Software

INTEL" VTUNE™ AMPLIFIER FOR CACHE
PERFORMANGE ANALYSIS

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Intel” VTune™ Amplifier

Quick Introduction
Get the Data You Need

» Hotspot (Statistical call tree), Call counts (Statistical)

» Thread Profiling — Concurrency and Lock & Waits Analysis
= Cache miss, Bandwidth analysis..."

= GPU Offload and OpenCL™ Kernel Tracing

Find Answers Fast

= View Results on the Source / Assembly

= OpenMP Scalability Analysis, Graphical Frame Analysis

= Filter Out Extraneous Data — Organize Data with Viewpoints
= Visualize Thread & Task Activity on the Timeline

Easy to Use

= No Special Compiles - C, C++, C#, Fortran, Java, ASM
* Visual Studio* Integration or Stand Alone

= Graphical Interface & Command Line

» Local & Remote Data Collection

» Analyze Windows* & Linux* data on OS X*?

1 Events vary by processor. 2 No data collection on OS X*

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Quickly Find Tuning Opportunities

CPU Timew

Function / Call Stack Effective Time by Utilization Spin | Overhead
@idle @ Poor 0Ok [ideal @Over | 1'ME[Time

4s07; T N o 0s

FireObject:checkCollision

[# FireObject:ProcessFireCollisionsRange 3.4445-:_ Os Os

MtWaitForSingleObject 0s 3.406s Os

[std::basic_ifstream-< char,struct std::char_traits 3.35‘35_ Os Os

. OgresFileSystemArchivesopen 3.359s _ Os Os

[# CBaseDevice:Present 2.3355-:- 0.671s Os
Selected 1 row(s): 1.151s| 0.728= O w

See Results On The Source Code

o Lo)| [[[®)) - ()] () () wersvoromns fses]

Source CPU Time: Total by Utilization
Line ™ Source
Didie @ Poor 0 Ok @ Ideal @ Over
81 for (int i = 0; i < mem array i max; i++) 0.300s()
82 {
a3 for {(int j = 0; j < mem array Jj_max; J++) 49365 [N
84 {
85 mem array [j*mem array_j_max+i] = *£ill_wval 7.20?5_

Tune OpenMP Scalability

() OpenMP Region CPU Usage Histogram

2.5s ! '
E 1 1
1 i
E o S
b1 [ci
7] !
w wl
a
215 = ’7
w 1
\
1s L
|
|
0.55 T
|
- |
Os _ .
0 1 2 3 4 5
BCTENN deal Over
Vi lize & Filter Dat
Q@ Qe CQ=Ci# 700ms _ 42750ms _ 42800ms _ 42850ms _ 42900ms __ 42950ms _ 43000ms _ 43050ms P Frame
o . e . sre—— . r—r— r——— | —— - W, A e . e 2 s
Frarme Rt [¥] Frame Rate
reme e Muk Frame Rate
[wWinMainCRTStartup... [~
_ [endthresdex (TID: 91... Thread
@ [_endthreadex (TID: 91... [Runnin a
= [endthreadex (TID: 91... || [Waits
CBatchFilterl:L HBatc... ||& ~ Muk CPU Time

CPU Usage ik Spin and Overhead...
[[] ¥ CPU Sample

< 3 %

> Transitions

Performance Monitoring Unit (PMU)

« Hardware registers on any modern Intel processor
* 100s of events in current CPU generations
« Performance counters can be programmed to count Events through specific MSRs

« Events can be divided into the following categories, depending on how they are collected and interpreted:

— Fixed events
CPU_CLK UNHALTED.THREAD - Cycles running at the rate of the core reflecting frequency changes (Turbo etc...)
INST RETIRED.ANY -lInstructions retired
CPU CLK UNHALTED.REF - Cyclesata non-changing reference rate

— Programmable events

— Precise events

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Performance Monitoring Unit
Performance counters

Core performance monitoring of CPU of modern CPUs
= Each core has 8 counters; 4 per thread with SMT

= Measure 7 performance events at a time (4 Programmable, 3 Fixed)

Measure “Uncore” events in addition to “Core” events
= Distributed design with separate blocks of counters in different architectural units (MC, LLC, GT, etc.)

= Not thread-specific. Thread-specific counting can only be done in the core

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Event Based Performance Analysis

Processor events can be monitored using sampling and counting technologies

Sampling Mode:
* Sample - a HW interruption happens when a N of Events counted
* Nis programmable
* Inasample we automatically collect:
o Thread and process ID's
o Instruction Pointer (IP)

* Instruction pointer is then used to derive the function name and source line number from the debug information
created at compile time

* This creates a statistical representation of where the events are occurring

Counting Mode:
* Running counters for events without any interrupts or program information collected
« This is probably what you have done with PAPI

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Sampling Mode vs. Counting Mode

Sampling Mode Counting Mode

» ldentifies WHERE events occur * Reports how many events occur, not location.
» Used for profiling and tuning * Mostly for profiling

« Statistical representation True event count

* Higher overhead - still low * Very low overhead

« (Can generate large amounts of data * Small data files

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

EBS for Memory Performance - Motivation

* Large memories are slow

* Small memories are fast, but expensive and consume
high power

* Goal: give the processor a feeling that it has a memory
which is fast, large, consumes low power and cheap

* Solution: a Hierarchy of memories

L1 L2 Memory
S Cache | | (DRAM)

Speed: Slowest

Capacity (size): Smallest >
Cost: Highest >
Power: Highest >

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Subsystem PMU Events

Examples:

MEM INST RETIRED.LOADS
MEM LOAD RETIRED.LID HIT

MEM LOAD RETIRED.L2 HIT

MEM LOAD RETIRED.LLC UNSHARED HIT
MEM LOAD RETIRED.LLC MISS

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Metrics

Create useful, quantitative data from raw event counts.

Examples:
e CPI = Total Cycles/Instructions

* L3 miss penalty = (L3 miss count * 200)/Total Cycles
L2 Hit Ratio = L2 Hits/L2 Accesses

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Two Ways to Measure Memory Impacts

Cycle Accounting
* Original technique based on estimated penalties for various events
« Example: L3 miss penalty = (L3 miss count * 200)/Total Cycles

* Main Issue — Superscalar, Out-of-Order architectures can hide memory
latency issues by executing other instructions

Stall Accounting

* Based on new PMU events determining when the CPU is actually stalled
 Example: CYCLE_ACTIVITY.STALLS L3 MISS

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Analysis in VTune Amplifier

i 22 P B O®F @ welkome

&l Choose Analysis Type
q @Analysis Target A Analysis Type

Algorithm Analysis
Basic Hotspots
Advanced Hotspots
Concurrency

Locks and Waits

Memory Consumption

Compute-Intensive Application
Analysis

HPC Performance Characterization

Microarchitecture Analysis

General Exploration

Memory Access

TSX Exploration
TSX Hotspots
SGX Hotspots

Optimization Notice

=l Memory Access Memory Usage viewpoint (change) © INTEL VTUNE AMPLIFIER 2018
1 [Collection Log @ Analysis Target # Analysis Type & Summary & Bottom-up 4 Platform b

Elapsed Time : 6.689s

Wall Clock and CPU

CPU Time = 25.121s - . .
Memory Bound ~: 44.4% K of Pipeline Slots Utilization Time
L1 Bound ~; 0.7% of Clockticks
L2 Bound ~: 0.0% of Clockticks
L3 Bound ~: 30.5% K of Clockticks
DRAM Bound “; 8.0% of Clockticks Memory Stalls
Loads: 17,604,528,120 Breakdown
Stores: 8,789,663,682
LLC Miss Count : 46,352,781
Average Latency (cycles) =; 57
Total Thread Count: 4 Average Memory
Paused Time 0s Access Latency

System Bandwidth

This section provides vanous system bandwidth-related properties detected by the product. These values are used to define default High, Medium
and Low bandwidth utilization thresholds for the Bandwidth Utilization Histogram and to scale overtime bandwidth graphs in the Bottom-up view,

Max DRAM System Bandwidth —: 80 GB
Max DRAM Single-Package Bandwidth —: 40 GB

Built-in benchmark to
determine system specs

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Memory Analysis in VTune Amplifier

BBl b ® @ | O | weeome &l Memory Access Memory Usage viewpoint (change) © |]
& Choose Analysis Tvn 7 [coltection Log O Analysis Target A Analysis Type & Summary ¢ Bottom-up = Platform - / b

q @m"m A“-Ana‘lysw Type

o 0.
® Elﬁgff:ﬂ__T{me . 6.689s Wall Clock and CPU

Algorithm Analys/

Basic Hotspots

Advanced Hotspots
Concurrency
Locks and Waits

Memory Consumptior

Compute-intens|
Analysis

HPC Performance Characms s

Paused Time *: Access Latency

Microarchitecture Analysis

P

General Exploration) System Bandwidth

This section provides various system bandwidth-related properties detected by the product. These values are used to define default High, Medium
and Low bandwidth utilization thresholds for the Bandwidth Utilization Histogram and to scale overtime bandwidth graphs in the Bottom-up view.

TSX Exploration
TSX Hotspots Max DRAM System Bandwidth —: 80 GB S
SGX Hotspols Max DRAM Single-Package Bandwidth *: 40 GB Built-in benchmark to

determine system specs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

General Exploration Analysis

* Intel® VTune™ Amplifier has hierarchical expanding metrics.

* You can expand your way down, following the hotspot, to identify the root cause
of the inefficiency.

* Sub-metrics highlight pink on their own merits, just like top level metrics.

* Hovering over a
metric produces
a helpful, detailed
tooltip (not shown).

™ General Exploration General Exploration viewpoint (change) @

B8 Collection Log| | ® Analysis Target Analysis Type | | K Summary | ELY:lslute]aBi] - Eve

Grouping:| Function / Call Stack

* There are tooltips on < Back-End Bound
Summary tabs toc?: | \3 Memory Bound
hover over any @ icon. Function / Call Stack {1 Bound p s s . s N
or
DTLB Over.. |Lo.. |Lo.. |Spl.|4KA_ |FB .

p grid_intersect [13.5%)) % | 0.0 |4 1.8% 5% |

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Categorizing Inefficiencies in the Memory Subsystem

Back-End Bound “
Memory Bound “ Core Bound «
» L3 Bound « DRAM Bound « Store Bound « »
L1 Bound L2 Bound . Memory Lat._ « ,) Divider Port Utilization
Contested Acc.. | Data Sharing | L3 Latency | SQ Full | Memory Band.. LLC Miss Store Latency | False Shari.. | Split Sto.. | DTLE Store ..
3.2% 0.0% 0.0% 0.0%| 0.0% 0.2% 0.0% 3.3% 0.0% 0.0% 0.2% 0.0% 26.6%
11.3% 4.8% 0.0% 0.0% 100.0% 0.0% 9.5% 0.0% 1.1% 0.0% 0.2% 0.2% 4 8% 17.2%

* Back End bound is the most common bottleneck type for most applications.

* It can be splitinto Core Bound and Memory Bound

* Core Bound includes issues like not using execution units effectively and
performing too many divides.

 Memory Bound involves cache misses, inefficient memory accesses, etc.
« Store Bound is when load-store dependencies are slowing things down.

* The other sub-categories involve caching issues and the like. Memory Access Analysis
may provide additional information for resolving this performance bottleneck.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte| l 14

*Other names and brands may be claimed as the property of others.

VTune Amplifier Workflow Example- Summary View

&l Memory Access Memory Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER 2018
1 [Collection Log © Analysis Target # Analysis Type & Summary &3 Bottom-up Platform [

Elapsed Time : 6.689s

CPU Time = 25.121s
Memory Bound —: 44.4% K of Pipeline Slots
L1 Bound ~; 0.7% of Clockticks
L2 Bound = 0.0% of Clockticks
L3 Bound ~: 30.5% R of Clockticks ngh percentage i
DRAM Bound ~: B.0% of Clockticks
Loads: 17.604,528,120 L3 Bound cyCleS
Stores: 8,789,663,682
LLC Miss Count —: 46,352,781
Average Latency (cycles) =; 57
Total Thread Count: 4
Paused Time ~: Os

System Bandwidth

This section provides various system bandwidth-related properties detected by the product. These values are used to define default High, Medium
and Low bandwidth utilization thresholds for the Bandwidth Utilization Histogram and to scale overtime bandwidth graphs in the Bottom-up view.

Max DRAM System Bandwidth 80 GB
Max DRAM Single-Package Bandwidth —: 40 GB

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VTune Amplifier Workflow Example- Bottom-Up View

Over-Time DRAM
Bandwidth

Over-Time QPI/UPI
Bandwidth

Grid Breakdown by
Function
(configurable)

Optimization Notice

i Memory Access Memory Usage viewpoint (change) ©
4 EJ Collection Log € Analysis Target /A Analysis Type & Summary @ 8ottom-up = Platform

INTEL VTUNE AMPLIFIER 2018

[

D: 4+ 0s 1s 3s 4s 55 Bs ~ DRAM Bandwidth, GB/sec
g:n-; » package_0 40.000 v aa T0tal, GBisec
% 20.0007 - « - Read, GB/sec
& b package_1 ’ « ~ Write, GBisec
=
z ~ UPI Bandwidth, GB/sec
é + s Total, GBisec
% ¥ -~ |ncoming Data, GBisec
% ¥ -~ Incoming Non-Data, ...
O 8.728 o ~ Outgoing Data, GB/sec
,:_% b package_1 _‘ l o | A N oad « ~ Qutgoing Non-Data, ...
(L] B.728
e » package_0 ‘ L . | 1 A T ~ CPU Time
-g & CPU Time
=]
2 package_1 5600.0%
A= |
a:.) package_0 5600.0%
U
Grouping: Function/ Call Stack v |1 Q | ‘

Function / Call Stack CPU Time ¥ Memory Bound Loads Stores | LLCMiss Count * | Average Latency (cycles) | vl
p multiplyl._ omp_fn.0 24.920s S 44.2% 17,655,926,662 8,765,362,953 45,902,754 57 matrix.g
p func@0x18c60 0.045s 40.0 1,800,054 0 0 0 libgomp
b clear_page_c_e 0.026s 0.0 0 0 0 0 vmlinux
b cOpy_page_rep 0.016s 89.0 0 0 0 0 vmlinux
» kiime_get 0.006s 85.0 900,027 1,800,054 1] 7 vmlinux
p pci_confl read 0.006s 0.0] 900,027 450,027 0 vmlinux

0.006s 0 0 1] 0 vmlinux

B apic_timer_interrupt

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

VTune Amplifier Workflow Example- Bottom-Up View

P: 4 0s 1s ' 1.995s [Duration: 0.331s] 3 as
5] 40.000]
@ p package_0
E _ . . Focus on areas of
L] 40.000 3 H b
| * package 1 interest with “Zoom
=]
= 2 "
2 In and Filter
®
m
=
<
&
O
o 8.728 |
@ p package_1 ‘ L L Zoom In on Selection
wn
L A . q 0
@ 5720 Fine-grained details
g > package 0 l | i Filter In by Selection -] :
g — in Zoomed-in view
E Filter Out by Selection
E package_1 5600.0% Zoom In and Filter In by
= { —
- package_0 5600.0% _—
%J Dismiss Menu
=
O 4 — e 1700ms 1750ms 1802.2/9ms 1850ms 1900ms 1950ms ~ DRAM Bandwidth, GB/sec
§ b package_0 40.000 + Total, GBlsec
B 40.000 - Read, GBIsec
e » package_1 ' | o~ Write, GB/sec
i)
% ~ UP| Bandwidth, GB/sec
.:E package_0 s Total, GB/sec
= Total, GB/sec ¥ ~ Incoming Data, GBisec
> 1.232 /sec ~ Incoming Nen-Data, ...
5 Incoming Data, GB/sec « ~~ Outgoing Data, GB/sec
EE > package_1 | 0.046 /sec P — " ~ Outgoing Mon-Data, ...
(U] 4,740 Incoming Non-Data, GB/sec
2| > Package 0 0.367 Isec ' —— ¥ CPU Time
o
z Outgoing Data, GB/sec ™ CPUTime
2| package_1 5600.0% | 0.432 /sec
= T Outgoing Non-Data, GB/sec
5600.0% d
|l 0.386 /sec

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VTune Amplifier Workflow Example- Bottom-Up View

=l Memory Access Memory Usage viewpoint (change) @ I NE AMP 2018
1 collection Log D Analysis Target A Analysis Type 1 Summary & Bottom-up == Platform [multiply.c Nﬂ b
D+ 0s 1s R 2!y ze Bandwidth over Time 55 65 ~ DRAM Bandwidth, GB/sec
§ » package_0 40.000 ~ wa Total, GB/sec
8 s pacage i 2w, e _
g ~ UP1 Bandwicth, Glsec DRAM and UPI Bandwidth
g v e Total, GBisec are lOW
= e « ~ Incoming Data, GB/sec
I e
% isine s - l L A ad A 1 - o -~ Omgalng Non-Data, G...
é « CPU Time
o aa CPU Time
:]EJ package_1 5600.0%
::3- package_0 5600.0%
5]

o [&[Q[% Memory Bound function.
e P 44% of pipeline slots are

Grouping: Function / Call Stack

Stores LLC Miss Count

Function / Call Stack CPU Time ¥ Memory Bound *

» muttiplyl. omp 0 |24920s | YR 17.555,926,662 8,765,362,953 45,902,754/ stalled

» func@0x18c60 0.045s 40.0 1,800,054 0 0 :

» clear_page c¢_e 0.026s 0.0 0 0 0

» cOpy_page_rep 0.016s 89.0 0 0 0

» kiime_get 0.006s 85.0 900,027 1,800,054 0

» pci_confl_read 0.006s 0.0 0 900,027 450,027 Double_click a function
» apic_timer_interrupt 0.006s 0 0 0 .

» init_ar 0.006s 0.0 0 0 0 for source view.

» init arr 0.006s 0.0 0 0 0

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VTune Amplifier Workflow Example- Source View

= Memory Access Memory Usage viewpoint (change) @
1 [Collection Log D Analysis Target /A Analysis Type i Summary & Bottom-up ‘“=Platform [B multiply.c B multply c

Source Assembly 9 2@ ¥ Q Assembly grouping: Address
. Memory Bound
g (]
T Source CPU Time L1 | L? L3 O Loa.. 5to.
Bou. Bou.|Bound Ba.

179 #pragma omp parallel for
180 for{i=0; i=msize; i++) {
181 for(j=0; jemsize; j++) { 0.004s|

| for(k=0; k<msize; k++) { zm--l
183 c[i10§1 = c[i1[j]1 + alillk] * blkI[j]; gaags- 2.9% 359% 0.0% 17,. 8,7.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Metrics at a source line
granularity

Inefficient array access
pattern in nested loop

VTune Amplifier Workflow Example- Source View

‘ Source Assembly

W @ % Q Assembly grouping: Address

for(k=0; k=msize; k++) {

183 c[i][j] =

cfi]l[3] + ali]llk] * bI[KI[]]:

=] (]

ﬁHil‘l‘lﬂTﬂ LL Ave ., &g
41 [collection LI.- Source Memory Bound Loa.. | Sto.. M. Lat.. File
Source Assel c ley
. 208 for{i=0; i<msize; i++) { LOOp interchange
The 209 for(k=0; k<msize; k++) {

210 #pragma ivdep

211 Tor(j=0; j=msize; j++) { ﬂ[}}_'d.g

c[1](3] = c[11(§] + a[1][k] * b(k][}];

179 #pragma omp parallel for
180 for(i=0; i=msize; i++) {
181 for(j=0; jemsize; j++) { Dﬂﬂd5|

2m---l

9.889s 2.9% 35.9% 0.0% 17,.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Compare the Results

& Memory Access Memory Usage viewpoint (change) @
+ [Coltection Log © Analysis Target A Analysis Type & Summary &3 Bottom-up ' Platform

v) Elapsed Time : 6.689s

CPU Time 25.121s

Memory Bound : 44.4% K of Pipeline Slots
L1 Bound 0.7% of Clockticks
L2 Bound *“: 0.0% of Clockticks
L3 Bound *: 30.5% K of Clockticks
DRAM Bound : 8.0% of Clockticks

Loads: 17,604,528,120

Stores: 8,789,663,682

LLC Miss Count : 46,352,781

Average Latency (cycles) = 57

Total Thread Count: 4

Paused Time ~: Os

~) System Bandwidth

This section provides various system bandwidth-related properties detected by thej
and Low bandwidth utilization thresholds for the Bandwidth Utilization Histogram ang

Max DRAM System Bandwidth : 80 GB
Max DRAM Single-Package Bandwidth : 40 GB

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

= Memory Access Memory Usage viewpoint (change) @
1 [collection Log D Analysis Target A Analysis Type & Summary & Bottom-up = Platform [multiply.c

Elapsed Time : 1.640s

CPU Time 5.988s

Memory Bound 7.1% of Pipeline Slots
L1 Bound ~: 0.3% of Clockticks
L2 Bound = NfA* of Clockticks
L3 Bound 0.4% of Clockiicks
DRAM Bound ~: N/A* of Clockticks

Loads: 22,926,387,771

Stores: 9,153,274,590

LLC Miss Count ~: 0

Average Latency (cycles) —: 16

Total Thread Count: 4

Paused Time ~; Os

*MiA Is applied to metrics with undefined value. There is no data to calculate the metric,

System Bandwidth

This section provides various system bandwidth-related properties detected by the pruttl
default High, Medium and Low bandwidth utilization thresholds for the Bandwidth Utiliza
bandwidth graphs in the Bottom-up view.

Max DRAM System Bandwidth 80 GB
Max DRAM Single-Package Bandwidth —: 40 GB

*Other names and brands may be claimed as the property of others.

Understanding the Memory Hierarchy

Integrated Graphics

32KB
L1D

Core

32KB
L1l

Core

256KB
L2

Core

Core

Optimization Notice

Core
Core

LLC

LLC

LLC
Shared

LLC

LLC

LLC

Core p

System !gent

Memory & 1/0

Data can be in any level of any core’s cache, orin
the shared L3, DRAM, or on disk.

Accessing data from another core adds another
layer of complexity

Cache coherence protocols — beyond the scope
of today’s lecture. But we will cover some issues
caused by this.

GPU

L IRV
Leensn

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache Misses

Why: Cache misses raise the CPI of an application. Focus on long-latency

data accesses coming from 2nd and 3rd level misses

Back-End Bound
Memory Bound «
L3 Bound * | DRAM Bound * | Store Bound ' *

. =mey

L1 Bound * L2 Bound

0.0% 0.0% 0.0%

What Now: If either metric is highlighted for your hotspot, consider reducing misses:
= Change your algorithm to reduce data storage
= Block data accesses to fit into cache
» Check for sharing issues (See Contested Accesses)
= Align data for vectorization (and tell your compiler)
= Use streaming stores
» Use software prefetch instructions

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Blocked Loads Due to No Store Forwarding

Why: If it is not possible to forward the result of a store through the pipeline,
dependent loads may be blocked

What Now: If the metric is highlighted for your hotspot, investigate:

View source and look at the LD BLOCKS.STORE_FORWARD event. Usually this
event tags to next instruction after the attempted load that was blocked.
Locate the load, then try to find the store that cannot forward, which is usually
within the prior 10-15 instructions. The most common case is that the store is
to a smaller memory space than the load. Fix the store by storing to the same
size or larger space as the ensuing load.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

4K Aliasing

Why: Aliasing conflicts caused by associative caches result in having to re-issue
loads.

What Now: If this metric is highlighted for your hotspot, investigate at the
source code level.

Fix these issues by changing the alignment of the load. Try aligning data to 32
bytes, changing offsets between input and output buffers (if possible), or using
16-Byte memory accesses on memory that is not 32-Byte aligned.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DTLB Misses

Why: First-level DTLB Load misses (Hits in the STLB) incur a latency penalty.
Second-level misses require a page walk that can affect your application’s
performance.

What Now: If this metric is highlighted for your hotspot, investigate at the
source code level.

To fix these issues, target data locality to TLB size, use the Extended Page
Tables (EPT) on virtualized systems, try large pages (database/server apps
only), increase data locality by using better memory allocation or Profile-Guided
Optimization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Multi-Socket Systems

* Thisis still a single
address space

* Accessing other socket is —> T

expensive +— +—r

f +—> >

* Important to be aware o — =)

memory accesses for b «—

performance — “—>
ow 333 ol 313
3x16 3x16

PCle* 1x100G PCle* 1x100G
Intel* OP Fabric Intel* OP Fabric

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Remote Memory Accesses

Why: With a Non-Uniform Memory Access (NUMA) architecture, loading from
memory can have varying latency. Remote memory loads cost more.

What Now: If this metric is highlighted for your hotspot, improve NUMA affinity:

* If thread migration is a problem, try affinitizing or pinning threads to cores

Ensure that memory is first touched (accessed, not allocated) by the thread that will be using it

Use affinity environment variable for OpenMP

Use NUMA-aware options for supporting applications if available (for example, softnuma for SQL
Server)

Use a NUMA-efficient thread scheduler (such as Intel® Threading Building Blocks)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Example: Poor NUMA Utilization

& Memory Access Memory Usage viewpoint (change) @
1 [cCollection Log) Analysis Target /& Analysis Type 3 Summary & Bottom-up 2 Platform
~) Elapsed Time . 32.626s
CPU Time 508.508s If Memory Bound is high
Memory Bound —: 73.3% R of Pipeline Slots and local caches are not
L1 Bound ~: B.4% R of Clockticks the problem
L2 Bound *: 0.0% of Clockticks
L3 Bound ~: 7.4% R of Clockticks
DRAM Bound : 8.0% of Clockticks
DRAM Bandwidth Bound = 0.0% of Elapsed Time
Memory Latency:
Remote / Local DRAM Ratio ~; 0.000
Local DRAM = 1.2% of Clockticks
Remote DRAM (0%, of Clockticks
Remote Cache m of Clockticks Focus on “Remote”
Loads: 163,640,209,059 metrics
Stores: 34,303,629,078
LLC Miss Count : 331,669,899
Average Latency (cycles) =: 12
Total Thread Count: 17
Paused Time Os

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Example: Poor NUMA Utilization

& Memory Access Memory Usage viewpoint (change) @
+ [JCollection Log © Analysis Target A Analysis Type & Summary & Bottom-up 4 Platform

D+ € 4 0s 5s 10s 15s 20s 25s
§ 11.261
8 ¥ package_0 5.630"
% 5.761 |
E Unit0 ‘
'E Unitl 5.761
& d
11.261
v package_1 5.630
Unitl 5.761
Unit0 2.761

v DRAM Bandwidth, GB/...
v e Total, GB/sec
¥ ~ Read, GB/sec
v ~ Write, GB/sec

v UPI| Bandwidth, GB/sec
¥ s Total, GB/sec
« ~ Incoming Data, GB..
« ~ Incoming Non-Dat...
« «~ Outgoing Data, GB...
« ~ QOutgoing Non-Data. .

+ CPU Time
s CPU Time

Look for areas of
high QPI/UPI
bandwidth

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Causes of poor NUMA utilization

= Allocation vs. first touch memory location

» False sharing of cache lines

— Use padding when necessary

= Arbitrary array accesses

* Poor thread affinity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Object Identification

|ldentifying line of source code may not be sufficient to identify the problem

Microarchitecture Analysis !

General Exploration

v Analyze dynamic memory objects

Minimal dynamic memory object size to track, in bytes

1024
TSX Hotspots Sort by LLC Miss

TSX Exploration

Count

View allocated objects

eI Y

Module

Grouping: Memory Object / Function / Call Stack

Memory Object / Function / Call Stack CPU Time Memory Bound * Stores ¥ . LLC Miss Count | * .
» memTest.out'main (2 MB) 1236,276,88... | 20,334,310,011 83,705,022

Average Latency (cycles) Function

» memTest.cpp:10 (4 KB) 0 108,903,267 0 0
» memTest.cpp:20 (4 KB) 0 66,601,998 0 0
p memTestcpp:11 (4 KB) 0 64,801,944 0 0
» memTestepp:2l (4KB) .0 58501755 0 0 |
» memTest.cpp:25 (4 KB) 0 53,101,593 0 0
» memTest.cpp:18 (4 KB) 0 53,101,593 0 0
FILTER 0.0% x | Any Process v Thread Any Thread v Module Any Module v Show inline functions + B8 Functions only »

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Object Identification

& Memory Access Memory Usage viewpoint (change) ©
1 [Collection Log (D Analysis Target A Analysis Type & Summary & Bottom-up ‘- Platform [memTest... @ memTes
Source Assembly Q. | Assembly grouping: Address Assembly view alSO

available

5. & Source

& int main{) {

omp_set_num_threads(16) ;

Double-click to see

10 int * aB= new int[57];] . .
int[S2] ; a_llocatlon site in source

12 int * a2= new int[SZ]; view

13 int * a3= new int[SZ];

14 int * ad= new int[3Z];

15 int * ab= new int[57];

16 int * ab= new int[SZ];

17 int * a7= new int[S57];

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Go further with Storage Device Analysis
(HDD, SATA or NVMe SSD)

Disk Input and Output Histogram

Operation Type: |write w

Are You I/O Bound or CPU Bound?

= Explore imbalance between I/O operations] Sliders set
thresholds for I/O

(async & sync) and compute Queue Depth

= Storage accesses mapped to SlE Toek
the source code R i _ with 1/O

= See when CPU is waiting for 1/O
= Measure bus bandwidth to storage

Thread W
[+ B Running
[+] 1 Context Switches
/] duk CPU Tirne
170 APl
1 Slow Tasks

/0 Queue Depth

Latency analysis
ik 1/0 Queue Depth

= Tune storage accesses with
latency histogram : v

= Distribution of I/O over multiple devices o o

filecopy (TID: 126153) | |
amplxe-runss (TID: 12...

Thread (TID: 0)

Thread

H fdev/=da

Dapth

major fault

Fage /0 Queus

Faults

ol | = (5] CPU Activity

CPU State
H /dev/sda Il “I"I“I I i l I A l“ i Mk 170 Wait

Huk Active

I/0 Data 1O
Transfer Qperat.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bonus Topic — Instruction Fetch Issues

* Processor fetches instructions from the application binary in order

« Jumps and branches can cause the fetch to take longer

% of cycles spent on ICache Misses (newer processors):

 |CACHE_16B.IFDATA_STALL / CPU_CLK_UNHALTED.THREAD

Instruction Starvation
« UOPS_ISSUED.CORE_STALL CYCLES-RESOURCE_STALLS.ANY/CPU_CLK_UNHALTED.THREAD

Interpreted code (Python, Java etc...) and branchy code may have these
Issues

Look for Profile Guided Optimizations from the compiler

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bonus Topic — Branch Misprediction

Mispredicted branches cause instructions to execute, but never retire

* Result in wasted work
BR_MISP_RETIRED.ALL_BRANCHES_PS (newer processors)
* Cycle accounting on lab machines
15 * BR_MISP_EXEC.ANY / CPU_CLK_UNHALTED.THREAD

* Use compiler options or profile-guided optimization (PGO) to improve code
generation

* Apply hand-tuning by doing things like hoisting the most popular targets in
branch statements

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bonus Topic — Floating Point Arithmetic

Why: Floating point arithmetic can be expensive if done inefficiently.
What Now: If FP x87 or FP Scalar metrics are significant, look to increase vectorization.

» Intel Compiler /QxCORE-AVX2 (Windows*) or -xCORE-AVX2 (Linux*) switches

= GCC: -march=core-avx?2

» Optimize to AVX - See the Intel® 64 and |IA-32 Architectures Optimization Reference Manual, chapter

11
General Retirerment
FP Arithmetic
Other
FP =37 FP Scalar FP Wectar
0.000 0,140 0.000 (.860
0.000 0,192 0.000 0,808
0.000 0.000 0.000 1.000

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/Assets/PDF/manual/248966.pdf

Summary

Memory continues to be the most common bottleneck for performance

It's not enough to just profile and characterize

Performance engineers need to pinpoint the problem

Tools like VTune Amplifier are essential

L1 Memory
Cache | (DRAM)

CPU

Speed: Fastest Slowest

Capacity (size): Smallest
Cost: Highest
Power: Highest

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

S
O
ftwa
re

