2/27/2018

Optimizing MMM
& ATLAS Library Generator

Recall: MMM miss ratios

L1 Cache Miss Ratio for Intel Pentium IIT

~ MMM with N = 1...1300
~ 16KB 32B/Block 4-way 8-byte elements
s e

[R

’ IJK version (large cache)

for | = 1, N//row-major storage
ford=1,N
forK=1,N A

e —

C(1,J) = C(1,J) + A(LK)*B(K,J)

= Large cache scenario:
o Matrices are small enough to fit into cache
a Only cold misses, no capacity misses
o Miss ratio:
= Data size = 3 N2
= Each miss brings in b floating-point numbers

= Miss ratio = 3 N2/b*4N® = 0.75/bN [0.019 if b = 4,N=10]

IJK version (small cache)

forl =1, N
ford=1,N
forK=1,N A

= —

C(1,J) = C(1,J) + A(LKY*B(K,J)

= Small cache scenario:

a Matrices are large compared to cache
= reuse distance is not O(1) => miss
a Cold and capacity misses
o Miss ratio:
= A: N3/b misses (good spatial locality)
= B: N3misses (poor temporal and spatial locality)
= C: N2/b misses (good temporal locality)
= Miss ratio > 0.25 (b+1)/b = 0.3125 (for b = 4)

2/27/2018

MMM experiments How large can matrices be and still
LI Cache Miss Ratio for ntel Pentium 11 an we predict this? not suffer capacity misses?
~ MMM with N =1...1300 N
— 16KB 32B/Block 4-way 8-byte elements -
“aitin <
N orJ=1,)
forK=1,N A N
C(1J) = C(1J) + A(LK)*B(K.J) .
N — K— C

= How large can these matrices be without suffering capacity
misses?

o Each iteration of outermost loop walks over entire B matrix, so all
of B must be in cache

o We walk over rows of A and successive iterations of middle loop
touch same row of A, so one row of A must be in cache

o We walk over elements of C one line at a time.

a So inequality is N2 + N + b <= Capacity of cache

’ Check with experiment High-level picture of high-petformance
MMM code
" ':g:(g‘/‘é ?:5825’: C;Ea;(')ta’b?(fay cache is . Eilgrcakr éﬂe code for each level of memory
= If matrices are square, we must solve a Registe}:s
N2+ N +4 =2" o L1 cache
which gives us N ~ 45 Q...
= This agrees with experiment. m Choose block sizes at each level using the
theory described previously
o Useful optimization: choose block size at level
L+1 to be multiple of the block size at level L

| ATLAS

Library generator for MMM and other BLAS
Blocks only for registers and L1 cache

Uses search to determine block sizes, rather
than the analytical formulas we used

o Search takes more time, but we do it once when
library is produced

| Our approach

Original ATLAS Infrastructure

Compile,
Execute,
Measure

MFLOPS

L1Size NB

Detect ATLAS Search [WUNUKU | ATLAS MM
Hardware NR Engine xFetch)| Code Generator
MulAdd MulAdd (MMCase)

L Latenc,

MiniMMM
Source

- Model-Based ATLAS Infrastructure
» Let us study structure of ATLAS in little more -
detail o, S B e,
Parameers [na 0 s aavcese) Souee
| BLAS | Optimizations

m Let us focus on MMM:

for (int i = 0; i < M; i++)
for (int <N j+)
for (int k = 07 k < K; k++)

CLilN += ALDK*BEKI L]

= Properties

o Very good reuse: O(N2) data, O(N?3) computation
o Many optimization opportunities

= Few “real” dependencies
a Will run poorly on modern machines

= Poor use of cache and registers

= Poor use of processor pipelines

Cache-level blocking (tiling)

u Atlas blocks only for L1 cache

a NB: L1 cache time size

Register-level blocking

o Important to hold array values in registers
a MU,NU: register tile size

Filling the processor pipeline

a Unroll and schedule operations

o Latency, xFetch: scheduling parameters
Versioning

o Dynamically decide which way to compute
Back-end compiler optimizations

o Scalar Optimizations

o Instruction Scheduling

2/27/2018

2/27/2018

| Cache-level blocking (tiling)

s Tiling in ATLAS
o Only square tiles <NB>

(NBxNBxNB)

a Working set of tile fits in L1

o Tiles are usually copied to X

continuous storage

o Special “clean-up” code B

generated for boundaries K N

s Mini-MMM

for (int j = 0; j < NB; j++)

for (int i i< NB; i+4)
for (int k = 0; k < NB; k#+)

<NB>

CLi1Li] += ALT]IK] * BIKILi]

= NB: Optimization parameter

| Register-level blocking

= Micro-MMM
o A:MUx1
o B:1xNU <NU>
o C:MUxNU

o MUxNU+MU+NU registers
= Unroll loops by MU, NU, and KU |
= Mini-MMM with Micro-MMM inside

for (int j = 0; j < NB; j += NU)

for (i i< NBS i += MU) B
+MU-1, j..j+NU-1] into registers

0; k < NB; k++)
MU-1,K] into registers <« NB—>

7

<=

KU times. { J+NU-1] into registers
multiply A’s and B’s and add to C’s
store C[i..i+MU-1, j..j+NU-1]

<MU>
R

= Special clean-up code required if
NB is not a multiple of MU,NU,KU —K—
= MU, NU, KU: optimization parameters A

<«—NB——>

’ Scheduling

Memory

s FMA Present? Operations
. Memory
s Schedule Computation Computation perations

o Using Latency oHormory
mputatie OPerations

= Schedule Memory Operations R
o Using IFetch, NFetch,FFetch

Computation

Memory

PR } NFetch Loads

Computation

Memory

s } NFetch Loads

Computation

» Latency, xFetch: optimization parameters

’ Search Strategy

= Multi-dimensional optimization problem:
o Independent parameters: NB,MU,NU KU, ...
a Dependent variable: MFlops
a Function from parameters to variables is given implicitly; can be
evaluated repeatedly
= One optimization strategy: orthogonal line search
u Optimize along one dimension at a time, using reference values
for parameters not yet optimized
o Not guaranteed to find optimal point, but might come close

2/27/2018

Find Best NB | Model-based optimization

= Search in following range = Original ATLAS Infrastructure

Compile,

016 <= NB <= 80
a NB2 <= L1Size

= In this search, use simple estimates for other betoct [~ ATt AS Search [HUESRT ATLAS MM Py
para mete rs Hardware Msfgdd Engine) ﬁ% Co(d,;;g::sior Source

o (eg) KU: Test each candidate for
= Full K unrolling (KU = NB)
= No K unrolling (KU = 1) Lisize

» Model-Based ATLAS Infrastructure

Detect L1IsSize MU, ‘:E‘KU ATLAS MM
Hardware NR AFeten | Code Generator Source
Parameters M“:fdd g‘:‘:"‘::d (MMCase)
Modeling for Optimization Parameters ’ Largest NB for no

capacity/conflict misses

= Optimization parameters
o NB
= Hierarchy of Models (later) n If tiles are copied into
a MU, NU* § contiguous memory,
:<UMU NU+MU +NU + Latency < NR condition for only cold misses: K

B
= maximize subject to L1 Instruction Cache a 3*NB2 <= L1Size M H
[
T T

o Latency
w (L +1)2]
o MulAdd

= hardware parameter i
o xFetch N ' B
AN NB|

s setto2 L
T T

=]

2/27/2018

| Largest NB for no capacity misses

= MMM

clil
s Cache
a Fully associative \
a Line size 1 Word
o Optimal Replacement
= Bottom line:

NB2+NB+1<C

|

nt Tk < N3 k)
01 += alillk] * bIk101 X

model:

o

Summary: Modeling for Tile Size (INB)

= Models of increasing complexity

o 3*NB?sC

= Whole work-set fits in L1
a NB2+NB+1<C

= Fully Associative

= Optimal Replacement

= Line Size: 1 word

a et + E}HSE or NB +NB+1££
B B B B B

= Line Size > 1 word

: Pl

<NB>.

0w
T

a One full matrix) i =] c
{ﬁwmmkg ! M
a One row / column B) L i
o One element = LRU Replacement
| Summary of model | Experiments
— F FHA - Ten modern architectures R
l_».: the mackise panemster FALA . MOdel dld We” on pha21264
o Estimatieg [,
; [,_ AL 1 *RISC architectures Power 3
¥ | ~UltraSparc: did better o
<ENIHIY SR + Model did not do as well on
Al No N Al L N 'Itanlum RI12K
«CISC architectures F—
« Substantial gap between
ATLAS CGwW/S and ATLAS tanitm2
Unleashed on some opteron240
architectures
AthlonMP
; | : |%| w :’T: Pentium 11
f My Ny, and 2
Pentium4

mi MM fes
it divide N

50%

ATLAS 150% 200%
cGw/s

| Some sensitivity graphs for Alpha 21264

wrLos

2/27/2018

Eliminating performance gaps

= Think globally, search locally

= Gap between model-based optimization and
empirical optimization can be eliminated by
a Local search:
= for small performance gaps
= in neighborhood of model-predicted values
o Model refinement:
= for large performance gaps
= must be done manually
= (future) machine learning: learn new models
automatically
= Model-based optimization and empirical
optimization are not in conflict

Small performance gap: Alpha 21264

ATLAS CGw/S: peeors
mini-MMM: 1300 MFlops -
NB =72
(MU,NU) = (4,4) 1o

ATLAS Model .
mini-MMM: 1200 MFlops
NB = 84 -
(MU,NU) = (4,4) o

e

* Local search

«Around model-predicted NB

«Hill-climbing not useful

*Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]
+Local search for MU,NU

«Hill-climbing OK

’ Large performance gap: Itanium

MMM Performance e

Performance of mini-MMM
+ ATLAS CGw/S: 4000 MFlops -
* ATLAS Model: 1800 MFlops

Problem with NB value wo
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max) 3w e w

NB Sensitivity

Local search will not solve problem.

2/27/2018

Itanium diagnosis and solution

= Memory hierarchy

a L1 data cache: 16 KB

a L2 cache: 256 KB

a L3 cache: 3 MB
= Diagnosis:

a Model tiles for L1 cache
On Itanium, FP values not cached in L1 cache!
Performance gap goes away if we model for L2 cache (NB = 105)
Obtain even better performance if we model for L3 cache
(NB = 360, 4.6 GFlops)
s Problem:

a Tiling for L2 or L3 may be better than tiling for L1

a How do we determine which cache level to tile for??
m Our solution: model refinement + a little search

a Determine tile sizes for all cache levels

a Choose between them empirically

0 oo

’ Large performance gap: Opteron

T234567690ULBMEE

MMM Performance

Performance of mini-MMM
« ATLAS CGw/S: 2072 MFlops
* ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU
+ ATLAS CGw/S: (6,1)
+ ATLAS Model: (2,1)

MU.NU Sensitivity
| Opteron diagnosis and solution | Refined model
» Opteron characteristics paramer FALA
a Small number of logical registers i |;.. ALLr 41
a Out-of-order issue . Enatng My sod i
o Register renaming Mur % Nis + oy + Mo+ b % N
= For such processors, it is better to
o let hardware take care of scheduling dependent 0)
instructions, S oadyieeis
o use logical registers to implement a bigger register tile.
= x86 has 8 logical registers .)
a - register tiles must be of the form (x,1) or (1,x) TR IE Y
Trim e, 30 make it a multigle of Ay, Nio, st 2
* Eovoe R s he masimn vah for which min-MMM fhs
¢ LI instrection cache, Trim Koo e make 0 divide N
. [—Z-Iil;alim Frodp, and Ny
Fr =00y =2, Ny =2

2/27/2018

Bottom line

« Refined model is not complex.

« Refined model by itself eliminates
most performance gaps.

« Local search eliminates all
performance gaps.

Alpha21264

Power 3

Power 4

R12K

UltraSparcllli

Itanium2

Opteron 240

AthlonMP

Pentiuml11

Pentium4

Model

-
- Urleshed

% 50% ATLAS
cew/s
o

150% 200%

Future Directions

= Repeat study with FFTW/SPIRAL
o Uses search to choose between algorithms
» Feed insights back into compilers

o Build a linear algebra compiler for generating high-
performance code for dense linear algebra codes
= Start from high-level algorithmic descriptions
= Use restructuring compiler technology

o Generalize to other problem domains

