Crash course on
optimizing compilers

Areg Melik-Adamyan, PhD

Engineering Manager, Intel Developer Products Division

Textbooks and References

* Again hitting only the tip of the 1ceberg
* Explain main concepts only

e 4() years of research

* But allow better understand how modern compilers are constructed and work. And what are
the implications

ROBERT MORGAN

modern

compiler ENGINEERING Buildingan
implementation A Optimizing

in C COMPILER (ompiler

SECOND EDITION

o R = T T

) | PP 2SN PP2274 ZNNNIWN

=i RN
<\) 7

on. All rights reserved.
laimed as the property of others.

Compilers

Principles, Techniques, & Tools

Getting Started with LLVM
Core Libraries

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

Compiler Exploration Tool

£¥ Compiler Explorer X) - Pad
<« C 1Y | & Secure | httpsy//gecgodboltorg | & @ 0 « O
=22 Apps W Bookmarks Intel Go Cnline Courses BD, DM and DP C5 Classics Various e Write101x Course In Austin Cosnanne Cloud ActiveBuilding Netflix TechBlog — I !ﬂ Tools - Mike Bland [Peter Bourgon - Go ¢ » Other bookmarks

Compiler Explorer Editor Diff View Share ~ Other~
C++ source #1 X O X | x86-64 clang (trunk) (Editor #1, Compiler #1) C++ X o X
A~ M Save/load 4 Add new...~ C++ = x86-64 clang (trunk) = .03
1 int main() A- 11010 LXO: Demangle Wl Libraries
2 A
3 char b = @; + Add new...v
4 for (int i = 0; i <4; ++i) 1 main: # @main
5 { L 2 .Lfunc_begin@:
6 b+=1; 3 mov eax, 6
7 } 4 ret
8 return b; 5 .Ltmpe:
9 } 6 .Lfunc_end@:
10 7 .Linfo_stringe:
8 .Linfo_stringl:
9 .Linfo_string2:
16 .Linfo_string3:
11 .Linfo_string4:
12 .Linfo_string5:
13 .Linfo_stringé6:
14 .Lcu_begin®:
15 .Lcu_macro_begin®: —
16 .LpubNames begin®:
17 .LpubNames_end®:

18 .LpubTypes_begine:l
A Output clang version 7.0.0 (trunk 323614) - cached
| T |

Q

Role of compilers

Bridge complexity and evolution 1n architecture, languages, & applications
Help programs with correctness, reliability, program understanding
Compiler optimizations can significantly improve performance

=] to 10x on conventional processors

Performance stability: one line change can dramatically alter performance

" ynfortunate, but true

Optimization Notice
2 @ 72018 a1 Co 1

Copyright © 2018, Intel Corporation. All rights reserved
¢ as

Performance Anxiety

But does performance really matter?
= Computers are really fast

= Moore slaw

Real bottlenecks are elsewhere (Vtune will help):
" Disk

= Network

" Human!

Optimization Notice

C

Compilers Don” t Help Much

Do compilers improve performance anyway?

= Proebsting’ slaw
(Todd Proebsting, Microsoft Research):

- Difference between optimizing and non-optimizing compiler in average ~ 4x
- Assume compiler technology represents 36 years of progress (actually more)

= Compilers double program performance every 18 years!
= Not quite Moore” s Law---

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

A Big BUT

Why use high-level languages anyway?
= FHasier to write & maintain
= Safer (think Java)

= More convenient (higher level abstractions, libraries, GC--+)

But: people will not accept massive performance hit for these gains

Compile with optimization!
Still use C and C++!!

Hand-optimize their code!!!

" FEyen write assembler code (gasp)!!!!

Apparently performance does matter--- Now even more than betore-

Optimization Notice
2 @ 72018 a1 Co 1

Copyright © 2018, Intel Corporation. All rights reserved

Phases of Compilation

Optimization Notice
2 @ 72018 a1 Co 1

Copyright ©

A

)

18, Inte

1

Corporation. All rights reservg

Character stream

Token stream

Parse tree

Abstract syntax tree or
other intermediate form

Maodified intermediate form

Assembly or machine language,
or other target language

Muaodified target language

VAV

Scanner (lexical analysis)

Parser (syntax analysis)

NN
VA A

Semantic analysis and

\Intermediate code generation

4 Machine-independent A
h_c:ude improvement {opticnal))

4 T e | ™y
arget code generation

. vy

4 Machine-specific A

_code improvement (optional)

()

Symbol table

Scanning/lLexical analysis

Break program down into its smallest meaningful symbols (tokens, atoms)
Tools for this include lex, flex

Tokens include e.g.:

= "Reserved words” : do if float while

= Special characters: ({,+-=1!/

= Names & numbers: myValue 3.07e02

Start symbol table with new symbols found

Optimization Notice

C

Parsing
Construct a parse tree from symbols

A pattern-matching problem

* [anguage grammar defined by set of rules that identity legal (meaningful) combinations
of symbols

= Hach application of a rule results in a node 1n the parse tree

= Parser applies these rules repeatedly to the program until leaves of parse tree are
“atoms”

If no pattern matches, it s a syntax error

yacc, bison, etc are tools for this (generate ¢ code that parses specified
language)

Optimization Notice

C

Parse tree

Output of parsing

Top-down description of program syntax

= Root node 1s entire program

Constructed by repeated application of rules in Context Free Grammar (CFQG)

Leaves are tokens that were 1dentified during lexical analysis

Optimization Notice
2 @ 72018 a1 Co 1

Copyright © 2018, Intel Corporation. All rights reserved

Example: parse tree

program gcd (input, output)
var 1, j: integer
begin
read (1, J)
while 1 <> jdo
if 1i>ythen1:=1 - j;
else j:=
writeln (1);

end .

O t1rmzat1on Not1ce

program
PROCREM idensifier | identifier more_identifiers i block
GCD INPUT i idendifier more_identifiers

ouUTPOT

fabel constanis tvpe variable subrowtines BEGIN siefernent more_statements END

VER ideniifier maore_fdentifiers : wpe ; more_variables
T idendifier more_identifiers simple_tvpe
[|
J identifier

INTEGER ; Slatement

WHILE

RERD { identifier more_identifiers simple_expression <> simple_expression

mare _Stalemenis

AP ession [0 siatement H siatement more_.r.'m‘emmts

T, identifier more_identifiers rerm rerm
| | I I
J factor Sfactor
I I
identifier identifier
I I
I J
IF expression THEN Starement ELSE statement WRITELN { EXPression more_expressions |
simple_expression > simple_expression identifier := expression idensifier := expression simple_expression
| | T I T |
Term term I ferm - term J rerm - ferm ferm
| | I | I I |
Sfactor factor Sfactor factor factor Jactor Sfacror
| | I | I I I
identifier identifier identifier identifier identifier identifier identifier
| I I | I I |
I J I J J I I

Semantic analysis
Discovery of meaning 1n a program using the symbol table

= Do static semantics check

= Simplify the structure of the parse tree (from parse tree to abstract syntax tree (AST))
Static semantics check

» Making sure identifiers are declared before use

*" Type checking for assignments and operators

" Checking types and number of parameters to subroutines

» Making sure functions contain return statements

= Making sure there are no repeats among switch statement labels

Hxample: AST

>

program
{5) read
/Vread
AN |
(3) 7 write ‘
/v wiriteln
4) (8)
<> if (4)
Index Symbol T /\ m
- - B © (7 = - .
1 INTEGER type
2 TEXTFILE type /\ /\ /\
3 2
4 ovrur 2 ® o & - @O -
3 GCD program /\ /\
B I 1
74 1 s 7 (7

Optimization Notice

) 2018, Intel Corporation. All rights reserved.
laimed as the property of others.

Co t©
*Other names and bra

(6}

The Golden Rules of Optimization

The 80/20 Rule

In general, 0% percent of a program’s execution time 1s Spent executing
20% of the code

90%/10% for performance-hungry programs
Spend your time optimizing the important 10/20% of your program

Optimize the common case even at the cost of making the uncommon case
slower

Optimization Notice
Copyri C 3 i

The Golden Rules of Optimization

The best and most important way of optimizing a program 1s using good
algorithms

= E.o. O(n*log) rather than O(n?)
However, we still need lower level optimization to get more of our programs

In addition, asymptotic complexity 1s not always an appropriate metric of
efficiency

* Hidden constant may be misleading

" Ko alinear time algorithm than runs in 100 *2+100 time 1S slower than a cubic time

algorithm than runs in 72+10 time if the problem size is small

Optimization Notice
)

General Optimization Techniques

https://ecc.enu.org/onlinedocs/ecc/Optimize-Options.html

* Different levels of optimization to achieve different goals: OO0, O1, O2, O3, Os,--- More than
200 optimizations

Common sub expression elimination

Strength reductlon. _ = Eliminate redundant calculations

= [Jse the fastest version of an operation = Lo

= Fo | double x =|d * (lim / max)|* sx;
x >> 2 1p5Zeadof x / 4 double v =|d * (lim / max)|* sy;
x << 1 mstead of x * 2

double depth = d * (lim / max);
double x = depth * sx;
double y = depth * sy;

Optimization Notice

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

General Optimization Techniques

Code motion

" /nvaniant expressions should be executed only once

= Fo
for (int 1 =_0; 1 < x.length; i++)
x[1] *= Math.PI * Math.cos (v

double picosy = Math.PT * Math.cos(y):
for (int 1 = 0; 1 < x.length; 1i++)
x[1] *= picosy;

Optimization Notice

Co

General Optimization Techniques

Loop unrolling

* The overhead of the loop control code can be reduced by executing more than one

iteration 1n the body of the loop. E.e.
double picosy = Math.PI * Math.cos (y);
for (int i1 = 0; 1 < x.length; i++)
x[1] *= picosy;

double picosy = Math.PI * Math.cos (y);
for (int 1 = 0; 1 < x.length; 1 += 2) {
x[1] *= picosy;

x[1+1] *= picosy; A efficient “+1” in array
} indexing is required

Optimization Notice

Compiler Optimizations

Compilers try to generate cood code

= ;e Fast
Code improvement 1s challenging

= Many problems are NP-hard

Code improvement may slow down the compilation process

" [n some domains, such as just-in-time compilation, compilation speed 1s critical

Optimization Notice
2 @ 72018 a1 Co 1

Copyright © 2018, Intel Corporation. All rights reserved

Character stream

\‘-R_* ||"] . '\\
Scanner (lexical analysis)
aC en ases Token stream N -
T~ T
L Parser (syntax analysis)
M A
P tr
arse mes ‘_-"‘\-‘__* - ~\
Semantic analysis
e iy
Abstract syntax tree with / Front end
annotations {(high-level 1F) \ | = | Back end
Intermediate)
Control flow graph with / (code generation
pseudo-instructions in basic « -
blocks (medium-level TF) \ ~
Local redundancy ,
. — I(eliminarion . {Machine-
Modified control flow graph independent
"“-..,___* I(Crlobal redundancy)
- eliminarion
Modified contrel flow graph i -~
~
Loop improvement
Moditied control flow graph
Target code generation
{Almost) assembly language — (& g .
(ow-level IF) ""“‘-_* | Preliminary N
Modified blv 1 — instruction scheduling
odified assembly language
T , , ~ Machine-
...--"""..I Register allocation " specific
B -
Modified assembly language
-“-\-‘-h* _-"ﬁ
|G'inal instruction scheduling
Modified assembly language < :':
|(Peephole optimization
Copyright © 2018, Intel Corporation. All rights reserved. Final assemb |:|."].ﬂngu:.'ige 4"..-.-.-‘ ~ _J

*QOther names and brands aimed as the property of others.

Basic Blocks

1) 1 =1
. , , 2) j=1

A basic block 1s a maximal sequence 3% 3 ="10 i

of consecutive instructions with the ‘51) R e

following properties: 6% t4 = t3 - 88

= The flow of control can only enter the 3733 ?[t‘%l I (])_

basic block thru the 1st instr. 9) 1if J <= 10 goto (3)

10) i =

= Control will leave the block without
halting or branching, except possibly
at the last instr.

+ 1
i <- 10 goto (2)
=1 -1
= 8 t
t6] = 1.0
=1 +
i <= 10 goto (13)

i
1
14) t6 5
RHS
R

YR

Basic blocks become the nodes of a
flow graph, with edges indicating the
order.

Optimization Notice
)

“Advanced Compiler Techniques”

Control-Flow Graphs

Control-flow graph:

= Node: an mstruction or sequence of mstructions (a
basic block)

- Two 1nstructions 1, j in same basic block
1ff execution of 1 guarantees execution of j

» Directed edge: pofential flow of control

" Distinguished start node Entry & Exit

— First & last mstruction n program

B

Bs

Bs

i=1
Y

lj=1

t; = 10 * i
te = £, + j
ts =8 * €3
tq4 = t3 - 88
j=i+1

if j <= 10 goto By

¢

i=31i+1

if i <= 10 goto B2

]

1

Y

ts =1 -1
tg = 88 * t;
alts] = 1.0
i=1i+1

if i <= 10 goto Ds

Transformations on basic blocks

Common subexpression elimination: recognize redundant computations, replace
with single temporary

Dead-code elimination: recognize computations not used subsequently, remove
quadruples

Interchange statements, for better scheduling

Renaming of temporaries, for better register usage

All of the above require symbolic execution of the basic block, to obtain
definition/use information

Optimization Notice

C

Computing dependencies 1n a basic block: the DAG

Use directed acyclic graph (DAG) to recognize common subexpressions and
remove redundant quadruples.

[ntermediate code optimization:

" basic block => DAG => improved block => assembly

Leaves are labeled with 1dentifiers and constants.

Internal nodes are labeled with operators and i1dentifiers

Optimization Notice

Copy

DAG Example

Transform a basic block into a DAG.

az=b+c @C
b=a-d /
c=b+c b, d
d=a-d
d dO
7N

Optimization Notice

Co .

SSA: Motivation

SSA (Static Single-Assignment):; A program 1s said to be in SSA form 1ff

= Hach variable 1s statically defined exactly only once, and

= each use of a variable is dominated by that variable’s definition.

Provide a uniform basis of an IR to solve a wide range of classical datatlow
problems

Encode both datatflow and control flow information
A SSA form can be constructed and maintained efficiently

Many SSA dataflow analysis algorithms are more etficient (have lower
complexity) than their CFG counterparts.

Optimization Notice
)

Static Single-Assignment Form

Each variable has only one definition in the program text.

This single static definition can be in a loop and
may be executed many times. Thus even in a
program expressed in SSA, a variable can be
dynamically defined many times.

Advantages of SSA

Simpler dataflow analysis

No need to use use-def/def-use chains, which requires NxM space for N uses and M
definitions

SSA form relates 1n a useful way with dominance structures.

Differentiate unrelated uses of the same variable

" E.o.loop induction variables

Optimization Notice
2 @ 72018 a1 Co 1

Copyright © 2018, Intel Corporation. All rights reserved

SSOA Form = An Example

SSA-form
* Each name 1s defined exactly once

X « 17 - 4
* FEach use refers to exactly one name

What's hard X< a+h

e Straight-line code 1s trivial
* Splits in the CFG are trivial

* Joins in the CFG are hard y % « 13

Building SSA Form
* Insert @(phi)-functions at birth points
* Rename all values for uniqueness

X<y -2z

Z <« X * q

|

S ¢« wW - X

Optimization Notice

Corporation. All rights reserved.
laimed as the property of others.

Birth Points

Consider the flow of values 1n this example:

x <« 17 - 4

The value x appears everywhere
It takes on several values.

-* Here, x can be 13, y-z, or 17-4
_» Here, it can also be a+b

If each value has its own hame

* Need a way to merge these
distinct values

* Values are "born" at merge
points

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved
1ty of others.

Birth Points

Consider the flow of values in this example:

X« 17 - 4

New value for x here
17 - 4ory - z

New value for x here
130or (17 - 4o0ry - 2)

s w - x New value for x here
a+b or ((13 or (17-4 or
o I y-2))

C

Review
SSA-form

Each name 1s defined exactly once

Each use refers to exactly one name

What's hard

Straight-line code 1s trivial
Splits in the CFG are trivial
Joins in the CFG are hard

Building SSA Form

Insert @-functions at birth points

Rename all values for uniqueness
o o]

Copyright © 2018, Intel Corporatio

A @-functionis a special
kind of copy that selects
one of its parameters.

The choice of parameter
isgoverned by the CFG
edge along which control
reached the currentblock.

Vi < ... Vo & ...

.

Y: < 9(Y1,Y2)
Real machines do not
implement a @-function
directlyin hardware (not
yet!)

LLVM Compiler System

The LLVM Compiler Infrastructure

Provides reusable components for building compilers
Reduce the time/cost to build a new compiler

Build different kinds of compilers

Our homework assignments focus on static compilers
There are also JITs, trace-based optimizers, etc.

The LLVM Compiler Framework
« BEnd-to-end compilers using the LLVM infrastructure
« Support for C and C++ 1s robust and aggressive

 Java, Scheme and others are in development
« Emit C code or native code for x86, SPARC, PowerPC

Optimization Notice
)

Components of LLVM

Source Code Intermediate Form Object Code
c LLVM IR /,X85

N (O) a A\) __,ARM
O ::I-E?gr?t End) - (L)IE)VtI:'Amizer Sldslae

L Y, _ Y _) TS sPARC
Java

The LLVM Optimizer is a seriesof “passes”

* Analysis and optimization passes, run one after another

* Analysispasses do not change code, optimizationpasses do

LLVM Intermediate Form1s a Virtual Instruction Set

* Language- and target-independent form: used to perform the same passes for all source
and target languages

* Internal Representation (IR) and external (persistent) representation

Optimization Notice
- A) Q A1 (A SEpCIN

Cony

LLLVM Diagram

More
Language

Specific Clang Frontend

(clang)

Optimizer (opt)

Target-Independent
Code Generator

More (llc)
Architecture
Specific

Optimization Notice

Copyright © 2018, Intel Corporatio

LLLVM Code Transformation Path

Read “Life of an instruction in LLVM™ :

http://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-1lvm

int main() { Clang AST
inta =5;

int b 3’ TranslationUnitDecl 0xd8185a0 <<invalid sloc>> <invalid sloc>
return a - b; | -TypedefDecl 0xd818870 <<invalid sloc>> <invalid sloc> implicit __builtin_va_list
‘char *
} "-FunctionDecl 0xd8188e0 <example.c:1:1, line:5:1> line:1:5 main ‘int ()’
"-CompoundStmt 0xd818a90 <col:12, line:5:1>
| -DeclStmt 0xd818998 <line:2:5, col:14>
| "-VarDecl 0xd818950 <col:5, col:13> col:9 used a ‘'int’ cinit
| “-IntegerLiteral 0xd818980 <col:13> 'int' 5
| -DeclStmt 0xd818a08 <line:3:5, col:14>
| "-VarDecl 0xd8189c0 <col:5, col:13> col:9 used b 'int’ cinit
| “-IntegerLiteral 0xd8189f0 <col:13> 'int' 3
"-ReturnStmt 0xd818a80 <line:4:5, col:16>
"-BinaryOperator 0xd818a68 <col:12, col:16> 'int' -’
| -ImplicitCastExpr Oxd818a48 <col:12> 'int’ <LValueToRValue>
| "-DeclRefExpr 0xd818a18 <col:12> 'int’ lvalue Var 0xd818950 ‘a' 'int’
“-ImplicitCastExpr 0xd818a58 <col:16> 'int' <LValueToRValue>
"-DeclRefExpr 0xd818a30 <col:16> "int’ lvalue Var 0xd8189¢c0 'b' 'int’

Optimization Notice

)18, Intel C tion. All rights reserved.
¢ roperty of others.

CompoundStmt

/

Declstmt DeclStmt

ReturnStmt

/

\

IntegerLiteral IntegerLiteral

BinaryOperator

i

~

ImplicitCastExpr ImplicitCastExpr
A 4 Y
DeclRefExpr DeclRefExpr

http://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-llvm

LLVM IR Intermediate Representation

In-Memory Data Structure

N

Bitcode (.bc files Text Format (.l files)

42 43 CO DE 21 0C 00 00 _ define 132 @main() #0 {
06 10 32 39 92 01 84 oc vm-dis apipy.
0A 32 44 24 48 0A 90 21 .~ %retval = alloca i32, align 4

18 00 00 00 98 00 00 00 %a = alloca i32, align 4
E6 C6 21 1D E6 Al 1C DA

Bitcode files and LLVM IR text files are lossless serialization formats!
We can pause optimization and come back later.

Optimization Notice

C

EntryToken Constant<0> FrameIndex<0> undef
0xa00e308 0xa027550 0xa0275e0 0xa027670
ch i3z i3z i32

3

0 | 1 ‘ 2 | 3
store<ST4[sretval]> [ORD=5]

—
Constant<5>

——
FrameIndex<l>

0xa027790 0xa027820
0xa027700
i3z i3z
ch
o |+]2 |

Constant<3> FrameIndex<2>
store<ST4[%a]> [ORD=6]
0xa027940 0xa0279d0
0xa0278b0
i32 i32
ch i
o [1 [2] 3
store<ST4[%b]> [ORD=7]
0xa027a60
ch
o o | 1 ‘ 2 0 | 1 ‘ 2
e ec lon load<LD4[%a]> [ORD=8] load<LD4[%b]> [ORD=9]
0xa027af0 0xa027b80
i3 | ch i32 | ch
Y
—_— 0 1
Register REAX
sub [ORD=10]
0xa027d30
- 0xa027¢10
i32
~ i32
S
TargetConstant<(0>
CopyToReg [ORD=11]
0xa027cal
0xa027dc0
ile
~ ch glue
o [1 [2] 3
X86ISD::RET_FLAG [ORD=11]
0xa027e50

ch

1mization Notice

right © 2018, Intel Corr
Other names and brands ma

Machinelnst Target Machine Instruction Generation

BB#0: derived from LLVM BB %entry
Live Ins: %EBP

PUSH32r %EBP<kill>, %ESP<imp-def>, %ESP<imp-use>; flags: FrameSetup
%EBP<def> = MOV32rr %ESP; flags: FrameSetup
%ESP<def,tied1> = SUB32ri8 %ESP<tied0>, 12, %EFLAGS<imp-def,dead>; flags:

FrameSetup
MOV32mi %EBP, 1, %noreg, -4, %noreg, 0; mem:ST4[%retval]
MOV32mi %EBP, 1, %noreg, -8, %noreg, 5; mem:ST4[%a]
MOV32mi %EBP, 1, %noreg, -12, %noreg, 3; mem:ST4[%b]
%EAX<def> = MOV32rm %EBP, 1, %noreg, -8, %noreg; mem:LD4[%a]
%EAX<def,tied1> = ADD32ri8 %EAX<Kill,tied0>, -3, %EFLAGS<imp-def,dead>
%ESP<def,tied1> = ADD32ri8 %ESP<tied0>, 12, %EFLAGS<imp-def,dead>
%EBP<def> = POP32r %ESP<imp-def>, %ESP<imp-use>
RETL %EAX

Optimization Notice

D)

Mclnst Pass and Assembly

#BB#0:
pushl %ebp

movl %esp, %ebp

subl $12, %esp

movl S0, -4(%ebp)

Optimization Notice

MClInst

%entry main:
<MCInst #2191 PUSH32r # BB#0:
<MCOperand Reg:20>>
<MClnst #1566 MOV32rr
<MCOperand Reg:20>
<MCOperand Reg:30>>
<MClnst #2685 SUB32ri8
<MCOperand Reg:30>
<MCOperand Reg:30>
<MCOperand Imm:12>>
<MClnst #1554 MOV32mi
<MCOperand Reg:20>
<MCOperand Imm:1>
<MCOperand Reg:0>
<MCOperand Imm:-4>
<MCOperand Reg:0>
<MCOperand Imm:0>>

Copyr 2018, ration. All rights reserved.

pushl
movl
subl
movl
movl
movl
movl
addl
addl
popl
retl

@main
%entry
%ebp
%esp, %ebp
$12, %esp
50, '4(%Ebp)
55, '8(%ebp)
$3, -12(%ebp)
-8(%ebp), %eax
S$-3, %eax
$12, %esp
%ebp

Backup

Optimization Notice

opyright © 2018, Intel Corporation. All rights reserved.
Other names an smay be claimed as the property of others.

Peephole Optimization

Simple compiler do not perform machine-independent code improvement

" They generates naive code

[t 15 possible to take the target hole and optimize it

= Sub-optimal sequences of instructions that match an optimization pattern are
transformed 1nto optimal sequences of nstructions

* This technique 1s known as peephole optimization

* Peephole optimization usually works by sliding a window of several mstructions (a
peephole)

Optimization Notice
Copyri C 3 i

Peephole Optimization

Goals:
- improve performance
- reduce memory footprint
- reduce code size
Method:
1. Exam short sequences of target instructions
2. Replacing the sequence by a more efficient one.

e redundant-instruction elimination
e algebraic simplifications

o flow-of-control optimizations

e use of machine idioms

Optimization Notice
Cop

Peephole Optimization
Common Techniques

Flimination of redundant {oads and stores

r2 . =rl + 5
| = r2
| becomes
r3 =i
r4 . =rd = 3
C'onstant folding
r2 =3 = 2 becomes

Optimization Notice
_opy

r2 =rl + &
| = r2
r4 =12 = 3
r2 .= 6

Peephole Optimization
Common Techniques

C'onstant propagation

r2 = 4 r2 = 4
3=l +4

r3 =rl + r2 becomes r3 =rl + 4 and then ' L
r2 =

r2 = ... r2 =

rd = o

r3 =rl+ r2 becomes =l and then r3 = #(rl4+4)

r3 = #r3

r3 = #r3

rl1 =3 rl1 =3 rl =3

r2 =rl = 2 becomes r2 =3 x 2 and then r2: =6

Optimization Notice

C

Peephole Optimization

Common Techniques
Clapy propagation

r2 = rl rd ==rl 3—r 4l

r3:=rl+ 12 becomes r3 :=rl +rl and then :E :; r

2 =5 2. =5 -
Strength reduction

rl =r2 x 2 becomes rl ==r2 4 r2 01 rl=r2 << 1

1 =r2 /2 becommes rl:=r2=>1

rl =r2 = 0 becomes rl1 =10

Optimization Notice
)

