
Jackson Marusarz – Intel Corporation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Get the Data You Need
 Hotspot (Statistical call tree), Call counts (Statistical)

 Thread Profiling – Concurrency and Lock & Waits Analysis

 Cache miss, Bandwidth analysis…1

 GPU Offload and OpenCL™ Kernel Tracing

Find Answers Fast
 View Results on the Source / Assembly

 OpenMP Scalability Analysis, Graphical Frame Analysis

 Filter Out Extraneous Data – Organize Data with Viewpoints

 Visualize Thread & Task Activity on the Timeline

Easy to Use
 No Special Compiles – C, C++, C#, Fortran, Java, ASM

 Visual Studio* Integration or Stand Alone

 Graphical Interface & Command Line

 Local & Remote Data Collection

 Analyze Windows* & Linux* data on OS X*2

Intel® VTune™ Amplifier
Quick Introduction

1 Events vary by processor. 2 No data collection on OS X*

Quickly Find Tuning Opportunities

See Results On The Source Code

Visualize & Filter Data

Tune OpenMP Scalability

2

Full lecture April 19th

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Hardware registers on any modern Intel processor

• 100s of events in current CPU generations

• Performance counters can be programmed to count Events through specific MSRs

• Events can be divided into the following categories, depending on how they are collected and interpreted:

– Fixed events

CPU_CLK_UNHALTED.THREAD – Cycles running at the rate of the core reflecting frequency changes (Turbo etc…)

INST_RETIRED.ANY – Instructions retired

CPU_CLK_UNHALTED.REF – Cycles at a non-changing reference rate

– Programmable events

– Precise events

Performance Monitoring Unit (PMU)

3

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Core performance monitoring of CPU of modern CPUs

 Each core has 8 counters; 4 per thread with SMT

 Measure 7 performance events at a time (4 Programmable, 3 Fixed)

Measure “Uncore” events in addition to “Core” events

 Distributed design with separate blocks of counters in different architectural units (MC, LLC, GT, etc.)

 Not thread-specific. Thread-specific counting can only be done in the core

4

Performance Monitoring Unit
Performance counters

The event names change for each processor generation, but
the performance analysis concepts stay the same!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Processor events can be monitored using sampling and counting technologies

Sampling Mode:

• Sample - a HW interruption happens when a N of Events counted

• N is programmable

• In a sample we automatically collect:

o Thread and process ID's

o Instruction Pointer (IP)

• Instruction pointer is then used to derive the function name and source line number from the debug information
created at compile time

• This creates a statistical representation of where the events are occurring

Counting Mode:

• Running counters for events without any interrupts or program information collected

• This is probably what you have done with PAPI

5

Event Based Performance Analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Sampling Mode

• Identifies WHERE events occur

• Used for profiling and tuning

• Statistical representation

• Higher overhead – still low

• Can generate large amounts of data

Counting Mode

• Reports how many events occur, not location.

• Mostly for profiling

• True event count

• Very low overhead

• Small data files

Sampling Mode vs. Counting Mode

Both are available in VTune Amplifier – we will focus on Sampling

6

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

EBS for Memory Performance - Motivation

7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Examples:

MEM_INST_RETIRED.LOADS

MEM_LOAD_RETIRED.L1D_HIT

MEM_LOAD_RETIRED.L2_HIT

MEM_LOAD_RETIRED.LLC_UNSHARED_HIT

MEM_LOAD_RETIRED.LLC_MISS

Memory Subsystem PMU Events

What if I told you that you have 1,200,000 L2 Cache Hits?

8

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Create useful, quantitative data from raw event counts.

Examples:

• CPI = Total Cycles/Instructions

• L3 miss penalty = (L3 miss count * 200)/Total Cycles

• L2 Hit Ratio = L2 Hits/L2 Accesses

Metrics

With expert knowledge –
thresholds and advice can be assigned to each metric

9

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cycle Accounting

• Original technique based on estimated penalties for various events

• Example: L3 miss penalty = (L3 miss count * 200)/Total Cycles

• Main Issue – Superscalar, Out-of-Order architectures can hide memory
latency issues by executing other instructions

Stall Accounting

• Based on new PMU events determining when the CPU is actually stalled

• Example: CYCLE_ACTIVITY.STALLS_L3_MISS

Two Ways to Measure Memory Impacts

Metrics used will be based on available events

10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory Analysis in VTune Amplifier

Wall Clock and CPU
Utilization Time

Memory Stalls
Breakdown

Average Memory
Access Latency

Built-in benchmark to
determine system specs

11

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory Analysis in VTune Amplifier

Wall Clock and CPU
Utilization Time

Memory Stalls
Breakdown

Average Memory
Access Latency

Built-in benchmark to
determine system specs

NOTE – Recent generations of hardware (Sandy Bridge+) have many more
events available. Course lab machines are older.

This lecture will focus on recent generations, but your lab results will differ.
I’ll call out the differences when I can.

12

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Intel® VTune™ Amplifier has hierarchical expanding metrics.

• You can expand your way down, following the hotspot, to identify the root cause
of the inefficiency.

• Sub-metrics highlight pink on their own merits, just like top level metrics.

• Hovering over a
metric produces
a helpful, detailed
tooltip (not shown).

13

General Exploration Analysis

• There are tooltips on
Summary tabs too:
hover over any icon.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Back End bound is the most common bottleneck type for most applications.

• It can be split into Core Bound and Memory Bound

• Core Bound includes issues like not using execution units effectively and
performing too many divides.

• Memory Bound involves cache misses, inefficient memory accesses, etc.

• Store Bound is when load-store dependencies are slowing things down.

• The other sub-categories involve caching issues and the like. Memory Access Analysis
may provide additional information for resolving this performance bottleneck.

14

Categorizing Inefficiencies in the Memory Subsystem

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VTune Amplifier Workflow Example- Summary View

15

High percentage of
L3 Bound cycles

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Over-Time DRAM
Bandwidth

Over-Time QPI/UPI
Bandwidth

Grid Breakdown by
Function
(configurable)

VTune Amplifier Workflow Example- Bottom-Up View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Focus on areas of
interest with “Zoom
In and Filter”

Fine-grained details
in Zoomed-in view

VTune Amplifier Workflow Example- Bottom-Up View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Memory Bound function.
44% of pipeline slots are
stalled.

DRAM and UPI Bandwidth
are low.

Double-click a function
for source view.

VTune Amplifier Workflow ExampleVTune Amplifier Workflow Example- Bottom-Up View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Metrics at a source line
granularity

Inefficient array access
pattern in nested loop

VTune Amplifier Workflow Example- Source View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Loop interchange

VTune Amplifier Workflow Example- Source View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Compare the Results

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Understanding the Memory Hierarchy

LLC

LLC

LLC

LLC

Core

Core

Core

Core

System Agent

Integrated Graphics

Shared

SN
B

32KB
L1D

32KB
L1I

256KB
L2

Core

Core

Core

LLC

LLC

GPU

DRAM

Memory & I/O

Data can be in any level of any core’s cache, or in
the shared L3, DRAM, or on disk.

Accessing data from another core adds another
layer of complexity

Cache coherence protocols – beyond the scope
of today’s lecture. But we will cover some issues
caused by this.

22

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: Cache misses raise the CPI of an application. Focus on long-latency
data accesses coming from 2nd and 3rd level misses

Cache Misses

What Now: If either metric is highlighted for your hotspot, consider reducing misses:
 Change your algorithm to reduce data storage
 Block data accesses to fit into cache
 Check for sharing issues (See Contested Accesses)
 Align data for vectorization (and tell your compiler)
 Use streaming stores
 Use software prefetch instructions

“<memory level> Bound” = Percentage of cycles
when the CPU is stalled, waiting for data to come
back from <memory level>

24

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: If it is not possible to forward the result of a store through the pipeline,
dependent loads may be blocked

What Now: If the metric is highlighted for your hotspot, investigate:

View source and look at the LD_BLOCKS.STORE_FORWARD event. Usually this
event tags to next instruction after the attempted load that was blocked.
Locate the load, then try to find the store that cannot forward, which is usually
within the prior 10-15 instructions. The most common case is that the store is
to a smaller memory space than the load. Fix the store by storing to the same
size or larger space as the ensuing load.

Blocked Loads Due to No Store Forwarding

27

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: Aliasing conflicts caused by associative caches result in having to re-issue
loads.

What Now: If this metric is highlighted for your hotspot, investigate at the
source code level.

Fix these issues by changing the alignment of the load. Try aligning data to 32
bytes, changing offsets between input and output buffers (if possible), or using
16-Byte memory accesses on memory that is not 32-Byte aligned.

4K Aliasing

28

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: First-level DTLB Load misses (Hits in the STLB) incur a latency penalty.
Second-level misses require a page walk that can affect your application’s
performance.

What Now: If this metric is highlighted for your hotspot, investigate at the
source code level.

To fix these issues, target data locality to TLB size, use the Extended Page
Tables (EPT) on virtualized systems, try large pages (database/server apps
only), increase data locality by using better memory allocation or Profile-Guided
Optimization

DTLB Misses

29

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• This is still a single
address space

• Accessing other socket is
expensive

• Important to be aware of
memory accesses for
performance

Multi-Socket Systems

30

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: With a Non-Uniform Memory Access (NUMA) architecture, loading from
memory can have varying latency. Remote memory loads cost more.

What Now: If this metric is highlighted for your hotspot, improve NUMA affinity:

• If thread migration is a problem, try affinitizing or pinning threads to cores

• Ensure that memory is first touched (accessed, not allocated) by the thread that will be using it

• Use affinity environment variable for OpenMP

• Use NUMA-aware options for supporting applications if available (for example, softnuma for SQL
Server)

• Use a NUMA-efficient thread scheduler (such as Intel® Threading Building Blocks)

Remote Memory Accesses

31

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Poor NUMA Utilization

32

Focus on “Remote”
metrics

If Memory Bound is high
and local caches are not
the problem

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Poor NUMA Utilization

33

Look for areas of
high QPI/UPI
bandwidth

QPI/UPI Bandwidth is communication between the sockets.
This may indicate some sort of NUMA issue.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 Allocation vs. first touch memory location

 False sharing of cache lines

– Use padding when necessary

 Arbitrary array accesses

 Poor thread affinity

Causes of poor NUMA utilization

Where is your memory allocated and where are your threads running?

34

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Memory Object Identification

View allocated objects

Sort by LLC Miss
Count

Identifying line of source code may not be sufficient to identify the problem

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Memory Object Identification

Double-click to see
allocation site in source
view

Assembly view also
available

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Are You I/O Bound or CPU Bound?

 Explore imbalance between I/O operations
(async & sync) and compute

 Storage accesses mapped to
the source code

 See when CPU is waiting for I/O

 Measure bus bandwidth to storage

Latency analysis

 Tune storage accesses with
latency histogram

 Distribution of I/O over multiple devices

37

Go further with Storage Device Analysis
(HDD, SATA or NVMe SSD)

Sliders set
thresholds for I/O
Queue Depth

Slow task
with I/O
Wait

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Processor fetches instructions from the application binary in order

• Jumps and branches can cause the fetch to take longer

• % of cycles spent on ICache Misses (newer processors):

• ICACHE_16B.IFDATA_STALL / CPU_CLK_UNHALTED.THREAD

• Instruction Starvation

• UOPS_ISSUED.CORE_STALL_CYCLES-RESOURCE_STALLS.ANY/CPU_CLK_UNHALTED.THREAD

• Interpreted code (Python, Java etc…) and branchy code may have these
issues

• Look for Profile Guided Optimizations from the compiler

Bonus Topic – Instruction Fetch Issues

38

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Mispredicted branches cause instructions to execute, but never retire

• Result in wasted work

• BR_MISP_RETIRED.ALL_BRANCHES_PS (newer processors)

• Cycle accounting on lab machines

• 15 * BR_MISP_EXEC.ANY / CPU_CLK_UNHALTED.THREAD

• Use compiler options or profile-guided optimization (PGO) to improve code
generation

• Apply hand-tuning by doing things like hoisting the most popular targets in
branch statements

Bonus Topic – Branch Misprediction

39

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: Floating point arithmetic can be expensive if done inefficiently.

What Now: If FP x87 or FP Scalar metrics are significant, look to increase vectorization.

 Intel Compiler /QxCORE-AVX2 (Windows*) or –xCORE-AVX2 (Linux*) switches

 GCC: -march=core-avx2

 Optimize to AVX – See the Intel® 64 and IA-32 Architectures Optimization Reference Manual, chapter
11

Bonus Topic – Floating Point Arithmetic

40

http://www.intel.com/Assets/PDF/manual/248966.pdf

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Memory continues to be the most common bottleneck for performance

• It’s not enough to just profile and characterize

• Performance engineers need to pinpoint the problem

• Tools like VTune Amplifier are essential

Summary

41

