
3/21/2018

1

Programming
Shared-memory Machines

Some slides adapted from Ananth Grama,
Anshul Gupta, George Karypis, and Vipin
Kumar ``Introduction to Parallel Computing'',

Addison Wesley, 2003.

Running example

• Algorithmic parallelism:
– map: function evaluations f(i) can be done in parallel
– reduce: if addition is associative, f(i) values can be summed in

parallel in O(log(n)) steps
• we will not worry about exploiting this parallelism

• How do we exploit this algorithmic parallelism using
shared-memory programming?

• We will use Pthreads and OpenMP to illustrate concepts
• Pthreads: POSIX threads
• OpenMP:

– Higher-level API than Pthreads
– OpenMP programs are often compiled to Pthreads code

2

Overview

• Thread Basics
• The POSIX Thread API
• Synchronization primitives in Pthreads

– join
– locks and try-locks
– barriers

• Implementing synchronization primitives
using atomic instructions

• Deadlocks and how to avoid them

Threads

• Software analog of cores
– Each thread has its own PC, SP, registers etc.
– All threads share heap and globals

• Runtime system handles mapping of threads to
cores (scheduling)
– If there are more threads than cores, runtime

system will time-slice threads on cores
– HPC applications: usually #threads = #cores

• portability: number of threads is usually a runtime
parameter

• Threads have names (opaque handles)
– used to assign different work to different threads
– used by one thread to refer to another thread

4

3/21/2018

2

Thread Basics: Creation and
Termination

• Program begins execution with main thread
• Creating threads:

#include <pthread.h>
int pthread_create (

pthread_t *thread_handle,
const pthread_attr_t *attribute,
void * (*thread_function)(void *),
void *arg);

• Thread is created and it starts to execute
thread_function with parameter arg

• Thread handle: opaque name for thread
• Type (void *) is C notation for “raw address”

(that is, can point to anything)

Terminating threads

• Thread terminated when:

o it returns from its starting routine, or

o it makes a call to pthread_exit()

• Main thread
– exits with pthread_exit(): other threads will continue to

execute

– Otherwise: other threads automatically terminated

• Cleanup:
– pthread_exit() routine does not close files

– any files opened inside the thread will remain open
after the thread is terminated.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5
pthread_t handles[NUM_THREADS]; //store opaque handles for threads
int shortNames[NUM_THREADS];//store short names for threads

void *PrintHello(void *threadIdPtr) {
int shortId = * (int *)threadIdPtr;
printf("\n%d: Hello World!\n", shortId);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
for(int t=0;t<NUM_THREADS;t++){

printf("Creating thread %d\n", t);
shortNames[t] = t;
int rc = pthread_create(&handles[t], NULL, PrintHello, &shortNames[t]);
if (rc){ printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);
}

}
pthread_exit(NULL);

}

Example
Output

Creating thread 0
Creating thread 1

0: Hello World!

1: Hello World!
Creating thread 2
Creating thread 3

2: Hello World!

3: Hello World!
Creating thread 4

4: Hello World!

3/21/2018

3

Synchronization

• In most programs, threads need to
coordinate their execution to ensure
correctness

• Examples:
– Join: block a given thread until some other

thread terminates
– Critical section: region of code that must be

executed by at most one thread at a time
– Barrier: all threads must reach this point in

code before any thread can move ahead

Join

pthread_join (threadid,status)

•The pthread_join() function blocks the calling thread
until the specified thread terminates.

•The programmer can obtain the target thread's termination return
status if it was specified in the target thread's call to pthread_exit().

Using joins in sum example

• Estimate value of π using numerical integration

• Divide interval [0,1/2) into steps of equal size h and compute

∑ ݂ ݅ ∗ ݄ ∗ ݄
భ
మ೓
	ିଵ

௜ୀ଴

݂ ݔ ൌ
6

1 െ ଶݔ

න ݂ ݔ 	ݔ݀ ൌ ߨ	
ଵ/ଶ

଴

Structure of code

• Main thread creates P
worker threads
– numbered 0,1,2,…P-1

• Thread t
– computes sum of values for

i = t, t+P,t+2P,…
– writes value into sum[i] where

sum is a global array

• Main thread joins with each
worker thread and reads its
contribution from sum array

• Main thread prints answer
after joining with all worker
threads

………

sum

∑ ݂ ݅ ∗ ݄ ∗ ݄
భ
మ೓
	ିଵ

௜ୀ଴

0 1

3/21/2018

4

Code

0 1 2

………

sum

thread i will return its local sum in sum[i]

#include <pthread.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#define MAX_THREADS 512

pthread_t handles[MAX_THREADS];
int shortNames[MAX_THREADS];

void *compute_pi (void *);

int numPoints;
int numThreads;
double step;
double sum[MAX_THREADS];

double f(double x) {
return (6.0/sqrt(1-x*x));

}

int main(int argc, char *argv[]) {

pthread_attr_t attr;
pthread_attr_init (&attr);

double pi = 0.0;
numPoints = 100000000;
step = 0.5/numPoints;
numThreads = atoi(argv[1]); //number of threads is an input

//create threads and initialize sum array
for (int i=0; i< numThreads; i++) {

sum[i] = 0.0;
shortNames[i] = i;
pthread_create(& handles[i],&attr,compute_pi,& shortNames[i]);

}

//join with threads and add their contributions from sum array
for (int i=0; i< numThreads; i++) {

pthread_join(handles[i], NULL);
pi += sum[i];

}
printf("%f\n", pi);
return 0;

}

• What happens if loop writes directly to sum[myId] instead
of accumulating locally in mySum? See next slide.

void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

double mySum =0.0;
for (int i = myId; i < numPoints; i+=numThreads) {

double x = step * ((double) i); // next x
mySum = mySum + step*f(x); // Add to local sum

}
sum[myId] = mySum; //write to global sum array

}

False-sharing

0 1 2

sum

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Shared
Memory

3/21/2018

5

• Style of computing shown in Example 2 is sometimes
called fork-join parallelism

• This style of parallel execution in which threads only
synchronize at the end is quite rare

• Usually, threads need to synchronize during their
execution

Remarks

fork

join

Other styles of synchronization

• Mutual exclusion
– Shared “resource” such as variable

or device
– Only one thread at a time can

access resource or update variable
– Critical section: portion of code that

should be executed by only thread
at a time

• Barrier
– Program executes in phases
– All threads must complete a phase

before any thread can execute next
phase

– Insert barrier synchronization
between phases

main

barrier

barrier

Need for Mutual Exclusion
• Consider variant of sum program

– Global variable: globalSum
– Each thread adds its contributions directly to globalSum

for (int i = myId; i < numPoints; i+=numThreads) {
double x = step * ((double) i); // next x
globalSum = globalSum + step*f(x); // Add to global sum

}

• Data-race: 
– Read and write to globalSum by a thread may be interleaved

with reads and writes to globalSum by other threads
– Example:

• globalSum value is 0.5
• Thread 0 has a contribution of 0.1 and thread 1 has a contribution of 0.2
• Final value after both additions should be 0.8
• However here is one sequence of possible operations

– Thread 0 reads value 0.5
– Thread 1 reads value 0.5
– Thread 0 adds its contribution and writes 0.6
– Thread 1 adds its contribution and writes 0.7

Mutual exclusion

• Basic problem: read/modify/write
– Shared variable x

– Two threads want to
• read value of x

• compute a new value for x

• write new value to x

– Unless you are careful, you get a data-race
• final value can depend on

– how code is compiled

– scheduling of threads

– result may not be what you expect

3/21/2018

6

Coherent caches do not solve
data-race problem

• Final value can be 4 or 5 depending on scheduling of
instructions

Cache Cache

Shared Bus

x = x+1
3xx = x+1

Shared-memory
load r1,[x]
inc r1
store [x],r1

P0 P1

load r1,[x]
inc r1
store [x],r1

load r1,[x]
inc r1
store [x],r1

x will have value 5

load r1,[x]
inc r1

store [x],r1

load r1,[x]

inc r1
store [x],r1

x will have value 4

time

Another example
• Bellman-Ford SSSP

– assume 16 nodes and 4 threads
– Work assignment

• Thread 0 handles nodes 0..3
• Thread 1 handles nodes 4..7
• Thread 2 handles nodes 8..11
• Thread 3 handles nodes 12..15

• Pseudo-code for thread function
//compute startNode and endNode for this thread
for node u = startNode to endNode

for each edge (u,v)
if (d(u)+length(u,v) < d(v))

d(v) = d(u)+length (u,v);
• What happens if two threads wants to update label of

same node v?
– data-race can cause incorrect results

u1 v

u2

……

Nodes

t0 t1

Solution (I)

• Architecture provides atomic instructions
– Small collection of read/modify/write instructions

operating on ints, doubles, etc.
– Execute as though all other threads were

suspended during execution of atomic instruction
– Example:

• swap(addr, reg) //swap value in memory at address
addr with value in register reg

• Easy to modify MESI protocol to implement
atomic instructions
– Like write except that line is locked down in cache

until instruction completes
– No other core can steal line until instruction

completes

Solution (II):Using atomic
operations in code

• Intrinsics: use atomic instructions in code
– can be tricky to use correctly

• Locks (mutex, spin-lock)
– programming abstraction implemented by thread libraries
– locks can be acquired and released by threads
– implementation uses atomic instructions to guarantee that

only thread can acquire lock at a time
– to enter critical section, thread must acquire lock
– release lock when exiting critical section

• Let us study how locks can be used to implement
critical sections and then dig down to see how they
can be implemented using atomic instructions

3/21/2018

7

Mutex in Pthreads

• The Pthreads API provides the following
functions for handling mutex-locks:
– Lock creation
int pthread_mutex_init (

pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

– Acquiring lock
int pthread_mutex_lock (

pthread_mutex_t *mutex_lock);

– Releasing lock
int pthread_mutex_unlock (

pthread_mutex_t *mutex_lock);

Using locks

• Lock is implemented by
– variable with two states: available or not_available
– queue that can hold ids of threads waiting for the lock

• Lock acquire:
– If state of lock is available, its state is changed to not_available,

and control returns to application program
– If state of lock is not_available, thread-id is queued up at the

lock, and control returns to application program only when lock is
acquired by that thread

– Key invariant: once a thread tries to acquire lock, control returns
to thread only after lock has been awarded to that thread

• Lock release:
– next thread in queue is informed it has acquired lock, and it can

proceed
• “Fairness”: any thread that wants to acquire a lock can

succeed ultimately even if other threads want to acquire
the lock an unbounded number of times

• We can now write our sum example as follows:
double globalSum = 0.0;
pthread_mutex_t globalSum_lock;
...
main() {

....
pthread_mutex_init(&globalSum_lock, NULL);
....

}
void *compute_pi(void *s) {

....
for (int i = myId; i < numPoints; i+=numThreads) {

double x = step * ((double) i); // next x
double value = step*f(x);
pthread_mutex_lock(&globalSum_lock);
globalSum = globalSum + value; // Add to globalSum
pthread_mutex_unlock(&globalSum_lock);

}

Correct Mutual Exclusion

critical section

Critical sections

• For performance, it is important to keep critical sections
as small as possible

• While one thread is within critical section, all others
threads that want to enter the critical section are blocked

• It is up to the programmer to ensure that locks are used
correctly to protect variables in critical sections

Thread A Thread B Thread C
lock(l) lock(l)
x:= ..x.. x:= ..x.. x: = …x

unlock(l) unlock(l)

This program may fail to execute correctly because
programmer forgot to use locks in Thread C

3/21/2018

8

Producer-Consumer Using Locks

• Two threads
– Producer: produces data
– Consumer: consumes data

• Shared buffer is used to communicate data from
producer to consumer
– Buffer can contain one data value (in this example)
– Flag is associated with buffer to indicate buffer has

valid data
• Consumer must not read data from buffer unless

there is valid data
• Producer must not overwrite data in buffer

before it is read by consumer

pthread_mutex_t data_queue_lock;
int data_available; //1 if buffer is full
...
main() {

....
data_available = 0;
pthread_mutex_init(&data_queue_lock, NULL);
....

}
void *producer(void *producer_thread_data) {

....
while (!done()) {

create_data(&my_data);
inserted = 0;
while (inserted == 0) {

pthread_mutex_lock(&data_queue_lock);
if (data_available == 0) {

insert_data(my_data);
data_available = 1;
inserted = 1;

}
pthread_mutex_unlock(&data_queue_lock);

}
}

}

Producer-Consumer Using Locks

data-available

d
a

ta
-q

u
e

u
e

-lo
ck

buffer

producer

consumer

done?
inserted

done?
extracted

void *consumer(void *consumer_thread_data) {
int extracted;
struct data my_data;
/* local data structure declarations */
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&data_queue_lock);
if (data_available == 1) {

extract_data(&my_data);
data_available = 0;
extracted = 1;

}
pthread_mutex_unlock(&data_queue_lock);

}
process_data(my_data);

}
}

Producer-Consumer Using Locks

data-available

d
a

ta
-q

u
e

u
e

-lo
ck

buffer

producer

consumer

done?
inserted

done?
extracted

Types of Mutexes

• Pthreads supports three types of mutexes - normal,
recursive, and error-check.

• A normal mutex deadlocks if a thread that already has a
lock tries a second lock on it.

• A recursive mutex allows a single thread to lock a mutex
as many times as it wants. It simply increments a count
on the number of locks. A lock is relinquished by a
thread when the count becomes zero.

• An error check mutex reports an error when a thread
with a lock tries to lock it again (as opposed to
deadlocking in the first case, or granting the lock, as in
the second case).

• The type of the mutex can be set in the attributes object
before it is passed at time of initialization.

3/21/2018

9

Spin locks/trylocks

• Another kind of lock: trylock.
int pthread_mutex_trylock (

pthread_mutex_t *mutex_lock);

• If lock is available, acquire it; otherwise, return a
“busy” error code (EBUSY)

• Faster than pthread_mutex_lock on typical
systems when there is no contention since it
does not have to deal with queues associated
with locks

Using locks
/* Finding k matches in a list */
void *find_entries(void *start_pointer) {

/* This is the thread function */
struct database_record *next_record;
int count;
current_pointer = start_pointer;
do {

next_record = find_next_entry(current_pointer);
count = output_record(next_record);

} while (count < requested_number_of_records);
}
int output_record(struct database_record *record_ptr) {

int count;
pthread_mutex_lock(&output_count_lock);
output_count ++;
count = output_count;
pthread_mutex_unlock(&output_count_lock);
if (count <= requested_number_of_records)

print_record(record_ptr);
return (count);

}

Using spin-locks
/* rewritten output_record function */
int output_record(struct database_record

*record_ptr) {
int count;
int lock_status;
lock_status=pthread_mutex_trylock(&output_count_lock);
if (lock_status == EBUSY) {

insert_into_local_list(record_ptr);
return(0);

}
else {

count = output_count;
output_count += number_on_local_list + 1;
pthread_mutex_unlock(&output_count_lock);
print_records(record_ptr, local_list,

requested_number_of_records - count);

return(count + number_on_local_list + 1);

}
}

Problems with locks

• Locks are most dangerous when a thread needs to
acquire multiple locks before releasing locks

• Two main problems:
– deadlock
– livelock

• Deadlock:
– Threads A and B need locks L1 and l2
– Thread A acquires L1 and wants L2
– Thread B acquires L2 and wants L1
– In general, there will be a cycle of threads in which each

thread holds some locks and is waiting for locks held by
other threads in the cycle

• Livelock:
– may arise in some solutions to deadlock

3/21/2018

10

Deadlock

• Code snippet shows
example of possible
deadlock

• Subtle point:
– deadlock may happen in

some executions and not
in others!

• “Deadly embrace”:
Dijkstra

• How do we ensure
deadlocks cannot
occur?

Thread 1:
…
lock(L1);
lock(L2);
….

Thread 2:
…
lock(L2);
lock(L1);
…

Thread 1 Lock L1

Thread 2Lock L2

holds

holds

needed by needed by

Deadlock: four conditions

• Mutual exclusion:
– thread has exclusive control over resource it acquires

• Hold-and-wait:
– thread does not release resource it holds if it is waiting for

another resource
• No pre-emption:

– No external agency forces a thread to release resources if thread
is waiting for another resource

• Circular wait:
– There is a cycle of threads such that each thread holds one or

more resources needed by the next thread in the cycle

You prevent deadlocks by ensuring that one or more of these
conditions cannot arise in your program.

Prevent circular wait

• Assign a logical total order to locks
– (eg) name them L1,L2,L3,…

• Ensure that threads will never try to acquire a lower numbered
lock while holding a higher numbered lock
– (eg) if thread owns L3, it can try to acquire L4, L5, L6,… but it

cannot try to acquire locks L1 or L2 (unless it already owns them
and locks are re-entrant)

• Useful software engineering principle when you have control
over the entire code base and you know what locks are
required where

• However
– easy to make mistakes
– tension with encapsulation:

• requires detailed knowledge of entire code base

Prevent hold-and-wait

• Try to acquire all locks
atomically

• One implementation:
– single global lock to get permission

to acquire locks you need
• Problem:

– not scalable
– conflicts with modularity and

encapsulation

• You might encounter a hidden
version of this problem if thread
has to enter the kernel to
perform some function like
storage allocation
– kernel lock is like the global-lock in

our example

…
lock(global-lock);
lock(l1);
lock(l2);
unlock(global-lock);
…

3/21/2018

11

Self-preemption

• Coding discipline:
– Use only try-locks
– If a thread cannot acquire a lock while it

is holding other locks, it releases all
locks it holds and tries again

– Variation: OS or some other agency
steps in and preempts a thread

• Problems:
– Encapsulation
– Livelock: threads can keep on acquiring

and releasing locks without making
progress because no thread ever gets all
the locks it needs

– One solution to livelock: (Ethernet)
backoff: thread does not retry until some
randomly chosen amount of time has
passed

loop:
//start of lock acquires

….
if (trylock(Lj) == EBUSY) {
//unlock all locks you hold

goto loop;
}

….
endloop:

//compute with resources
//release locks

Implementing locks using
atomic instruction

• Atomic swap(addr,reg)
– swap contents of address and register atomically

• Spin-lock using swap
– location lock has 0/1 for unlocked/locked
– lock code:

load 1 into register rx;
swap(lock,rx);
test rx:

– if rx is 1, you don’t have lock so try again
– if rx is 0, you have lock and no one else can have it till you unlock

– unlock
• store 0 into lock;

• Problem:
– swap must invalidate line in all caches even when lock

acquire is not successful
– if there are a lot of threads waiting for lock, busy-waiting

will create a lot of bus traffic

Busy-waiting and bus traffic

• Busy-waiting creates a lot of bus traffic
• Sequence of actions

– all threads do exchg
– P2 wins and gets lock
– P0 and P1 keep doing swap operations, invalidating line in other caches
– P2 releases lock by writing 0 to lock
– ….

• Solution: test-and-test-and-set
– keep doing ordinary reads until lock is 0
– then go into acq loop and see if you can get lock
– if you fail, jump back to read loop

0l

Shared-memoryP0 P1…..
mov edx,1

acq: swap [l], edx
test edx, edx
jnz acq

…..

P2

l 1

Better spin-locks

• Inner spin loop does not create bus traffic since all
spinning threads spin on their local caches

• When P2 unlocks, line is invalidated from P0 and
P1

0l

Shared-memoryP0 P1
…..

mov edx,1
spin: mov eax, [l]

test eax, eax
jnz spin
swap [l], edx
test edx, edx
jnz spin

…..

P2

l 1

3/21/2018

12

Compare-and-swap (CAS)
• Another atomic instruction: compare-and-swap (cas)

– cas addr, old-value, new-value
– check if addr contains old-value
– if so, update it to new-value and return SUCCESS; otherwise return FAIL.

• Consider Bellman-Ford
– relaxation of edge (u,v)

tN = dist(u) + w(u,v);
acquire lock on v; //this uses swap
if (tN < dist(v)) dist(v) = tN;
release lock on v;

• Bellman-Ford (II):
– Relaxation of edge (u,v)

repeat {
tO = dist(v); //read old value
tN = dist(u)+w(u,v); //compute new value
if (tN < tO)

done = cas(dist(v),tO,tN); //write if dist(v) still contains tO
else

done = SUCCESS;
until (done==SUCCESS)}

• Advantages:
– Separate locations for locks not needed
– Smaller critical section
– Fewer writes

• CAS operation was first introduced in IBM System 370

CAS in x86
• x86 is a 2-address ISA but CAS requires three

operands
– Solution: eax is implicit operand

• cmpxchg addr, reg;
if (contents(addr) == eax))

{addr = reg;
zero-flag = 1;
}

else
{eax = reg;
zero-flag = 0;

}

• “lock cmpxchg addr,reg”
– instruction is executed atomically

eax

reg

addr

==?

Spinlock example in x86
section .text

main: ; Using main since we are using gcc to link

; Call pthread_create(pthread_t *thread, const pthread_attr_t *attr,
; void *(*start_routine) (void *), void *arg);

push dword 0 ; Arg Four: argument pointer
push thread1 ; Arg Three: Address of routine
push dword 0 ; Arg Two: Attributes
push tID1 ; Arg One: pointer to the thread ID
call pthread_create

push dword 0 ; Arg Four: argument pointer
push thread2 ; Arg Three: Address of routine
push dword 0 ; Arg Two: Attributes
push tID2 ; Arg One: pointer to the thread ID
call pthread_create

; Call int pthread_join(pthread_t thread, void **retval) ;
;

push dword 0 ; Arg Two: retval
push dword [tID1] ; Arg One: Thread ID to wait on
call pthread_join
push dword 0 ; Arg Two: retval
push dword [tID2] ; Arg One: Thread ID to wait on
call pthread_join

push dword [result]
push dword fmtStr2
call printf
add esp, 8 ; Pop stack 2 times 4 bytes

call exit

3/21/2018

13

thread1:
pause
push dword [tID1]
push dword 1
push dword fmtStr1
call printf
add esp, 12 ; Pop stack 3 times 4 bytes

call spinLock

mov [result], dword 1
call spinUnlock

push dword 0 ; Arg one: retval
call pthread_exit

thread2:
pause
push dword [tID2]
push dword 2
push dword fmtStr1
call printf
add esp, 12 ; Pop stack 3 times 4 bytes

call spinLock

mov [result], dword 2
call spinUnlock

push dword 0 ; Arg one: retval
call pthread_exit

spinLock:
push ebp
mov ebp, esp
mov edx, 1 ; Value to set sLock to

spin: mov eax, [sLock] ; Check sLock
test eax, eax ; If it was zero, maybe we have the lock
jnz spin ; If not try again
;
; Attempt atomic compare and exchange:
; if (sLock == eax):
; sLock <- edx
; zero flag <- 1
; else:
; eax <- edx
; zero flag <- 0
;
; If sLock is still zero then it will have the same value as eax and
; sLock will be set to edx which is one and therefore we aquire the
; lock. If the lock was acquire between the first test and the
; cmpxchg then eax will not be zero and we will spin again.
;
lock cmpxchg [sLock], edx ;eax is implicit operand
test eax, eax
jnz spin
pop ebp
ret

spinUnlock:
push ebp
mov ebp, esp
mov eax, 0
xchg eax, [sLock]
pop ebp
ret

exit:
;
; Call exit(3) syscall
;void exit(int status)
;

mov ebx, 0 ; Arg one: the status
mov eax, 1 ; Syscall number:
int 0x80

Barriers

• Pthreads barrier type
– pthread_barrier_t varBarrier;
– basically a struct

• int total: initialized to # of threads to wait for
• int count: tracks how many threads have reached barrier
• mutex

• Initialize barrier
– int pthread_barrier_init (&varBarrier,NULL,total);

• Waiting at barrier
– int pthread_barrier_wait (&varBarrier);

3/21/2018

14

Implementation of barriers

• Implemented using an atomic counter
– Initialized to number of threads that need to

arrive at barrier

– Thread that arrives at barrier
• decrements counter atomically

• checks if it is the last one to arrive at barrier
(counter = 0) and if so, informs other waiting
threads that they can move past barrier

– Small subtlety when barrier is within a loop

Controlling Thread and
Synchronization Attributes

• The Pthreads API allows a programmer to
change the default attributes of entities using
attributes objects.

• An attributes object is a data-structure that
describes entity (thread, mutex, condition
variable) properties.

• Once these properties are set, the attributes
object can be passed to the method initializing
the entity.

• Enhances modularity, readability, and ease of
modification.

Attributes Objects for Threads

• Use pthread_attr_init to create an
attributes object.

• Individual properties associated with the
attributes object can be changed using the
following functions:
pthread_attr_setdetachstate,

pthread_attr_setguardsize_np,

pthread_attr_setstacksize,

pthread_attr_setinheritsched,

pthread_attr_setschedpolicy, and
pthread_attr_setschedparam

Attributes Objects for Mutexes

• Initialize the attrributes object using function:
pthread_mutexattr_init.

• The function pthread_mutexattr_settype_np can
be used for setting the type of mutex specified by the
mutex attributes object.
pthread_mutexattr_settype_np (
pthread_mutexattr_t *attr,
int type);

• Here, type specifies the type of the mutex and can take
one of:
– PTHREAD_MUTEX_NORMAL_NP
– PTHREAD_MUTEX_RECURSIVE_NP
– PTHREAD_MUTEX_ERRORCHECK_NP

