
Areg Melik-Adamyan, PhD

Engineering Manager, Intel Developer Products Division

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Textbooks and References

• Again hitting only the tip of the iceberg

• Explain main concepts only

• 40 years of research

• But allow better understand how modern compilers are constructed and work. And what are
the implications

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Compiler Exploration Tool

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Role of compilers

Bridge complexity and evolution in architecture, languages, & applications

Help programs with correctness, reliability, program understanding

Compiler optimizations can significantly improve performance

 1 to 10x on conventional processors

Performance stability: one line change can dramatically alter performance

 unfortunate, but true

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Anxiety

But does performance really matter?

 Computers are really fast

 Moore’s law

Real bottlenecks are elsewhere (Vtune will help):
 Disk
 Network
 Human!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compilers Don’t Help Much

Do compilers improve performance anyway?

 Proebsting’s law
(Todd Proebsting, Microsoft Research):

– Difference between optimizing and non-optimizing compiler in average ~ 4x

– Assume compiler technology represents 36 years of progress (actually more)

 Compilers double program performance every 18 years!

 Not quite Moore’s Law…

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A Big BUT
Why use high-level languages anyway?

 Easier to write & maintain

 Safer (think Java)

 More convenient (higher level abstractions, libraries, GC…)

But: people will not accept massive performance hit for these gains

 Compile with optimization!

 Still use C and C++!!

 Hand-optimize their code!!!

 Even write assembler code (gasp)!!!!

Apparently performance does matter… Now even more than before…

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Phases of Compilation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Scanning/Lexical analysis

Break program down into its smallest meaningful symbols (tokens, atoms)

Tools for this include lex, flex

Tokens include e.g.:

 “Reserved words”: do if float while

 Special characters: ({ , + - = ! /

 Names & numbers: myValue 3.07e02

Start symbol table with new symbols found

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parsing
Construct a parse tree from symbols

A pattern-matching problem

 Language grammar defined by set of rules that identify legal (meaningful) combinations
of symbols

 Each application of a rule results in a node in the parse tree

 Parser applies these rules repeatedly to the program until leaves of parse tree are
“atoms”

If no pattern matches, it’s a syntax error

yacc, bison, etc are tools for this (generate c code that parses specified
language)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parse tree

Output of parsing

Top-down description of program syntax

 Root node is entire program

Constructed by repeated application of rules in Context Free Grammar (CFG)

Leaves are tokens that were identified during lexical analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: parse tree

program gcd (input, output)

var i, j : integer

begin

read (i , j)

while i <> j do

if i>j then i := i – j;

else j := j – i ;

writeln (i);

end .

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Semantic analysis
Discovery of meaning in a program using the symbol table

 Do static semantics check

 Simplify the structure of the parse tree (from parse tree to abstract syntax tree (AST))

Static semantics check

 Making sure identifiers are declared before use

 Type checking for assignments and operators

 Checking types and number of parameters to subroutines

 Making sure functions contain return statements

 Making sure there are no repeats among switch statement labels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: AST

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Golden Rules of Optimization

The 80/20 Rule

In general, 80% percent of a program’s execution time is spent executing
20% of the code

90%/10% for performance-hungry programs

Spend your time optimizing the important 10/20% of your program

Optimize the common case even at the cost of making the uncommon case
slower

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Golden Rules of Optimization

The best and most important way of optimizing a program is using good
algorithms

 E.g. O(n*log) rather than O(n2)

However, we still need lower level optimization to get more of our programs

In addition, asymptotic complexity is not always an appropriate metric of
efficiency

 Hidden constant may be misleading

 E.g. a linear time algorithm than runs in 100*n+100 time is slower than a cubic time
algorithm than runs in n3+10 time if the problem size is small

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

General Optimization Techniques
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• Different levels of optimization to achieve different goals: O0, O1, O2, O3, Os,… More than
200 optimizations

Strength reduction
 Use the fastest version of an operation
 E.g.

x >> 2 instead of x / 4

x << 1 instead of x * 2

Common sub expression elimination
 Eliminate redundant calculations
 E.g.

double x = d * (lim / max) * sx;

double y = d * (lim / max) * sy;

double depth = d * (lim / max);

double x = depth * sx;

double y = depth * sy;

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

General Optimization Techniques

Code motion

 Invariant expressions should be executed only once

 E.g.
for (int i = 0; i < x.length; i++)

x[i] *= Math.PI * Math.cos(y);

double picosy = Math.PI * Math.cos(y);

for (int i = 0; i < x.length; i++)

x[i] *= picosy;

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

General Optimization Techniques

Loop unrolling

 The overhead of the loop control code can be reduced by executing more than one
iteration in the body of the loop. E.g.
double picosy = Math.PI * Math.cos(y);

for (int i = 0; i < x.length; i++)

x[i] *= picosy;

double picosy = Math.PI * Math.cos(y);

for (int i = 0; i < x.length; i += 2) {

x[i] *= picosy;

x[i+1] *= picosy;

}
A efficient “+1” in array
indexing is required

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Optimizations

Compilers try to generate good code

 i.e. Fast

Code improvement is challenging

 Many problems are NP-hard

Code improvement may slow down the compilation process

 In some domains, such as just-in-time compilation, compilation speed is critical

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Backend Phases

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
“Advanced Compiler Techniques”

Basic Blocks

A basic block is a maximal sequence
of consecutive instructions with the
following properties:

 The flow of control can only enter the
basic block thru the 1st instr.

 Control will leave the block without
halting or branching, except possibly
at the last instr.

Basic blocks become the nodes of a
flow graph, with edges indicating the
order.

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Control-Flow Graphs

Control-flow graph:

 Node: an instruction or sequence of instructions (a
basic block)

– Two instructions i, j in same basic block
iff execution of i guarantees execution of j

 Directed edge: potential flow of control

 Distinguished start node Entry & Exit

– First & last instruction in program

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Transformations on basic blocks

Common subexpression elimination: recognize redundant computations, replace
with single temporary

Dead-code elimination: recognize computations not used subsequently, remove
quadruples

Interchange statements, for better scheduling

Renaming of temporaries, for better register usage

All of the above require symbolic execution of the basic block, to obtain
definition/use information

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Computing dependencies in a basic block: the DAG

Use directed acyclic graph (DAG) to recognize common subexpressions and
remove redundant quadruples.

Intermediate code optimization:

 basic block => DAG => improved block => assembly

Leaves are labeled with identifiers and constants.

Internal nodes are labeled with operators and identifiers

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Fall 2011

DAG Example

Transform a basic block into a DAG.

a = b + c

b = a – d

c = b + c

d = a - d

+

+

-

b0 c0

d0
a

b, d

c

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SSA: Motivation

SSA (Static Single-Assignment): A program is said to be in SSA form iff

 Each variable is statically defined exactly only once, and

 each use of a variable is dominated by that variable’s definition.

Provide a uniform basis of an IR to solve a wide range of classical dataflow
problems

Encode both dataflow and control flow information

A SSA form can be constructed and maintained efficiently

Many SSA dataflow analysis algorithms are more efficient (have lower
complexity) than their CFG counterparts.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Fall 2011

Static Single-Assignment Form

Each variable has only one definition in the program text.

This single static definition can be in a loop and

may be executed many times. Thus even in a

program expressed in SSA, a variable can be

dynamically defined many times.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Advantages of SSA

Simpler dataflow analysis

No need to use use-def/def-use chains, which requires NM space for N uses and M
definitions

SSA form relates in a useful way with dominance structures.

Differentiate unrelated uses of the same variable

 E.g. loop induction variables

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SSA Form – An Example

SSA-form
• Each name is defined exactly once
• Each use refers to exactly one name

What’s hard
• Straight-line code is trivial
• Splits in the CFG are trivial

• Joins in the CFG are hard

Building SSA Form
• Insert Φ(phi)-functions at birth points
• Rename all values for uniqueness

x  17 - 4

x  a + b

x  y - z

x  13

z  x * q

s  w - x

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Birth Points

Consider the flow of values in this example:

x  17 - 4

x  a + b

x  y - z

x  13

z  x * q

s  w - x

The value x appears everywhere

It takes on several values.

• Here, x can be 13, y-z, or 17-4

• Here, it can also be a+b

If each value has its own name
…

• Need a way to merge these
distinct values

• Values are “born” at merge
points

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Fall 2011

Birth Points

Consider the flow of values in this example:

x  17 - 4

x  a + b

x  y - z

x  13

z  x * q

s  w - x

New value for x here
17 - 4 or y - z

New value for x here
13 or (17 - 4 or y - z)

New value for x here
a+b or ((13 or (17-4 or
y-z))

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Review
SSA-form

Each name is defined exactly once

Each use refers to exactly one name

What’s hard

Straight-line code is trivial

Splits in the CFG are trivial

Joins in the CFG are hard

Building SSA Form

Insert Ø -functions at birth points

Rename all values for uniqueness

A Ø -function is a special

kind of copy that selects

one of its parameters.

The choice of parameter

is governed by the CFG

edge along which control

reached the current block.

Real machines do not

implement a Ø -function

directly in hardware (not

yet!)

y1  ... y2  ...

y3  Ø(y1,y2)

*

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LLVM Compiler System

The LLVM Compiler Infrastructure
• Provides reusable components for building compilers
• Reduce the time/cost to build a new compiler
• Build different kinds of compilers
• Our homework assignments focus on static compilers
• There are also JITs, trace-based optimizers, etc.

The LLVM Compiler Framework
• End-to-end compilers using the LLVM infrastructure
• Support for C and C++ is robust and aggressive
• Java, Scheme and others are in development
• Emit C code or native code for x86, SPARC, PowerPC

34

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Components of LLVM

The LLVM Optimizer is a series of “passes”
• Analysis and optimization passes, run one after another
• Analysis passes do not change code, optimization passes do
LLVM Intermediate Form is a Virtual Instruction Set
• Language- and target-independent form: used to perform the same passes for all source

and target languages
• Internal Representation (IR) and external (persistent) representation

35

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LLVM Diagram

36

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LLVM Code Transformation Path
Read “Life of an instruction in LLVM”:
http://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-llvm

37

http://eli.thegreenplace.net/2012/11/24/life-of-an-instruction-in-llvm

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LLVM IR Intermediate Representation

38

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MachineInst Target Machine Instruction Generation

40

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

McInst Pass and Assembly

41

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Backup

42

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Peephole Optimization

Simple compiler do not perform machine-independent code improvement

 They generates naive code

It is possible to take the target hole and optimize it

 Sub-optimal sequences of instructions that match an optimization pattern are
transformed into optimal sequences of instructions

 This technique is known as peephole optimization

 Peephole optimization usually works by sliding a window of several instructions (a
peephole)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Peephole Optimization

Goals:

- improve performance

- reduce memory footprint

- reduce code size
Method:

1. Exam short sequences of target instructions

2. Replacing the sequence by a more efficient one.

• redundant-instruction elimination
• algebraic simplifications

• flow-of-control optimizations
• use of machine idioms

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Peephole Optimization

Common Techniques

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Peephole Optimization

Common Techniques

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Peephole Optimization

Common Techniques

