 0.0% 0.200 | ntoskrnl.exe KeSetEvent
» ObReferenceObjectByHandleWithTag 0.004s 0.0% 0.800 | ntoskrnl.exe ObReferenceObjectByHandleWithTag
<

QOO :'”6.'55'”'1:s'”1'.'55”"J%”'i.lsél”3:5”'é.lsé”'zi:sm&éslms's”'5.'55””ﬁ:s”'6.'5.;'”?:s"”?.'5;'”s:s"'é.lsémg:s'”'9.'5;”'11:15'”1'0:5'5”'ﬁs'”1'1f5's”'1.?5'”1'zf5's”'1:3sm1'3f5's”'1z:1;'”131f5's':
Thread (TID: 9844)
Thread (TID: 15272)
Thread (TID: 16316)

hvead (712 15756 | |)

Thread (TID: 19836)
Thread (TID: 16588)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

System-Level Profiling — I/O Analysis

Disk Input and Output Histogram

Are You |/O Bound or CPU Bound? Operation Type: wife +
« Explore imbalance between I/O opera =

(async & sync) and compute M
» Storage accesses mapped to D Jll I “ I

the source code “
See when CPU is waiting for 1/O f.lmﬁél?ﬁ}? 300ms 5366ms m oms S -
* Measure bus bandwidth to storage

amplxe-runss (TID: 12...| Ik | | [¥] [Context Switches
) Thread (TID: 0) v duk CPU Time

« Latency analysis

« Tune storage accesses with

oW

o

v M = 1/0 APls
@ /dev/sda L P Slow Tasks
1/0 Queue Depth
Mk 1/0 Queue Depth

major fault

Page |/0 Queus

Transfer Operat.. Faults Depth Thread

latency histogram 7 e

- Distribution of I/O over multiple devices 25" ————— . m— o
= CPU State

> amplxe-cl -collect io —-d 10 g B[7/ L4 L e

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
R and brands may be claimed as the property of others.

System-Level Profiling - HPC Characterizaton

CPU Utilization -: 60.9%

H A CPUU 14.611 Out of 24 logical CPU
Three Metric Classes " aoneom

Parallel Region Time ~: 11.986s (99.9%)
ngs .
° (P l | l ' t i l I Zat ion Estimated Ideal Time 8.2055 (68.4%)
OpenMP Potential Gain 3.781s (31.5%)
. o The time wasted on load imbalance or parallel work arrangement is significant and negatively impacts the application performance and scalability. Explore
- L l %
O I ca CO re 0 u Sa e OpenMP regions with the highest metric values. Make sure the workload of the regions is enough and the loop schedule is optimal.

Top OpenMP Regions by Potential Gain

* Includes parallelism and o il
OpenMP information Memory Bound : 91.8%
AN Cache Bound - -
* Memory Bound E DRAM Latency Bound (%) FPU Utilization ”; 1.3% &

A SP FLOPSs per Cycle 0.211 Out of 16 %
MAIN__§ DRAM Bandwidth Bound

* Break down each level of s : @ e oy e, st

This metric represents a fraction of - .
) % of Packed FP Instr. 93.1%

th e m emory h ierarChy - main memaory (DRAM). This metric d % of 128-bit 93.1% %

— Consider improving data locality in N % of 256°bit - 0.0%

ag s . %o Selar PP nstr. - 6.5%
[FPU Utl llzatlon NUMA: % of Remote Accesses FP Arith/Mem Rd Instr. Ratio : 0.264 %

FP Arith/Mem Wr [nstr. Ratio " 6.298
A significant amount of DRAM loads

&

Top S hotspot loops (functions) by FPU usage

° Fl t- . t G F L P S d This section provides information for the most time consuming loops/functions with fleating point operations
Oa. Ing pOIn O an same core, or at least the same pack

©

Function CPU Time ™ FPU Utilization ~ Vector Instruction Set = Loop Type

d e n Sity [Loop at line 575 in conj_grad-ompparallel@517] 126,149 1LE% R SSE2(128) ® Body

[Loop at line 678 in conj_grad-ompparallel@517] 5.004s 1.7% SSE2(128) Body

Loop at line 575 in conj_grad_ompparallel@517 2.678s 2.1% [Unknown] Remainder

[Loop at line 573 in conj_qrad_ompparallel@517] 0.995s 4.0% SSE2(128) Body

[Loop at line 661 in conj_grad-ompparallel@517] 09525 1.3% SSE(128); SSE2(128) Body

> amplxe-cl -collect hpc-performance —-d 10 [others] e e e e

*N/A & applied to non-summMabie metrics.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

System-Level Profiling — Memory Bandwidth

B By A B HPC Performance Characterization Copy

- Algorithm Analysis Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP
efficiency analysis, memory usage, and FPU utilization with vectorization infermation

A Basic Hotspots . ’
P For vectorization optimization data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor.

A Advanced Hotspots It identifies the loops that will benefit the most from refined vectorization and gives tips for improvements.
A Concurrency The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more
(F1)

A Locks and Waits

~l¥ Compute-Intensive Application Analys CPU sampling interval, ms: 1

LN HPC Performance Characterization
=/l Microarchitecture Analysis

andwidth=true

& General Exploration < » Analyze memory bandwidth

A Memory Access
A TSX Exploration

» Evaluate max DRAM bandwidth

10124.28ms(50ms 10200ms 10250

10300m

e
Qe Q-Cw 9850ms 990|Oms 9950ms lOO(I)OmS 10050ms 101

package_0

package_1

DRAM Bandwi...

package_0

package_1

QP Bandwidt...

package_1

Time

package_0O

(0] ation Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Application Performance Tuning Process

Optimization Notice

opyright © 2018, Intel Cor|
an

o e
& \
o0

INTEL VTUNE AMPLIFIER 2018

Find Hotspots

{ Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

1 & Analysis Target A Analysis Type Collection Log [®] Summary @& Bottom-up & Caller/Callee & Top-down Tree i<l Platform

Grouping | Function / Call Stack

- [x[a][]| e

-

]

Function / Call Stack CPUTime ¥ = Module Function (Full) Source File Start Address A || Viewing - 10f19 . selected stack(s)
» grid_intersect 1_tachyon_serial_exe grid_intersect 33.5% (2.033s of 6.063s)
p sphere_intersect 1_tachyon_serial_exe sphere_intersect sphere.cpp | Ox408a70 1_tachyon_serial exelgrid_intersect -.. A
p MsgWaitForMultipleObjects user32.dll MsgWaitForMultipleObjects 0x6baBdbcO 1_tachyon_serial exelintersect_obje...
» grid_bounds_intersect 1_tachyon_serial exe grid_bounds_intersect grid cpp 0xd0cf20 1_tachyon_serial exelshader+0x346 ...
» GdipDrawlmagePointRect! gdiplus.dil GdipDrawlmagePointRect! 0x1003a2b0 1_tachyon_serial .exeltrace+0x2e - tr..
» SwitchToThread KernelBase.dll SwitchToThread 0x10021460 : 1_tachyon_serial.exelrender_one_pi...
p shader 1_tachyon_serial exe shader(struct ray *) shade cpp 0x406e60 q 1_tachyon_serial exelparallel_thread..
p tri_intersect 1_tachyon_serial_exe tri_intersect triangle.cpp | (x408d60 1_tachyon_serial.exelthread_trace+...
» pos2grid 1_tachyon_serial_exe pos2grid grid.cpp 0x40d1b0 1_tachyon_serial exeltrace shm+0x
» CreateWindowExA user32.dll CreateVWindowEsxA 0x6bad1cb0 1_tachyon_serial .exeltrace_region+0...
» libm_sse2_sqrt_precise msver120.dil libm_sse2_sqrt_precise 0x10042608 1_tachyon_serial exelrenderscene+0...
» Raypnt 1_tachyon_serial_exe Raypnt(struct ray *,double) vectorcpp 0x4034d0 1_tachyon_serial exelrt_renderscene..
b libm_sse2_pow_precise 0.050s | msver120.dll libm_sse2 pow_precise 0x1003d6f3 || 1_tachyon_serial.exeltachyon_video:...

Cut 0.5s
thread_video (TID: 171...
(WinMainCRTStartup ...

155 2s
ciocoola

255 3s 3.55 4s

55
ilo

Ts
oy

7.55 8s 8. 9s
ciocogla |

10s 105s

!
1s

"

]

Tin
@A
e}

1_tachyon_serial exelthread videot .,

Thread v

I Running

ik CPU Time
Uil Spin and Ov...
[CPU Sample

[¥] CPU Usage

Uy CPU Time

Mk Spin and Ov...

s 125
|

> amplxe-cl —-collect hotspots

n Notice

Optimiza
Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

./myapp.out

Find Hotspots

* Dirill to source or assembly

* Hottest areas easy to ID

* Is this the expected behavior

* Pay special attention to loops
and memory accesses

* Learn how your code behaves

What did the compiler
generate

 What are the expensive
statements

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5
@

Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

4 D Analysis Target i Analysis Type CollectionLog B Summary &3 Bottom-up &8 Caller/Calles & Top-down Tree 2] Platform gridepp
Assembly | | G] @| ¥ a ‘Assemblygruuping: Address
oo CPU Time: Total ¥ @ T
Line Source Effective Time by Utilization Spin Time Overhead | Time: Source File
@ dle @ Poor [Ok @ idesl [Over i Wo | &
562 break;
303 voxindex += step.x;
564 tmax.x += tdelta.x;
305 curpos = nXp;
566 n¥p.x += pdeltaX.x;
367 n¥p.¥ += pdeltaX.y;
568 n¥p.z += pdeltaX.z;
569 1
570 else if (tmax.z < tmax.y) { —::| 0.0% 0.0% 00405 grid.cpp
571 cur = g->cells[voxindex]; 2.9%- 0.0% 0.0% 0.321s grid.cpp
572 while (cur '= NULL) {
0% 2.497:| gridcpe
574 ry->mbox [cur->obj->id] = ry->serial; 7.3%_ 0.0% 0.0% 0.817s grid.cpp
575 cur-»obj->methods->intersect (cur->ok 7.996_ 0.0% 0.0% 0.408s grid.cpp
576 1
577 cur = cur->next; 6.3% [0.0% 0.0% 0.699s grid.cpp
578 }
579 CUrvox.z += Step.z; 2% 0,022z grid.cpp
580 if (ry->maxdist < tmax.z || curvox.z == ;::| 0.021: gridepp
581 break;
582 voxindex += step.z*g->xsize*g->ysize;
583 tmax.z += tdelta.z: 550 0060z grid.cpp
584 curpos = nip;
585 nZp.x += pdeltaZ.x;
386 niép.¥ += pdeltaZ.y;
Sele.. 22.4% 0.0% 00% 2497s
< >

Determine Efficiency

izl General Exploration Hotspots viewpoint (change) @

4) Analysis Target £ Analysis Type Collection Log [&) Summary &% Bottom-up = & Caller/Callee &% Tof

Gruuping:éFunctinn / Call Stack

Function / Call Stack

» sphere_intersect

b grid_bounds_intersect
b shader

P tri_intersect

» posZgrid

» Raypnt

CPU Time ¥ &
Effective Time by Utilization E e L) ®
gidie @ Poor Ok @Ideal @ Over Spin Time Overhead Time

3.685s |(IED - 0s 0s
0.434s 10| 0s 0s
0.101s || Os Os
0.098s || 0s 0s
0.094s || 0s 0s
0.073s || 0s 0s

LN
& \ 2
o0
{= General Exploration General Exploration viewpoint (change) @

4 B Analysis Target)‘I\ Analysis Type Collection Log &l Summary && Bottom-up
Grouping: | Function / Call Stack

Function / Call Stack CPl Rate Retiring =] Fro

:

p sphere_intersect 1.049 23.9%
p grid_bounds_intersect 1714 16.5%
p shader 1414 16.3%
p posZgrid 1.213 50.9%
p tri_intersect 1.105 23.8%
» Raypnt 1.308 39.2%
p func@0x140150ef0 9.714 80.9%
p libm_sse2 sqrt_precise 2211 0.0%

Look for Parallelism, Cycles-per-Instruction (CPI), and Retiring %

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

CJI.C
Address Parallelism Issues ‘. .‘

®0

Coarse- Graln Locks

y '
P QFQ-G 5s 6s 6.55 7s 7.55 as 855 L] Thread

R

« Use Concurrency Analysis to ensure you're S | — - cE

using all your threads as often as possible. o R I

Uik Concurren. oy
OMP Worker Thread #3
01 d74)

« Common concurrency problems can often Thread Imbalance

be diagnosed in the timeline. St T'T L= I =t

Uk CPU Time
Transitions

Th

OMP Worker Thread #1
= | (0x1624)
)

* Switch to the Locks And Waits viewpoint or et il

Jiuk Concurrency

run a Locks and Waits analysis to

= t = t t t = o QG [] Thread
Investigate contention. S 2 8 uning
0} [l 1 Waits
onp worker Threea = || | IR wq -mwu e S
Bl H [IIHHHHIIIIIIIII ; II Ry Ly rensions
= [OMP Worker Thread #2 1101 fils LAl
(0x1550) 1 \IH\I L} IIHHHHIIIIIIIII i g e Mhuk CPU Time
OMP Worker Thread #3 [[11 10 i il (00T L1l IIHHHIIIIII i [] Thread Concurrency
0:3234) Ml Co
pe——

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. |nte‘ .

*Other names and brands may be claimed as the property of others.

Address Hardware Issues

FRONT END BACKEND
EXECUTION UNIT RETIREMEN

m----------------------------- ,/
ml----------------------------‘
ml-----------------------------

ml----------------------------- ’/

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

The X86 Processor Pipeline (simplified)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Address Hardware Issues
For each pipeline slot on each cycle:

uop

allocated?

No

Yes

back end
stalled?

uop ever
retired?

Yes Yes

Bad Back-End Front-End

Retiring Speculation Bound Bound

Optimization Notice
Copyright © 2018, Intel Co i rights reserved.
*Other names and brands ed as the property of others.

Address Hardware Issues

< @ Analysis Target ,ﬁ\ Analysis Type Collection Log & Summary @ Bottom-up & Event Count = Platform

Grouping:| Function / Call Stack

Back-End Bound &
Module
Memary Bound B| Core Bound =

' 6.6% 4.5% 1.6% R 3 _tachyon_omp ex:

b sphere_intersect 23.9% 6.2% 11.5% 29.0% 29.4% 3_tachyon_omp.exe

Function / Call Stack Retiring 8 Front-End Bound 8 Bad Speculation 8

» grid_bounds_intersect 16.5% 11.3% 8.7% 31.8% 31.8% 3_tachyon_omp.exe
p shader 16.3% 20.3% 4.1% 100.0% 0.0% 3_tachyon_omp.exe
» pos2grid 50.9% 4.6% 0.0% 72.2% 0.0% 3_tachyon_omp.e

b tri_intersect 23.8% 14.3% 0.0%

» Raypnt 39.2% 4.9% 0.0% 0.0% 90.2%, Chyon_omp.exe
b func@0x140150ef0 80.9% 0.0% 0.0% 15.6% 10.9% ntoskml.exe

p libm_sse2_sqrt_precise 0.0% 30.8% 38.5% 0.0% 30.8% msver120.dll

b aullrem 46.9% 0.0% 0.0% 26.6% 26.6% | libiomp5md.dll

b func@0x10013010 41.0% 16.4% 0.0% 0.0% 50.8% gdiplus.dil

p _kmp_linear_barrier_release 33.3% 0.0% 41.7% 71% 17.9% libiomp5md.dll

b libm_sse2_pow_precise 0.0% 9.1% 18.2% msver120.dll

p ColorScale 30.6% 0.0% 0.0% 3_tachyon_omp.exe
b intersect_objects 20.8% 10.4% 0.0% 0.0% 100.0% 3_tachyon_omp.exe
b func@0x10009c00 35.7% 23.8% 0.0% 0.0% 64.3% gdiplus.dil

Microarchitecture Exploration Analysis Shows the Hardware Bottleneck

> ampls 1l —-collect uarch-exp

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Rebuild and Compare Results ‘i

Compare.. & X [EidH primes.cpp 01hs r000hs primes_omp.cpp -
& Choose Results to Compare ""EI. vaE AMP“HER XE 2'“7
Result 1; | r003ah.amplxe v Browse... { Compare }

These results can be compared. Click the Compare button to continue,

CPU Usage Histogram
4 @ Summary a Bottom-up a Caller/Callee Q Top-down Tree This histogram displays a percentage of the wall time the specific number of CPUs were running

Elapsed Time : 7.420s - 5.541s = 1.879s 2587 ¢ 5!
Instructions Retired: 24 654 400,000 - 22,868,400,000 =1,786,000,000 26 4 g %:
CPI Rate = 1.326 - 1.363 =-0.037 =)
CPU Frequency Ratio @ 1.040 - 1.042 = -0.003 1551 e
Total Thread Count: Mot changed, 4 154 :
Paused Time = Mot changed, Os :

CPU Time 7 12.603s - 11.987s = 0.616s .

0s-
0 1 2 3 4

-E_mﬂ m
Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Summary

« Start with the lowest hanging fruit for performance tuning

* Use Intel® VTune™ Amplifier for system and application
profiling

* Hotspots, HPC Characterization, and General Exploration are
good starting points

* Performance tuning is an iterative process

" =
\

5
©-®

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" ADVISOR

Agenda

 Motivation

* Threading Advisor
* Threading Advisor Workflow
e Advisor Interface
* Survey Report
* Annotations
+ Suitability Analysis
* Dependencies Analysis
» Vectorization Advisor & Roofline
* Vectorization Advisor recap
* Roofline
* Memory Access Patterns Analysis
+ Dependencies Analysis

« Summary

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

P Summary % Survey & Roofline | {3 Refinement Reports

Gain For All Sites: 6.22x

51 Function all Stes an Loops el Time-» |Type FLOPS Why No | Vectorized Loops 5 Trip Counts 53 Instruction Set 4 ~|
GFLOPS |Al | Vectorization? ‘Ven .‘Eﬂl(lanty ‘GalnE |VL ‘A\lerage ‘CaIICuum‘Tralts
% (0 [loop in main at roofline.cpp221] | 13.5625 B Scalar 39170 0179 & novector directive... 664 10000000
% (5 [loop in main at roofline.cpp:138] | 7.563s@8 Scalar 1756) 0045 & novector directive.. 664 10000000
at roofline.cpp:2 8 orized (Bod 490 |0.134 A 31% 66 0000000
[loop in main at roofline.cppi260] | 265658 Vectorized (Body) | 19.9998 0179 Avxe [(100% 500 4 166 10000000 FMA
[loop in main at roofline.cppi151] | 1.828s0 Vectorized (Body) = 7.2640 0045 avx [(I00% Tlasox 4 166 10000000
[loop in main at roofline.cppi273] | 1.813s0 Vectorized (Body) | 293063 0.179 avxe [I00% "]473x 4 166 10000000 FMA
[loop in main at roofline.cppi199] | 1.781s8 Vectorized (Body) | 149138 0089 Avxe [[100% 504 4 166 10000000 FMA -l
3K »
Source | Top Down ‘ Code Analytics ‘ Assembly ‘@ & Why No
Line | Source Total Time | % | Loop/f..| % | Traits -~
247 B for (int i = 0; i < RARRAY _SIZE 1; i++) 0.4065 7.3285 mm.
[loop in main at roofline.cpp:247]
Vectorized AVX; FMA loop processes Float32; Float64 data type(s) and includes FMA; Inserts
Loop was unrolled by 2
248 {
249 R0S1 X[i] = AoS1 ¥[i].a + AoS1 ¥[il.a + BoS1 Y[il.b + A0S Y[il.b + AoSi Y[il.b; 69225 @ FMA; Inserts; Unpacks
250 t
&P Summary % Survey & Roofline {3 Refinement Reports (& Annotation Report ¥/ Suitability Report
Maximum Program Target System: | CPU v Threading Model: | Intel TBB ~ CPU Count: |8 ~

Combined Site Metrics, All Instances

Site Label | Source Location Impact to Program Gain

Site Instance Metrics,

Serial time; 29.338s

Total Serial Time | Total Parallel Time
Predicted Parallel time: 4719s

| B nqueens serial.cpp:139 | 6.22x

Site Gain Parallel Time

Site Performance Scalability ‘ Site Details ‘

Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling Runtime Modeling

Tyl f Ch
Avg. Number of Avg. Iteration M Changg

Apply
2 4 8 16 32 64
CPU Count

e Iterations (Tasks): (Task) Duration: [Reduce Site Overhead
o
Tex 4 0 o 04165 [Reduce Task Overhead
= 0.008x 0.008x
% 8x ® 0040x 0.040¢ [] Reduce Lock Overhead
2 0.200x 0.200x .
x Reduce Lock Contention
A 7 1x (14) 1x (0.4165) U
& 0 5% 5x ["] Enable Task Chunking
e 25x 25x
E 125% 125%

Gain Benefit if Enabled

Vectorize & Thread or Performance Dies

Threaded + Vectorized can be much faster than either one alone

Vectorized

- A & Threaded
¢ “Automatic” Vectorization Not Enough
3§ ,» Explicit pragmas and optimization often required The Difference
5 Is Growing
5% With Each New
EE™ 130x Generation of
§ = <« I hreaded Hardware

yk Vegtorlzed
0 s < Serial

2010 2012 2013 2014 2016 2017

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make
these results inapplicable to your device or system. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks
See Vectorize & Thread or Performance Dies Configurations for 2010-2016 Benchmarks in Backup. Benchmarks source: Intel Corporation.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
OoTmEatiomNGea These optimizations include SSE2, SSE3, & SSSE3 instruction sets & other optimizations. Intel does not guarantee the availability, functionality, or

Copyright © 2018, Intel Corporation. All rights reserved. with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
*Other names and brands may be claimed as the property of others. product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use intel‘ . 31

http://www.intel.com/benchmarks

Vectorization Threading
Workflow Workflow

1. Survey Target
b Collect b, I []

1.1 Find Trip Counts and FLOPS

WEE = O

rip Counts
[JFLOPS

2. Annotate Sources

Add Intel Advisor annotations to
identify possible parallel tasks and
their enclosing parallel sites.

Steps to annotate

+

3. Check Suitability

b Collect | by, B [

4. Check Dependencies

P Collect B[]

THREADING ADVISOR

Serial Modeling Has Multiple Benefits

Intel® Advisor
1) Your application can't fail due to bugs caused by incorrect parallel execution.
(It's running serially.)

2) You can easily experiment with several different proposals
before committing to the expense of implementation.

a) Measure performance - focus on where it will pay off.
b) Predict scalability, load balancing and overheads.

c) Predict (and avoid) data races

3) All of your test suites should still pass.
Validate the correctness of your transformations.

4) You can use Advisor on partially or completely parallelized code.

Design, measure and test before implementation

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
and brands may be claimed as the property of others.

Build in Release

Threading Advisor Workflow

Use the Survey to find good potential

threading sites. Examine Results

« Optionally, follow up with Trip Counts to find
information about iteration and call counts.

« Annotate your code. Suitability

» Use Suitability to predict how much Select best threading candidate

performance improvement the proposed ;

: . - Dependencies
threading model will create under specific,
editable conditions. Correct dependencies and rebuild

Annotate Source and rebuild

* Use Dependencies to determine whether Implement Threading

the proposed model is safe, and what :

needs to be done to correct it.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

* Summary E Survey & Roofline ﬂ Refinement Reports { Annotation Report “*ﬂ Suitability Report

@ Vector

Survey Report

Threading Advisor 1 setqueen 2202508 Bsaa0s | Foncion

(7 [loop in setQueen at nqueens_serial.cpp:116] r 0.297s0 330205 Scalar

[=] Function Call Sites and Loops & Self Time | Total Time v | Type

4| f _scrt_common_main_seh 0.000s! 5.250s0@ Function
4 | K |
Survey SOI’tS by Self Tlme by defaUIt. ThIS |S Source | Top Down | Code Analytics ‘ Assembly ‘ Assistance ‘@ Recommendations ‘ﬁ Why Mo Vectorizati
good for Vector Advisor, but for Th reading Function Call Sites and Loops Total Time % |Self Time | Total Time | Type
Advisor, you may want to sort by Total Time. | |- 100.0% SIS 0000s| 52505
[=_RtlUserThreadStart 100.0% (I 0.000s] 5.250s Function
. . [=_RtlUserThreadStart 100.0% EEEN 0.000s! 5.250s Function
e The Survey Report has lots of |nf0rmat|on’ BBEaseThreadlnitThunk 100.0%: 0‘0005: 52505 Function
.. _scrt_common_main_seh 100.0% 0.000s 5.250s Function
but most of it is more relevant to Vector Emain 1000%@MN 0000s| 5250s Function
H [solve 100.0% N 0.000s| 5.250s Function
AdVISor 1(7 [loop in solve at nqueens_serial.cpp:1| 100.0% EEEES 0.000s| 5.250s Scalar
. . . EsetQueen 100.0% —1| 0.000s! 5.250s Function
® LOOk fOI’ Outer lOOpS Or funCtlonS Wlth hlgh =I5 [loop in setQueen at ngueens_s¢ 100.0% I 0.000s| 5.250s Scalar
. [=lsetQueen 100.0% I 0.000s| 5.250s Function
TOtal TI me. =7 [loop in setQueen at nque| 100.0% M 0.000s| 5.250s Scalar
. . [SlsetQueen 100.0% DI 0.047s! 5.250s Function
e |n this examp[e’ setQueen has a h|gh Total 5 lloop in setQueen at| 98.5% @D 0.031s] 51725 Scalar
. . . . [SlsetQueen 97.9% D 0.031s| 5.141s Function
Time. It's recursive, but is originally called £ lloop insetQue| 961% @B 00%6sl 50475 Scalar
H [HlsetQueen 95.8% I (0.219s) 5.031s Function
from a loop In SOlve That makes the loop =% [loop ins¢ 88.1% R 0.031sl 46255 Scalar
in Solve a good potential candidate. ‘ BsetQuee: 48?.5%- 028251 4594 Function

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Annotating Your Code

* Annotations are notes to Advisor. They are not parallelization commands.
They do not affect the way the program itself runs.

* They mark places Advisor should treat as locks or parallel sites.

« To use annotations, you must include the appropriate header/module.

* In source files where annotations are * In sourc.e files where * In source files where
used, add: annotatlo'ns are used, add: annotations are used, add:
#include <advisor- LEG ZEIAEEE SunE R using AdvisorAnnotate;
annotate.h> ’ A‘?'d , , « Add the C# annotations
« Add <install dir>/include to samztall des/inelues definition file to your project.
L vourinclude directories.)L to your include directories.)L)

* The Advisor User’'s Guide contains a section on Annotations with full
documentation, examples, and instructions on the above if you forget.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Suitability Analysis

* Using your annotations, Advisor models how the program would behave in
parallel, and predicts performance in specified hypothetical circumstances.

¥ suitability Report

Intel TBB w

Maximum Program Target System: |CPU w | Threading Model: CPU Count: |8

Gain For All Sites: 5.74x

Combined Site Metrics, All Instances i i
L Site Label | Source Location Impact to Program Gain Site Insta!wce Metrics,
Serial time: 5391s Total Serial Time |Tota| Parallel Time |Site Gain | Parallel Time
Predicted Parallel time: 0.938s [,y nqueens_serial.cpp:... 5.74x 52205 0.777s 673 0777

Site Performance Scalability

Scalability of Maximum Site Gain

Loop lterations (Tasks) Modeling

Avg. Number of Avg. Iteration Type of -Change Gain Benefit if Enabled
16¢ Iterations (Tasks): (Task) Duration: |:| Reduce Site Overhead
ol 4 0.374s |:| Reduce Task Overhead
0.008x 0.008x
N 0040x 0.040x |:| Reduce Lock Overhead
0.200x 0.200x [] Reduce Lock Contention
x(14) 1x (0.374s)

[]Enable Task Chunking

UleD) 3115 LLINLIXE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Dependencies Analysis
Threading Advisor

* This is the same analysis as in Vectorization Advisor. It works with annotations as
well as selections in the survey report.

« Add lock annotations or reorganize code to resolve reported dependencies, then re-

ru n the analy5|s tO CO nfl rm the *Summary ESuwe'y&Rooﬂine ﬂ Refinement Reports | {§ Annotation Repwﬂ Sui pol
Site Location |Loup-Carried Dependencies ‘ Strides Distribution Access Pattern Max. Site Footpri

p ro b le m h a-s bee n reso lved - =E [loop in solve at nqueens_serial.cpp:1.. 3 RAW:T MAWART MAWAW:1 No information available No information available No information a

137 //ADVISOR SUITABILITY EDIT: Uncomment the three annotations below to modsl
138 1/ parallelizing the body of this for() loop.
. ap s . 139 (solve);
* Run suitability again to check that 0 far (ineim s < pemarites 00
- - b
yo u Stl ll. get gOOd I m p rove m e nt- Dependencies Report ‘ ‘¢ Recommendations |
]] .] D | < |Type ‘Site Name ‘ Sources Modules State Severity
® O n Ce yo u re h a p py W I t h AdVI SO r S P1 Parallel site information solve nqueens_serial.cpp 1_ngqueens_serial.exe « Not a problem || Error 3 items
. . . 3 * |Read after write dependency nqueens_serial.cpp | 1_ngueens_serial.exe Information 1 item
p re d I Ctl O n S’ re p lace t h e a n n Otatl O n S P4 43 Write after write dependency solve nqueens_serial.cpp 1_nqueens_serial.exe Mk New
. . P5 € | Write after read dependency solve ngueens_serial.cpp 1_ngueens_serial.exe M New :ypil | site inf iy
arallel site infor... 1item
with actual parallelism and locks.
I |Instruction...| Description |Suurce Function |Variable refer..| Module State Write after write ... 1item
[#X3 0x401c04 Read [nqueens_serial.cpp:111 setQueen nrOfSolutions 1_nqueens_serial.exe Mk New || Write after read .. 1 item
X4 0x401c04 Write ngueens_serial.cpp:111 setQueen nrOfSolutions 1_nqueens_serial.exe R New Source
#X5 0x401b5f Parallel site ngueens_serial.cpp:139 solve 1_nqueens_serial.exe M New i it e A s

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Add Parallel Framework

,’Summar}r - Survey Report & Annotation Report i Suitability Report # Correctness Report H e re iS the list Of SO u rce

Maximum program gain'?': 5.20x (8 CPUs, Intel TBE Threading Model) locat i O n S

These annotated parallel sites were detected:

Parallel Site Maximurm Site Gain® Correctness Problems A

solve (nqueens annotated.cpp:113) 6.51x @280 Here are tem plates for popu lar
Consider adding parallel site and task annotations around these time-consuming loops found during Survey an) pa ra l le l fra m eWO rks

Loop Source Location CPU Total Time?
0 setQueen nqueens annotated.cpp:96 1.8252s
5 solve nqueens annotated.cpp:d17 1.8252< . - . - . .
Serial Code with Intel Advisor Annotations |Parallel Code using Intel TBB Threading Model:
(5 setQueen ngueens annotated.cpp:A9 01976< // Locking // Locking can use various mutex types provided Intel TBB
ANNOTATE LOCK ACQUIRE(): // by L 1l IBB. F le: NLel A
" setQueen nqueens annotated.cpp:63 01877< Body{}); v #inc‘l’wf;“imb/mb,ii Remes
ANNOTATE_LOCK RELEASE () : P
" setQueen nqueens annotated.cpp:63 0.1346< I 0 thbb: :mutex g_Mutex: Other
= Intel TBB
¢ Intel Cilk Plus
thb: imutex: :scoped lock lock(g Mutex): OpenMP
® H Body () 7
Intel® Advisor) Microsoft TPL

/f Do-All Counted loops, one task // Do-ll Counted loops, using lambda
ANNOTATE_SITE_BEGIN(site); // expressions

* Contains overhead metrics for popular mralereml Hnmnas.<oonyco. o>
parallel frameworks

{statement;} tbb::parallel for(0,N, [&](int I) {
) statement;
ANNOTATE_SITE_END(); i

= Quickly prototype and evaluate e e

ANNOTATE_SITE_BEGIN(site): // expressions

H ANNOTATE TASK BEGIN (taskl): #include <tbb/tbb.h>
alternatives
ANNOTATE TASK END() ; zoo
ANNOTATE_TASK BEGIN (task2); thb::parallel invoke(

= Detailed help pages for popular parallel T T s
frameworks

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Intel® Advisor

Workflow

VeCtOI’IZ : Examin

" Threading

Select lo with potential Select loops w

vectoi oendencies poor vector effic
\

Dep

encies

Memory Access P

Force vec ation Impy~
if approp: ves: «on

. -

Back to Start Implement Threading

Optimization Notice /D
Copyright © 2018, Intel Corporation. All rights reserved. ‘ inte 40

*Other names and brands may be claimed as the property of others.

Vectorization Threading
Workflow Workflow

off [i] Batch mode

Run Roofline

P Collect i []

1. Survey Target

b Collect | by B [

1.1 Find Trip Counts and FL...

Mark Loops for Deeper Anal...

Select loops in the Survey
Report for Dependencies
and/or Memory Access Patterns
analysis.

- There are no marked loops —

2.1 Check Dependencies
b Collect B []
— Nothing to analyze —

2.2 Check Memory Access P...

P Collect B []

VECTORIZATION ADVISOR & ROOFLINE

Build in Release
Vectorization Advisor Workflow !

Survey

‘_l
* Survey is the bread and butter of Vectorization Trip Counts

Advisor! All else builds on it! ' E
Examine Roofline Examine Results
 Trip Counts adds onto Survey and |

enables the Roofline.

Select loops with potential Select loops with

 Dependencies determines
whether it's safe to force
a scalar loop to vectorize. Dependencies Memory Access Patterns

vector dependencies poor vector efficiency

« Memory Access Patterns Force vectorization
diagnoses vectorization if appropriate
inefficiency caused by poor
memory striding.

Improve
vectorization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey

Efficiency is impartant!

For vectorization, you generally only care

Vectorization AdViSOr about loops. Set the type dropdown to

“Loops™. The black arrow is 1x. Gray means
Function/Loop Icons you got less than that. Gold means
Scalar Function you got more.
[] Vector Function Vectorizing a loop is usually best done on innermost loops. Since it You want to get this value as high as
Scalar Loop effectively divides duration by vector length, you want to target possible!
[] Vector Loop loops with high self time.
i
Function Call Sites and Loops & | & Vector Issues ?;_:ce - 1?;1' Type m?‘zohrjiozation? :EE:”E:I:C:_:;?S- I e oL
u F [loop in main at example.cpp:38] |— @ 1 Assumed depend... 0.391s 0391s@ Scalar & vector depen... A 4
4/(" [loop in main at example.cpp:64] | [| @ 1Possible inefficien... 0.297s M@ 0297s@ Vector... AVX2 037x 16
) [loop in main at example.cpp:51] |— @ 1Possible inefficien... 0.094s@ 0.094s0 Vector.. @ 1 vectorizatio.. AVX2 1.23x 16
+ " [loop in main at example.cpp:26] |_ 0.030s1 0.030s1 Vector... AVX2 798x 8

(M [loop in main at example.cpp:14] |— @ 3 Assumed depend... 0.000s] 0.000s| Scalar | B vector depen..
| [[loop in main at example.cpp:23] |— 0.000s] 0.030s1 Scalar |Einnerlot w..

The Intel Compiler embeds extra information

Expand a vectorized loop to Advisor advises you on potential vector issues. This is . : o ;
) " ; . that Advisor can report in addition to its
see it split into body, peel, and often your cue to run MAP or Dependencies. Click the :
: . . : . sampled data, such as why loops failed to
remainder (if applicable). icon to see an explanation in the bottom pane.

vectorize.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

What is a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

Performance (GFLOPS) k(@] « + x © | [Use Single-Threaded Roofs @ =

Where are the bottlenecks?

R Vector FMA Peak |j:9ingle-_thtaadéc]}-u42 1 6.GFLOPS
e &0 Vector Add Peg fsnglé-thigadedy 7239 GFLOPS

42.16

How much performance is
being left on the table?

Which bottlenecks can be

addressed, and which should =" o &

L d (~'x?-€1'@2~'\—‘ﬂ"§?: . r
be addressed? 05 e a
What's the most likely cause? o et nensiy (-LOP/BY®)

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

What are the n eXt Steps? Cache-aware variant proposed by University of Lisbon:

Cache-Aware Roofline Model: Upgrading the Loft, 2013

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Roofline Metrics

Roofline is based on Arithmetic Intensity (Al) and FLOPS.
* Arithmetic Intensity: FLOP / Byte Accessed

« This is a characteristic of your algorithm

SpMV FFTs N-body

Low Al High Al

* FLOPS: Floating-Point Operations / Second
* Is a measure of an implementation (it achieves a certain FLOPS)

* And there is a maximum that a platform can provide

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline

CO nce pt Video Available: Roofline Analysis in Intel® Advisor 2017
FLOPS
* Prior to collecting data, Advisorruns 4 FMA Peak
quick benchmarks to measure
hardware limitations. - veclorAdd Pegk
aﬂd\N\
« Computational limitations A2
¢ Memory Bandwidth limitations \Jaandw'\d\h
* These form the performance “roofs”. Scalar Add Peak

Loops and functions have algorithms Srpmesndt
and therefore a specific Al.

Their performance in FLOPS is also — O
measured.

Arithmetic Intensity

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures,

» Optimization changes performance. 2009
. . Cache aware variant proposed by Technical University of Lisbon:
The goal is to go as far up as possible. Cache-Aware Roofline Model: Upgrading the Loft, 2013

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017
http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Cache-Aware Roofline
N eXt Ste pS If Under the Vector Add Peak

If just above the
Scalar Add Peak

Check “Traits” in the Survey to see if FMAs are used. If not, try
altering your code or compiler flags to induce FMA usage.

Check vectorization efficiency in
the Survey. Follow the

recommendations to improve it if
If under or near a memory FLOPS it's low.
roof... A

FMA Peak
* Try a MAP analysis.
Make any appropriate cache
optimizations.
* If cache optimization is

A

Vgctor Add Peak
If under the
Scalar Add Peak...

impossible, try reworking =
the algorithm to have a td\“ ‘_,—’ Check the Survey Report to see if
higher Al. 2 aandl‘ the loop vectorized. If not, try to

may involve running
Dependencies to see if it's safe to
force it.

Scalar Add Peak

A A
i |
I |
I |
I |
I |
: i get it to vectorize if possible. This

|
|
&
DRE

>
Arithmetic Intensity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Patterns Analysis
Collecting a MAP

 If you have low vector efficiency, or see that a loop did not vectorize because
it was deemed “possible but inefficient”, you may want to run a MAP analysis.

« Advisor will also recommend a MAP analysis if | 4 | gvectorissues
|t deteCts d pOSSIble |neff|C|ent aCCess pattern |7 @ 1 Possible inefficient memory access patterns present

« Memory access patterns affect vectorization efficiency because they affect
how data is loaded into and stored from the vector registers.

» Select the loops you want to run the MAP on using the checkboxes. It may be
helpful to reduce the problem size, as MAP only needs to detect patterns,
and has high overhead.

* Note that if changing the problem size requires recompiling, you will need to re-collect the survey
before running MAP.

T
; (intel 48

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Videos Available:

Memory Access Patterns AnalyS|S Stride and Memory Access Patterns

and

Reading a MAP Memory Access 101

* MAP is color coded by stride type. { }% }{ H H % % H H }

From best to worst: (S G| S | s | S | G — | —
° Blue is unit/uniform (stepp|ng by 1 or O) &P Summary % Survey & Roofline {§§ Refinement Reports
Site Location ‘Strides Distrib... ‘Access Pa...‘ Max. Site Footprint ‘ Recommendations

o Yellow is constant (stepping a set distance) — [T

° Red is variable (a changing step distance) lloop in main ... FGR 0%/ 4 Miced stri.. 64K8
lloop in main ... 709 /6% / 3 Mixed stri... 564MB

® Cllck a loop |n the tOp pane tO See a # (" [loop in main ... 100% / 0% /0 .. All unit str... TOKB

(i [loop in main ... 33% / 67% /0 ... Mixed stri.. 616MB 2 1 Inefficient memory access pa
detailed report below. ‘
o The Strides that Contribute to the lOOp are Memory Access Patterns Report Dependencies Report | & Recommendations
. . D N2 | Stride Type Source Modules Nested Func...| Variable references
brOken down n th|5 table' EHP1 | @ |36[}0[} |Constant stride stride.cpp:49 stride.exe tableA, tableB
o Important information includes the size of #P2 | [@ 36000 Constantstride stride.cppi49 stride.exe results
the Stride, the Variable being accessed, and HPT D Parallel site info... stride.cpp:47 stride.exe

P19 @ 0 Uniform stride stride.exe:0x.. stride exe _svml_atand

Senaldisd s Ssym [dispmd.dll | svml_atand ...

——— @ -12;-8, .. Variable stride Iwml_dispma svml_dispmd.dll svml_atan2...

the source.

* Notall strides will come from your code!

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/videos/stride-and-memory-access-patterns
https://software.intel.com/en-us/videos/stride-and-memory-access-patterns
https://software.intel.com/en-us/videos/memory-access-101
https://software.intel.com/en-us/videos/memory-access-101

Dependencies Analysis
Vectorization Advisor

* Generally, you don't need to run Dependencies analysis unless Advisor tells
you to. It produces recommendations to do so if it detects:

« Loops that remained unvectorized 2 Recommendation: Confirm Confidence:¢Need More
. . . dependency is real Data

because the Complle_r W?.S playlng It There is no confirmation that a real (proven) dependency is present in the loop. To
safe with autovectorization. confirm: Run a Dependencies analysis.

* Outer loop vectorization opportunities |© Recommendation: Check Confidence:éLow

dependencies for outer loop
o Use the Su rvey CheCkboxeS tO It is not safe to force vectorization without knowing that there are no dependencies.
. Disable inner vectorization before check Dependency. To check: Run a
select which loops to analyze. Dependencies analysis.

* |f no dependencies are found, it's safe to force vectorization.

« Otherwise, use the reported variable read/write | % Simmay &k Suvey&Roofline | Refinement Reports
information to see if you can rework the code |2 22" | Loop Caried Dependencc

(M [loop in main at example.c... @No dependencies found

to ellmlnate the dependency [(M [loop in main at example.c... €3 RAW:1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

-8

-8

=

8 -8

Summary

Survey - Find the most promising sites for threading, see
the meat of the vectorization information, and get
recommendations from Advisor.

H =

Function Call Self Vectorized Loops

. [
Sites and Loops Time Vect..‘ E-f-ﬁciency| Gai. ‘VL.

4/(7 [loop in main atexa... | [0.188s8

(" [loop in main atexa.. || 0031s| AVX2 209 8

(" [loop in main atexa.. | [0.000sl AVX2 8.00x &

Performance (GFLOPS) Q. » xXB-=

Trip Counts & FLOPS - Add to your Survey report to help
fine-tune vector efficiency and capability, as well as unlock
the powerful Roofline to visualize your bottlenecks and
help direct your efforts.

Suitability — Predict how well your proposed threading
model will scale under certain conditions quickly and easily.

Dependencies — Prove or disprove the existence of parallel
dependencies and learn how to fix them.

Memory Access Patterns — See how you traverse your data
and how it affects your vector efficiency and cache
bandwidth usage.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

27 DP Vector Add Peg (2 feaded): £34 GFLOPS®
e

4- 0045 0.25

Site Performance Scalability | Site Details
Scalability of Maximum Site Gain Loop Iterations (Tasks) Modeling Runtime Modeling
Avg. Number of Avg. Iteration Tire of Chamgs
Iterations (Tasks): (Task) Duration: D Reduce Site Overhead
1 [Reduce Task Overhead
0008x 0008x
0040% 0.040x [[JReduce Lock Overhead

0200x [JReduce Lock Contention
x4 —11x(03745)

5% 5% [Jenable Task Chunking
25x 25¢
125¢ 125¢

CPU Count

* Summary 'u Survey & Roofline ﬁ Refinement Reports

Site Location « ‘ Loop-Carried Dependencies| Strides Distribution ‘

(i [loop in main.. &@No dependencies found _
[loop in main.. Mo information available 0% / 100% / 0%

& (5 [loop in main.. €8 RAW:1 100% /0% / 0%

*Other names and brands may be claimed as the property of others.

Software

Configurations for 2010-2017 Benchmarks

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel “4— gt:lsﬁfgl:de:'d
microprocessors for optimizations that are not unique to Intel microprocessors. -

These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with

130x

10° Binomial Options Per Sec. SP

Intel microprocessors. Certain optimizations not specific to Intel 7
microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding ®
the specific instruction sets covered by this notice. Notice revision #20110804 // . . J vectorized
° — = <+— Serial
Performance measured in Intel Labs by Intel employees 2010 2012 2013 2014 2016 2017
Platform Hardware and Software Configuration
Unscaled L1 H/W
Core Cores/ Num Data L2 L3 Memory Memory Prefetchers HT Turbo o/s
Platform Frequency Socket Sockets Cache Cache Cache Memory Frequency Access Enabled Enabled Enabled C States Name Operating System Compiler Version
© =
WSM LS EESYCTA I 2 32K 256K 12MB 48MB 1333 MHz NUMA Y Y Y Disabled T899 31910.301fc20 icc version 17.0.2
X5680 Processor 20
© =
SNB Intel®Xeon™ES ,96Hz 8 2 32K 256K 20MB 64GB 1600 MHz NUMA Y Y Y Disabled T899 39910-301fc20 icc version 17.0.2
2690 Processor 20
© =
VB IETPERT ™ | o qy,) | 9o 2 32K 256K 30MB 64GB 1867 MHz NUMA Y Y Y Disabled RHEL 3100-220.17.486_64 icc version 17.0.2
2697v2 Processor 71
Intel® Xeon™ E5 . Fedora 3.15.10- . .
HSW . .0.
S 2600v3 Processor 2.2 GHz 18 2 32K 256K 46 MB 128 GB 2133 MHz NUMA Y Y Y Disabled 20 200.fc20.x86_64 icc version 17.0.2
Intel® Xeon™ E5 . RHEL) .
BDW 2600v4 Processor 2.3 GHz 18 2 32K 256K 46 MB 256 GB 2400 MHz NUMA Y Y Y Disabled 7.0 3.10.0-123. el7.x86_64 icc version 17.0.2
© =
sl T 2 32K 256K 56 MB 128 GB 2133 MHz NUMA Y Y Y Disabled “®MOS 310,0-327. el7.x86_64 icc version 17.0.2
BDW 2600v4 Processor 7.2 -
Intel® Xeon®
SKX Platinum 81xx 2.5GHz 28 2 32K 1024K 40MB 192 GB 2666 MHz NUMA Y Y Y Disabled “€MOS 3.100- icc version 17.0.2
—— 7.3 514.10.2.el7.x86_64

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
OntimizatcnNGTea These optimizations include SSE2, SSE3, & SSSE3 instruction sets & other optimizations. Intel does not guarantee the availability, functionality, or

. ; : effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
Copyright © 2018, Intel Corporation. All rights reserved. with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
*Other names and brands may be claimed as the property of others. product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

http://www.intel.com/performance

Legal Disclaimer & Optimization Notice

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred
to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information
visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS 1S". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, Core, VTune, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

