Cache Models
and
Program Transformations

Goal of lecture

» Develop abstractions of real caches for
understanding program performance

» Study the cache performance of matrix-
vector multiplication (MVM)
— simple but important computational science

kernel

* Understand MVM program transformations

for improving performance

» Total number of references = 4N?

Matrix-vector product

« Code:
fori=1N
forj=1,N —_—
y(i) = y(i) + A(i.j)"x() [T T T]x

Ax,y are stored in memory
— Smart compilers nowadays can

— This assumes that all elements of ‘ E

register-allocate y(i) in the inner l
loop
— You can get this effect manually
fori=1N y A
temp = y(i)
forj=1,N
temp = temp + A(i,j)*x(j)
y(i) = temp
— To keep things simple, we will not
do this but our approach applies
to this optimized code as well

Cache abstractions

* Real caches are very complex

» Science is all about tractable and useful
abstractions (models) of complex phenomena
— models are usually approximations

» Can we come up with cache abstractions that
are both tractable and useful?

* Focus:
— two-level memory model: cache + memory
— ignore prefetching: more significant omission

Stack distance

time

Address stream from processor

* 1y, r,: two memory references
— ryoccurs earlier thanr,

« stackDistance(r,,r,): number of distinct cache lines
referenced between r; and r,

» Stack distance was defined by defined by Mattson et al
(IBM Systems Journal paper)

Modeling approach

» First approximation:
— ignore conflict misses
— only cold and capacity misses
Most problems have some notion of “problem size”
— (eg) in MVM, the size of the matrix (N) is a natural measure of
problem size
* Question: how does the miss ratio change as we
increase the problem size?
» Even this is hard, but we can often estimate miss ratios
at two extremes
— large cache model: problem size is small compared to cache
capacity
— small cache model: problem size is large compared to cache
capacity
— we will define these more precisely in the next slide.

Large and small cache models

» Large cache model
— no capacity misses
— only cold misses
» Small cache model
— cold misses: first reference to a line
— capacity misses: possible for succeeding references to a line
« letr,and r, be two successive references to a line
« assume r, will be a capacity miss if stackDistance(r,,r,) is some
function of problem size
« argument: as we increase problem size, the second reference will
become a miss sooner or later
» For many problems, we can compute
— miss ratios for small and large cache models
— problem size transition point from large cache model to small
cache model

MVM study

* We will study five scenarios

— Scenario |

* i,j loop order, line size = 1 number
— Scenario Il

« j,i loop order, line size = 1 number
— Scenario lll

* i,j loop order, line size = b numbers
— Scenario IV

« j,i loop order, line size = b numbers
— Scenario V

« blocked code, line size = b numbers

Scenario |

Scenario | (contd.)

Address stream:| y(1) A(1,1) x(1) y(1) ”y(1}A(1,2) x(2) y(1)jv..v‘y(1) A(1,N) x(N) y(1)|y(2) A1) x(1) y(2)

* Small cache model:

+ Code:
fori=1N — — A: N2 misses ——
forj=1N [I — X N + N(N-1) misses (reuse I I
y(i) = y(i) + A(Lj)*x() _ distance=0O(N))
* Inner loop is known as DDOT in NA ‘ — y: N misses (reuse distance=0(1)) ‘
literature if working on doubles: i Total = 2N2+N i
— Double-precision DOT product — loal =2
. Cache line size l — Miss ratio = (2N2+N)/4N2 l
— 1 number ~0.5+0.25/N
: '—afgﬁ_ cache model: y A « Transition from large cache model to y A
T e misses small cache model
+ x: N misses — As problem size increases, when do
* N missss capacity misses begin to occur?
« Total = N2+2N ; .
. Miss ratio = (N2+2Ny4N? - Sult_JtIe issue: d(tep?gds on replacement
~0.25+0.5N policy (see next slide)
9 10
Address stream:\ y(1) A(1,1) x(1) y(1) Hy(1)A(1,2) x(2) y(1)|. ,.|y(1) A(LN) x(N) y(1) \ ¥2) AR.1) x(1) y(2) 1.0
miss 075
. Q_uestion: as problem size increases, when do capacity . ratio
misses begin to occur? — 0.50 DDOT,b=1)
« Depends on replacement policy: T x !
— Optimal replacement: 0.25
+ do the best job you can, knowing everything about the
computation ‘ I N
+ only x needs to be cache-resident .
+ elements of A can be “streamed in” and tossed out of cache after |
o l large cache model small cache model
+ Sowe need room for (N+2) numbers
+ Transition: N+2 > C & N ~C
— LRU replacement
+ by the time we get to end of a row of A, first few elements of x y A « Jump from large cache model to small cache
are “cold” but we do not want them to be replaced p g
+ Transition: (2N+2)>C > N~ Cf2 . . .
. Note: model will be more gradual in reality because of
— optimal replacement requires perfect knowledge about future H H
— most real caches use LRU or something close to it Conﬂ ICt misses
— some architectures support “streaming”
« in hardware
+ in software: hints to tell processor not to cache certain references
1

Scenario |l

* Code:
forj=1,N
fori=1,N
y(i) = y(i) + A(i,j)*x()
* Inner loop is known as
AXPY in NA literature l
y=a-x+y
+ Miss ratio picture exactly Y
the same as Scenario |

— roles of xand y are
interchanged

—

Scenario Il

* Code: assume A is stored in
row-major order in memory
fori=1,N
forj=1,N
y(i) = y(i) + A@Li)x(0) |
* Cache line size i
— b numbers l
» Large cache model:
— Misses: y A
» A: N2?/b misses
x: N/b misses
y: N/b misses
Total = (N2+2N)/b
Miss ratio = (N2+2N)/4bN?2
~0.25/b + 0.5/bN

—

T *

Scenario Il (contd.)

Address stream:\ y(1) A(1,1) x(1) y(1) Hy(1)A(1,2) x(2)y(1)|. ,.|y(1) A(LN) x(N) y(1) \ ¥2) AR.1) x(1) y(2)

* Small cache model:
— A:N?b misses
— x: N/b + N(N-1)/b misses (reuse distance=O(N))
— y: N/b misses (reuse distance=0(1))

—

T x

— Total = (2N2+N)/b
— Miss ratio = (2N2+N)/4bN? |

~0.5/b + 0.25/bN

» Transition from large cache model to small cache

model

— As problem size increases, when do capacity misses
begin to occur? y A
— LRU: roughly when (2N+2b) = C
« N~CI2

— Optimal: roughly when (N+2b) ~C & N~C

« So miss ratio picture for Scenario Ill is similar to that of
Scenario | but the y-axis is scaled down by b

« Typical value of b = 4 (SGI Octane)

Miss ratio graph

1.0

miss 0-75
ratio
0.50 0.50 (DDOT, b=1)

0.25

~— T~ 0.125(DDOTb=4)
N

large cache model small cache model

* Jump from large cache model to small cache
model will be more gradual in reality because of
conflict misses

Scenario |V

Miss ratios

Miss ratio
Code: 0.25(1+1/b) B — DAXPY
() = () + AGLI)*G) —
Large cache model: D:l:l:l X
— Same as Scenario Il
Small cache model:
— Misses:
AN 0.75/b
x: Nib
y: N/b + N(N-1)/b = N2/b
Total: N2(1+1/b) + Nib
Miss ratio = 0.25(1+1/b) + 0.25/bN
Transition from large cache to small cache A 0.50/b booT
model
— LRU: Nb+N+b=C = N~C/(b+1)
— optimal: N+2b~C =2 N~C 0.25/b
Transition happens much sooner than in -
Scenario Il (with LRU replacement)
N
Cl/(b+1) Cr2
17 18
Intuition: perform blocked MVM so that data for
each blocked MVM fits in cache
— One estimate for B: all data for block MVM must fit « Code: blocked code
in cache for bi = 1,N,B
2 B2+2B~C . j=1,N,B .
38 ~sart(C) — bi,min(bi+8-1,N) I
— Actually we can do better than this D:l:l:l X for j = bj,min(bj+B-1,N) D:l:l:l X
Code:_ blocked code V(i)=Y (i)+AG)*()
.N.B 4 Better code: interchange the two outermost loops and ‘
i,min(bi+B-1,N) B fuse bi and i loops i
bj,min(bj+B-1,N) i for bj = 1,N,B
y(i)=y()+AL) () fori=1N l
Choose block size B so for j = bi,min(bi+B-1,N)
— you have large cache model while executing block B Y()=y()+A(Li)xG) y A
— Bis as large as possible (to reduce loop overhead)
— for our example, this means B~c/2 for row-major This has the same memory behavior as doubly-
order of storage and LRU replacement blocked loop but less loop overhead.
Since entire MVM computation is a sequence of
block MVMs, this means miss ratio will be
0.25/b independent of N!
19 20

Miss ratios

Miss ratio

0.25(1+1/b) e DAXPY

0.75b &
0.50/b

0.25/b K‘L Blocked

DDOT

Key transformations

* Loop permutation

fori=1,N forj=1N
forj=1N > fori=1N
S S
* Strip-mining
fori=1,N > for bi = 1,N,B
S for i = bi, min(bi+B-1,N)

S
» Loop tiling = strip-mine and interchange

fori=1,N > for bi = 1,N,B
forj=1N forj=.1,N- o
Clb+1) ce N S forSI = bj,min(bj+B-1,N)
21 22
Notes Matrix multiplication

 Strip-mining does not change the order in which
loop body instances are executed
— so it is always legal

» Loop permutation and tiling do change the order
in which loop body instances are executed
— so they are not always legal

* For MVM and MMM, they are legal, so there are
many variations of these kernels that can be
generated by using these transformations

— different versions have different memory behavior as
we have seen

23

* We have studied MVM in detail.

* In dense linear algebra, matrix-matrix
multiplication is more important.

» Everything we have learnt about MVM
carries over to MMM fortunately, but there
are more variations to consider since there
are three matrices and three loops.

24

MMM

for 1 = 1, N//row-major storage g
forJ=1,N 0
for K =1, N A
C(J)=Cd)+ALKIBKY) Fxa | ® e

IJK version of matrix multiplication

e Three loops: I,J,K
* You can show that all six permutations of these three
loops compute the same values.

* As in MVM, the cache behavior of the six versions is
different

25

MMM

for | = 1, N//row-major storage

ford=1,N B
forK=1,N A I
C(1,d) = C(1,J) + A(LK)*B(K,J) .
—K— C
IJK version of matrix multiplication

K loop innermost

— A:good spatial locality

— C: good temporal locality
I loop innermost

— B:good temporal locality
J loop innermost

— B,C: good spatial locality

— A:good temporal locality
So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK,
followed by JKI/KJI

26

MMM miss ratios (simulated)

L1 Cache Miss Ratio for Intel Pentium IIT

— MMM with N =1...1300
— 16KB 32B/Block 4-way 8-byte elements
BT |

Observations

» Miss ratios depend on which loop is in innermost
position
— so there are three distinct miss ratio graphs

» Large cache behavior can be seen very clearly
and all six version perform similarly in that
region

» Big spikes are due to conflict misses for
particular matrix sizes

— notice that versions with J loop innermost have few
conflict misses (why?)

28

|JK version (large cache)

for 1 = 1, N//row-major storage g
forJ=1,N 0
for K =1, N A
C(J)=Cd)+ALKIBKY) Fxa | ® e

» Large cache scenario:
— Matrices are small enough to fit into cache
— Only cold misses, no capacity misses
— Miss ratio:
« Data size = 3 N2
« Each miss brings in b floating-point numbers
+ Miss ratio = 3 N2/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)
29

IJK version (small cache)

forl=1,N [B
ford=1,N A If
forK=1,N
C(1,d) = C(I,J) + A(I,LK)*B(K,J) Frxal | ° |c
» Small cache scenario:

— Matrices are large compared to cache
» stack distance is not O(1) => miss
— Cold and capacity misses
— Miss ratio:
+ C: N2/b misses (good temporal locality)
« A: N3/b misses (good spatial locality)
» B: N3®misses (poor temporal and spatial locality)
+ Miss ratio - 0.25 (b+1)/b = 0.3125 (for b = 4)
30

Miss ratios for other versions

for 1 = 1, N//row-major storage

ford=1,N B
forK=1,N A !
C(1,J) = C(1,J) + A(LK)*B(K,J) -
—K— C
IJK version of matrix multiplication

« Kloop innermost
— A: good spatial locality

— C: good temporal locality 0.25(b+1)/b
+ |loop innermost
— B: good temporal locality (N2/b + N3 +N3)/4N3 > 0.5

* Jloop innermost
— B,C: good spatial locality (N3/b + N3/b + N2/b)/4N3 > 0.5/b
— A: good temporal locality
+ So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK,
followed by JKI/KJI

31

MMM experiments

L1 Cache Miss Ratio for Intel Pentium III an we predict this?

~ MMM with N = 1...1300
~ 16KB 32B/Block 4-way 8-byte elements
I o

Bl 32

Transition out of large cache

for 1 = 1, N//row-major storage g
forJ=1,N 0
for K =1, N A
C(J)=Cd)+ALKIBKY) Fxa | ® e

» Find the data element(s) that are reused with the largest
stack distance
» Determine the condition on N for that to be less than C
» For our problem:
— N2+ N + b < C (with optimal replacement)
— N2+ 2N < C (with LRU replacement)
— In either case, we get N ~ sqrt(C)
— For our cache, we get N ~ 45 which agrees quite well with data s

Blocked code

for bi = {,N,B
for bj = 1,N,B As in blocked MVM, we actually need to
for bk = 1,N,B stripmine only two loops
for i = bi, min(bi+B-1,N)
for j = bj, min(bj+B-1,N)
for k = bk, min(bk+BE-1,N)
y(i) = y(i) + A(i,j)*x(j)

34

Notes

So far, we have considered a two-level memory
hierarchy

Real machines have multiple level memory hierarchies
In principle, we need to block for all levels of the memory
hierarchy

In practice, matrix multiplication with really large matrices
is very rare

— MMM shows up mainly in blocked matrix factorizations

— therefore, it is enough to block for registers, and L1/L2 cache
levels

How do we organize such a code?
— We will study the code produced by ATLAS.
— ATLAS also introduces us to self-optimizing programs.
35

