
Shared-memory Programming

3/31/2020 1

Overview

• Shared-memory
– Architecture: chip has some number of cores (e.g., Intel

Skylake has up to 18 cores depending on the model) with
common memory

• Shared-memory programs
– Application program is decomposed into a number of threads,

which run on these cores
– Each thread has its own stack, registers, PC
– Data structures are in common memory
– Threads communicate by reading and writing memory

locations

• Programming systems: pThreads, OpenMP, Intel TBB
– In this lecture, we will study pThreads

• Correctness and performance problems

23/31/2020

Shared-memory Architectures
for

Programmers

3/31/2020 3

Moore’s Law

43/31/2020

Intel Skylake chip

Chip

Block diagram of each core53/31/2020

Shared-memory m/c:
cartoon picture

• Several multi-core chips connected by bus or
network

• Single-address space for all cores but non-
uniform memory access times

3/31/2020 6

Typical latency numbers

L1 cache reference/hit 1.5 ns 4 cycles
Floating-point add/mult/FMA operation 1.5 ns 4 cycles

L2 cache reference/hit 5 ns 12 ~ 17 cycles

L3 cache hit 16-40 ns 40-300 cycles

256MB main memory reference 75-120 ns TinyMemBench on
"Broadwell" E5-2690v4

Send 4KB message between hosts 1-10 µs MPICH on 10-100Gbps

Read 1MB sequentially from disk 5,000,000 ns 5 ms
~200MB/sec hard disk (seek time would be additional latency)
Random Disk Access (seek+rotation) 10,000,000 ns 10 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

From:

Locality is important. 73/31/2020

https://gist.github.com/understeer/4d8ea07c18752989f6989deeb769b778

Architecture/software boundary

1. Cache coherence
– interaction between caching and program semantics
– we saw this in last lecture

2. Atomic instructions
– interaction between threads
– synchronization: coordination between threads to

ensure parallel execution produces correct answers
3. Memory consistency model

– interaction between instruction reordering within
threads and program semantics

3/31/2020 8

9

(1) Cache coherence problem

core
Cache

core
Cache

core
Cache

Shared Bus

Shared
Memory

X: 24

• Core 1 loads X: obtains 24 from memory and caches it
• Core 2 loads X: obtains 24 from memory and caches it
• Core 1 stores 32 to X: its locally cached copy is updated
• Core 3 loads X: what value should it get?

– memory and core 2 think it is 24
– core 1 thinks it is 32

• Illusion that there is a single variable X is broken

1 2 3X: 24 X: 24X: 32

3/31/2020

One solution

• Exclusive caching: ensure that at most one
cache can have a given line at any time

• Implementation: snoopy caches
– cache on each core ‘snoops’ (i.e. watches) for

activity concerned with lines it has cached
– load/store cache hit: perform operation just as in

sequential machines
– load/store cache miss:

• perform bus cycle to obtain line
• if some other cache has line, line is transferred to this

cache and marked invalid in other cache
• otherwise line is obtained from memory

103/31/2020

Better solution:
write-invalidate protocol

• Exclusive caching is too draconian
– even read-only data cannot be in multiple caches
– data written in one round that is read-only in next

round cannot be in multiple caches
• Write-invalidate protocol

– line can reside in several caches if all cores are reading
from it

– if a core wants to write to that line, line is invalidated
from all other caches

• One implementation: MESI protocol
– presented in previous lecture

113/31/2020

False-sharing

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

X Y

X Y X Y

0 1

• Core 0 reads and writes X
• Core 1 reads and writes Y
• No true sharing, but if X and Y are on the same line, there will

be a lot of invalidation misses
3/31/2020 12

Summary

• Solution to cache-coherence:
– snoopy caches and write-invalidate protocol

• True-sharing
– a variable or array element is read and written by two or

more cores repeatedly
• False-sharing

– two or more cores read and write distinct variables or array
elements that happen to be in the same cache line

• Sharing results in “ping-ponging” of cache lines between
cores due to invalidations
– reduces performance
– to improve performance, try to reduce sharing of cache lines

between cores

133/31/2020

(2) Atomic instructions

• Example: sum all the elements of an array
– core 0 adds up first half, core 1 adds up second half
– each core adds its contribution to variable sum

• Problem: unless cores are synchronized, you get a
data-race

• result of read/modify/write may not be what you expect
• final value can depend on how code is compiled and on

scheduling of instructions from threads

• General problem:
– read/modify/write must be performed atomically on a

collection of variables or data structure elements

3/31/2020 14

Data-race illustration

• Final value can be 4 or 5 depending on scheduling of
instructions

Cache Cache

Shared Bus

x = x+1 3xx = x+1

Shared-memory
load r1,[x]
inc r1
store [x],r1

P0 P1

load r1,[x]
inc r1
store [x],r1

load r1,[x]
inc r1
store [x],r1

x will have value 5

load r1,[x]
inc r1

store [x],r1
load r1,[x]

inc r1
store [x],r1

x will have value 4

time

3/31/2020 15

Solution
• Architecture provides atomic instructions

– small collection of read/modify/write instructions operating
on ints, doubles, etc.

– execute as though all other threads were suspended during
execution of atomic instruction

– examples:
• swap(reg,addr)

– swap value in memory at address addr with value in register reg
• atomic add(reg,addr)

• Easy to modify MESI protocol to implement atomic
instructions
– like write but line is pinned in cache until instruction

completes
– no other core can steal line until instruction completes

3/31/2020 16

Performance concern: contention
• Contention

– two or more threads execute atomic instruction on given
memory location simultaneously

• Correctness
– hardware ensures atomic instructions are executed in

some serial order
• Performance

– threads simultaneously executing atomic instruction on
given memory location will get serialized

• Rule of thumb
– Uncontended atomic instruction is roughly as expensive as

a write
– Once you get contention, performance can degrade rapidly

with amount of contention
3/31/2020 17

Limitations of atomic instructions

• Atomic instructions give you atomicity for
read/modify/write on data types like ints, floats,
doubles (fit in cache line)

• Do not solve atomicity problem for updates to
large amounts of data like arrays or structs

• Hardware solution: transactional memory
– jury is still out about whether this is useful

• Software solution: locks
– pThreads library: mutex-locks and spin-locks
– implementation of locks uses atomic instructions

3/31/2020 18

(3) Memory Consistency

• interaction between instruction reordering
within threads and program semantics

• complicated issue: see later

3/31/2020 19

pThreads library:
low-level shared-memory

programming

3/31/2020 20

Threads
• Software analog of cores

– Each thread has its own PC, SP, registers, and stack
– All threads share heap and globals

• Runtime system handles mapping of threads to cores
– if there are more threads than cores, runtime system will

time-slice threads on cores
– HPC applications: usually #threads = #cores

• portability: number of threads is usually a runtime parameter
• Threads have two kinds of names

– pThread name: opaque handle used by pThreads library (like
social security number for people)

– short name: usually an integer 0,1,2…(like first names for
people) and used in application program to tell threads what
to do or where to write their results

213/31/2020

Thread Basics: Creation and Termination

• Program begins execution with main thread
• Creating threads:

int pthread_create (
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void * (*thread_function)(void *),
void *arg);

• Type (void *) is C notation for “raw address” (can point
to anything)

• Thread is created and starts to execute thread_function
with parameter arg, which specifies short name and
other data to be passed to thread

• Thread handle: opaque handle for thread
3/31/2020 22

Terminating threads
• Thread terminated when:

o it returns from its starting routine, or
o it makes a call to pthread_exit()

• Main thread
– exits with pthread_exit(): other threads will continue to

execute
– otherwise other threads automatically terminated

• Cleanup:
– pthread_exit() routine does not close files
– any files opened inside the thread will remain open after

the thread is terminated.
3/31/2020 23

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5
int threadArg[NUM_THREADS];//parameters for threads
pthread_t handles[NUM_THREADS]; //store opaque handles for threads

void *PrintHello(void *threadIdPtr) {
int shortId = * (int *)threadIdPtr;
printf("\n%d: Hello World!\n", shortId);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
for(int t=0;t<NUM_THREADS;t++){

printf("Creating thread %d\n", t);
threadArg[t] = t;
pthread_create(&handles[t], NULL, PrintHello, &threadArg[t]);

}
pthread_exit(NULL);

}

Example

3/31/2020 24

Output
Creating thread 0
Creating thread 1

0: Hello World!

1: Hello World!
Creating thread 2
Creating thread 3

2: Hello World!

3: Hello World!
Creating thread 4

4: Hello World!

3/31/2020 25

Synchronization

• Join:
– block thread until some other thread

terminates

• Lock:
– used to ensure mutual exclusion: only

one thread at a time can
• access some data
• execute some piece of code (critical section)

– two kinds: mutexes and spin-locks

• Barrier:
– all threads must reach barrier before any

thread can move ahead

main

barrier

barrier

lock

unlock

critical section

3/31/2020 26

Join
pthread_join (threadid,status)

•The pthread_join() function blocks the calling thread
until the specified thread terminates.

•The programmer can obtain the target thread's termination return
status if it was specified in the target thread's call to pthread_exit().

3/31/2020 27

Critical section in code

• Portion of code that should be
executed by only thread at a
time

• Implementation: bracket critical
section with lock/unlock

• Can be used to implement
atomic updates to anything

• Coarse-grain locking
– not the right solution for

parallelism but it is a start

lock

unlock

critical section

3/31/2020 28

Mutex-locks

• Lock is implemented by
– variable with two states: available or not_available
– queue that can hold ids of threads waiting for the lock

• Lock acquire:
– If lock is available, it is changed to not_available, and control returns to

application program
– If lock is not_available, thread is queued up at the lock, and control

returns to application program only when lock is acquired by that
thread

– Key invariant: once a thread tries to acquire lock, control returns to
thread only after lock has been awarded to that thread

• Lock release:
– next thread in queue is informed it has acquired lock

• Fairness: thread that wants lock gets it even if other threads
want to acquire lock unbounded number of times

3/31/2020 29

Pthreads API
• Type

pthread_mutex_t

• Lock initialization
int pthread_mutex_init(

pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

• Acquiring lock
int pthread_mutex_lock(

pthread_mutex_t *mutex_lock);

• Releasing lock
int pthread_mutex_unlock (

pthread_mutex_t *mutex_lock);

3/31/2020 30

Spin-locks/trylocks

• Another kind of lock: spin-lock, trylock
• Lock acquire is different from mutex: if lock is

available, acquire it; otherwise return a “busy” error
code (EBUSY)
int pthread_mutex_trylock(

pthread_mutex_t *mutex_lock);
• Faster than pthread_mutex_lock on typical

systems when there is no contention since it does not
have to deal with queues associated with locks

3/31/2020 31

Implementing locks using swap

• Recall: swap(addr,reg)
– swap contents of address and register atomically

• Spin-lock using swap (test-and-set spin-lock)
– variable L has 0/1 for unlocked/locked
– Trylock code:

rx ← 1;
swap(L,rx);
return rx; //if returned value = 0 you have lock else not

– unlock
L ← 0;

• Problem:
– swap must invalidate line in all caches even when lock acquire is not

successful
– if there are a lot of threads waiting for lock, busy-waiting will create a lot of

bus traffic;
3/31/2020 32

Busy-waiting and bus traffic

• Busy-waiting creates a lot of bus traffic
• Sequence of actions

– all threads try to do swap
– P2 wins and gets lock
– P0 and P1 keep doing swap operations, invalidating line in other caches
– P2 releases lock by writing 0 to lock
– ….

• Solution: test-and-test-and-set
– keep doing ordinary reads until lock is 0
– then go into acq loop and see if you can get lock
– if you fail, jump back to read loop

0l

Shared-memoryP0 P1…..
mov edx,1

acq: swap [l], edx
test edx, edx
jnz acq

…..

P2

l 1

3/31/2020 33

Better spin-locks:
test-and-test-and-set

• Inner spin loop does not create bus traffic since all
spinning threads spin on their local caches

• When P2 unlocks, line is invalidated from P0 and P1

0l

Shared-memoryP0 P1
…..

mov edx,1
spin: mov eax, [l]

test eax, eax
jnz spin
swap [l], edx
test edx, edx
jnz spin

…..

P2

l 1

3/31/2020 34

Barriers

• Pthreads barrier type
– pthread_barrier_t varBarrier;
– basically a struct

• int total: initialized to # of threads to wait for
• int count: tracks how many threads have reached barrier
• mutex

• Initialize barrier
– int pthread_barrier_init (&varBarrier,NULL,total);

• Waiting at barrier
– int pthread_barrier_wait (&varBarrier);

3/31/2020 35

Implementation of barriers

• Implemented using an atomic counter
– Initialized to number of threads that need to arrive

at barrier
– Thread that arrives at barrier

• decrements counter atomically
• checks if it is the last one to arrive at barrier (counter =

0) and if so, informs other waiting threads that they can
move past barrier

– Small subtlety when barrier is within a loop

3/31/2020 36

Shared-memory programming

3/31/2020 37

Issues in shared-memory programming

• Performance problems
– Load-balancing

• Each thread must be assigned roughly same amount of work
• Straggler problem: faster threads have to wait for slower threads at

barrier
– True and false sharing

• Serialization bottleneck due to contention
• Correctness problems

– Deadlocks and livelocks
• May happen when threads need two or more locks to enter critical

sections
– Race conditions

• Incorrectly synchronized read/modify/write
• May result in nondeterministic output: output can depend on thread

execution order

3/31/2020 38

Application: numerical integration

• Estimate value of π using numerical integration

• Divide interval [0,1/2) into steps of equal size h and compute

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

𝑓𝑓 𝑥𝑥 =
6

1 − 𝑥𝑥2

�
0

1/2
𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝜋𝜋

3/31/2020 39

Abstraction

• Parallelism:
– map: function evaluations f(i) can be done in parallel
– reduce: if addition is associative, f(i) values can be

summed in parallel in O(log(n)) steps
• we will not worry about exploiting this parallelism

• We will write several pThreads programs to
illustrate the concepts we have studied

403/31/2020

Solution (I)

• Distribution of work
– round-robin with p threads
– thread t computes values for i

= t,t+p,t+2p..
– load-balancing, assuming all

evaluations of f take roughly
same amount of time

• Single global variable
globalSum

• Whenever thread computes
a value, it adds it to global
variable

• Preventing data races
– use a mutex-lock

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

globalSum
0 1 2 …..

3/31/2020 41

Code
#include <pthread.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#define MAX_THREADS 512

pthread_t handles[MAX_THREADS];
int threadArg[MAX_THREADS];
double globalSum = 0.0;
pthread_mutex_t globalSum_lock;

void *compute_pi (void *);

int numPoints;
int numThreads;
double step;

double f(double x) {
return (6.0/sqrt(1-x*x));

} 3/31/2020 42

int main(int argc, char *argv[]) {

pthread_attr_t attr;
pthread_attr_init (&attr);

numPoints = 100000000;
step = 0.5/numPoints;
numThreads = atoi(argv[1]); //number of threads is an input

//create threads and initialize sum array
for (int i=0; i< numThreads; i++) {

threadArg[i] = i;
pthread_create(& handles[i],&attr,compute_pi,& threadArg[i]);

}

//join with threads and add their contributions from sum array
for (int i=0; i< numThreads; i++) {

pthread_join(handles[i], NULL);
}
printf("%f\n", globalSum);
return 0;

}

3/31/2020 43

void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

for (int i = myId; i < numPoints; i+=numThreads) {
double x = step * ((double) i); // next x
double value = step*f(x);
pthread_mutex_lock(&globalSum_lock);

globalSum = globalSum + value; // Add to globalSum
pthread_mutex_unlock(&globalSum_lock);

}

3/31/2020 44

Performance

• Computation of each value added to
globalSum takes little time
– lock/add/unlock will be serial bottleneck

• We can replace critical section by atomic add
– but atomic adds must be done serially, so serial

bottleneck is still there

• In both solutions, you will also have a lot of
cache line ping-ponging

• Problem: true-sharing causes serialization
3/31/2020 45

Solution (II)

• To avoid synchronization,
create a global array sum

• Thread t
– adds each value into sum[t]

where sum is a global array
• Main thread joins with each

worker thread and reads its
contribution from sum array

• Main thread prints answer
after joining with all worker
threads

………
sum

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

0 1

3/31/2020 46

void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

for (int i = myId; i < numPoints; i+=numThreads) {
double x = step * ((double) i); // next x
sum[myId] = sum[myId] + step*f(x); // Add to local sum

}
} 0 1 2

sum

Global

Code for main thread must add up values in sum array.
………
for (int i=0; i< numThreads; i++) {

pthread_join(handles[i], NULL);
pi += sum[i];

}
……..

3/31/2020 47

Problem: false-sharing

0 1 2

sum

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

3/31/2020 48

Solution (III)

• Thread t
– computes values for i = t,

t+P,t+2P,…
– adds each value into a local

variable of thread
– when it is done, it writes the

final value into sum[t]
• Main thread joins with each

worker thread and reads its
contribution from sum array

• Main thread prints answer
after joining with all worker
threads

………
sum

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

0 1

3/31/2020 49

void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

double mySum =0.0;
for (int i = myId; i < numPoints; i+=numThreads) {

double x = step * ((double) i); // next x
mySum = mySum + step*f(x); // Add to local sum

}
sum[myId] = mySum; //write to global sum array

}

0 1 2

sum

Global

3/31/2020 50

Numerical Integration Versions

• We saw three versions of program to compute
pi
– Version 1: summation in global variable
– Version 2: summation in sum array
– Version 3: local summation + update sum array

• Which version will perform best?
– Version 1: true-sharing leads to many coherence

misses + serialization in global variable updates
– Version 2: false-sharing leads to many coherence

misses
3/31/2020 51

Performance

3/31/2020 52

Performance

3/31/2020 53

Correctness problems:
deadlock and livelock

3/31/2020 57

Problems with locks

• Locks are most dangerous when a thread needs to acquire
multiple locks before releasing locks

• Two main problems:
– deadlock
– livelock

• Deadlock:
– Threads A and B need locks L1 and l2
– Thread A acquires L1 and wants L2
– Thread B acquires L2 and wants L1
– In general, there will be a cycle of threads in which each thread

holds some locks and is waiting for locks held by other threads in
the cycle

• Livelock:
– may arise in some solutions to deadlock such as use of spinlocks

3/31/2020 58

Deadlock

• Code snippet shows
example of possible
deadlock

• Subtle point:
– deadlock may happen in

some executions and not in
others!

• “Deadly embrace”:
Dijkstra

• How do we ensure
deadlocks cannot occur?

Thread 1:
…
lock(L1);
lock(L2);
….

Thread 2:
…
lock(L2);
lock(L1);
…

Thread 1 Lock L1

Thread 2Lock L2

holds

holds

needed by needed by

3/31/2020 59

Deadlock: four conditions

• Mutual exclusion:
– thread has exclusive control over resource it acquires

• Hold-and-wait:
– thread acquire locks incrementally

• Circular wait:
– there is a cycle of threads such that each thread holds one or

more locks needed by the next thread in the cycle
• No pre-emption:

– no external agency to force a thread to release locks if thread is
waiting for another lock

You prevent deadlocks by ensuring that one or more of these
conditions cannot arise in your program.

3/31/2020 60

Prevent hold-and-wait
• Locks cannot be acquired

incrementally
• One implementation:

– single global lock to get permission to
acquire locks you need

• Problem:
– not scalable
– conflicts with modularity and

encapsulation
• You might encounter a hidden

version of this problem if thread has
to enter the kernel to perform some
function like storage allocation
– kernel lock is like the global-lock in our

example

…
lock(global-lock);
lock(l1);
lock(l2);
unlock(global-lock);
…

3/31/2020 61

Prevent circular wait

• Assign a logical total order to locks
– (eg) name them L1,L2,L3,…

• Ensure that threads will never try to acquire a lower numbered lock
while holding a higher numbered lock
– (eg) if thread owns L3, it can try to acquire L4, L5, L6,… but it cannot try

to acquire locks L1 or L2 (unless it already owns them and locks are re-
entrant)

• Useful software engineering principle when you have control over
the entire code base and you know what locks are required where

• However
– easy to make mistakes
– tension with encapsulation:

• requires detailed knowledge of entire code base

3/31/2020 62

Self-preemption

• Coding discipline:
– Use only try-locks
– If a thread cannot acquire a lock while it

is holding other locks, it releases all
locks it holds and tries again

– Variation: OS or some other agency
steps in and preempts a thread

• Problems:
– Encapsulation
– Livelock: threads can keep on acquiring

and releasing locks without making
progress because no thread ever gets all
the locks it needs

– One solution to livelock: (Ethernet)
backoff: thread does not retry until
some randomly chosen amount of time
has passed

loop:
//start of lock acquires

….
if (trylock(Lj) == EBUSY) {
//unlock all locks you hold

goto loop;
}

….
endloop:

//compute with resources
//release locks

3/31/2020 63

Summary

• Architecture
– cache coherence
– atomic instructions
– memory consistency model

• The POSIX Thread API
– creating and destroying threads
– synchronization

• join
• mutual exclusion: locks and spin-locks
• intrinsics for atomic instructions
• barrier

• Performance:
– minimize false and true sharing
– keep critical sections small

3/31/2020 64

ADDITIONAL MATERIAL

3/31/2020 65

Spinlock example in x86

3/31/2020 66

section .text
main: ; Using main since we are using gcc to link

; Call pthread_create(pthread_t *thread, const pthread_attr_t *attr,
; void *(*start_routine) (void *), void *arg);

push dword 0 ; Arg Four: argument pointer
push thread1 ; Arg Three: Address of routine
push dword 0 ; Arg Two: Attributes
push tID1 ; Arg One: pointer to the thread ID
call pthread_create

push dword 0 ; Arg Four: argument pointer
push thread2 ; Arg Three: Address of routine
push dword 0 ; Arg Two: Attributes
push tID2 ; Arg One: pointer to the thread ID
call pthread_create

; Call int pthread_join(pthread_t thread, void **retval) ;
;

push dword 0 ; Arg Two: retval
push dword [tID1] ; Arg One: Thread ID to wait on
call pthread_join
push dword 0 ; Arg Two: retval
push dword [tID2] ; Arg One: Thread ID to wait on
call pthread_join

push dword [result]
push dword fmtStr2
call printf
add esp, 8 ; Pop stack 2 times 4 bytes

call exit
3/31/2020 67

thread1:
pause
push dword [tID1]
push dword 1
push dword fmtStr1
call printf
add esp, 12 ; Pop stack 3 times 4 bytes

call spinLock

mov [result], dword 1
call spinUnlock

push dword 0 ; Arg one: retval
call pthread_exit

thread2:
pause
push dword [tID2]
push dword 2
push dword fmtStr1
call printf
add esp, 12 ; Pop stack 3 times 4 bytes

call spinLock

mov [result], dword 2
call spinUnlock

push dword 0 ; Arg one: retval
call pthread_exit

3/31/2020 68

spinLock:
push ebp
mov ebp, esp
mov edx, 1 ; Value to set sLock to

spin: mov eax, [sLock] ; Check sLock
test eax, eax ; If it was zero, maybe we have the lock
jnz spin ; If not try again
;
; Attempt atomic compare and exchange:
; if (sLock == eax):
; sLock <- edx
; zero flag <- 1
; else:
; eax <- edx
; zero flag <- 0
;
; If sLock is still zero then it will have the same value as eax and
; sLock will be set to edx which is one and therefore we aquire the
; lock. If the lock was acquire between the first test and the
; cmpxchg then eax will not be zero and we will spin again.
;
lock cmpxchg [sLock], edx ;eax is implicit operand
test eax, eax
jnz spin
pop ebp
ret

spinUnlock:
push ebp
mov ebp, esp
mov eax, 0
xchg eax, [sLock]
pop ebp
ret3/31/2020 69

exit:
;
; Call exit(3) syscall
;void exit(int status)
;

mov ebx, 0 ; Arg one: the status
mov eax, 1 ; Syscall number:
int 0x80

3/31/2020 70

Summary

• Architecture
– cache coherence
– atomic instructions
– memory consistency model

• The POSIX Thread API
– creating and destroying threads
– synchronization

• join
• mutual exclusion: locks and spin-locks
• intrinsics for atomic instructions
• barrier

• Performance:
– minimize false and true sharing
– keep critical sections small

3/31/2020 71

	�Shared-memory Programming
	Overview
	�Shared-memory Architectures�for �Programmers
	Moore’s Law
	Intel Skylake chip
	Shared-memory m/c: �cartoon picture
	Typical latency numbers
	Architecture/software boundary
	(1) Cache coherence problem
	One solution
	Better solution: �write-invalidate protocol
	False-sharing
	Summary
	(2) Atomic instructions
	Data-race illustration
	Solution
	Performance concern: contention
	Limitations of atomic instructions
	(3) Memory Consistency
	pThreads library:�low-level shared-memory programming
	Threads
	Thread Basics: Creation and Termination
	Terminating threads
	Example
	Output
	Synchronization
	Join
	Critical section in code
	Mutex-locks
	Pthreads API
	Spin-locks/trylocks
	Implementing locks using swap
	Busy-waiting and bus traffic
	Better spin-locks:�test-and-test-and-set
	Barriers
	Implementation of barriers
	Shared-memory programming
	Issues in shared-memory programming
	Application: numerical integration
	Abstraction
	Solution (I)
	Code
	Slide Number 43
	Slide Number 44
	Performance
	Solution (II)
	Slide Number 47
	Problem: false-sharing
	Solution (III)
	Slide Number 50
	Numerical Integration Versions
	Performance
	Performance
	Correctness problems: �deadlock and livelock
	Problems with locks
	Deadlock
	Deadlock: four conditions
	Prevent hold-and-wait
	Prevent circular wait
	Self-preemption
	Summary
	Additional material
	Spinlock example in x86
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Summary

