
Mike Voss, Principal Engineer, Intel

Special thanks to Alex Shinsel (Consulting Engineer, Intel)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

SIMD => Single Instruction Multiple Data
VLP / Vectorization

double *a,*b,*c; …

for (i = 0; i < size; i++)

c[i] = a[i] + b[i];

a

b

a+b

+

• Scalar
– one instruction produces one result

+
a[i]

b[i]

a[i]+b[i]

• SIMD processing

– one instruction can produce multiple results (SIMD)

– e.g. vaddpd / vaddps (p => packed)

+

c[i+7] c[i+6] c[i+5] c[i+4]

b[i+7] b[i+6] b[i+5] b[i+4]

a[i+7] a[i+6] a[i+5] a[i+4]

AVX-512

c[i+3] c[i+2]

b[i+3] b[i+2]

a[i+3] a[i+2]

AVX/AVX2

c[i+1] c[i]

b[i+1] b[i]

a[i+1] a[i]

SSE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Outline from Previous Lectures on Vectorization

• What is vectorization and why is it important

• The different ways we can vectorize our code

• The two main challenges in vectorization

• Determining that vectorization is legal (the results will be the same)

• Dependence analysis

• Obstacles to vectorization and how to deal with them

• Optimizing performance

• Memory issues (alignment, layout)

• Telling the compiler what you know (about your code & about your platform)

• Using compiler intrinsics

• Using OpenMP* simd pragmas

• A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

In previous lectures on vectorization:

Based on a presentation by Alex Shinsel

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Survey is the bread and butter of Vectorization
Advisor! All else builds on it!

• Trip Counts adds onto Survey and
enables the Roofline.

• Dependencies determines
whether it’s safe to force
a scalar loop to vectorize.

• Memory Access Patterns
diagnoses vectorization
inefficiency caused by poor
memory striding.

7

Vectorization Advisor Workflow
Build in Release

Survey

Trip Counts

Examine Results

Select loops with potential
vector dependencies

Select loops with
poor vector efficiency

Memory Access PatternsDependencies

Force vectorization
if appropriate

Improve
vectorization

Back to Start

Examine Roofline

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

What Am I Looking At?

Secondary
Pane tabs

Primary
Pane

Secondary Pane

Workflow Search
Remove
Filters

Smart Mode
(Does not work for
Threading Advisor)

Loop Display
Toggle Buttons

Filter by
origin and

type
Report tabs

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

For vectorization, you generally
only care about loops. Set the type
dropdown to “Loops”.

Tip:

9

Survey
Vectorization Advisor

Vectorizing a loop is usually best done on innermost
loops. Since it effectively divides duration by vector
length, you want to target loops with high self time.

Expand a vectorized
loop to see it split into

body, peel, and
remainder (if
applicable).

Advisor advises you on potential vector
issues. This is often your cue to run MAP
or Dependencies. Click the icon to see an

explanation in the bottom pane.

The Intel Compiler embeds extra
information that Advisor can report
in addition to its sampled data, such

as why loops failed to vectorize.

Function/Loop Icons

Scalar Function
Vector Function
Scalar Loop
Vector Loop

Efficiency is important!

The black arrow is 1x. Gray
means you got less than that.

Gold means you got more.
You want to get this value as

high as possible!

Efficiency=100%
Speedup

Vec. Length

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s look at an example…

10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Trip Counts extends the Survey results. It must be run separately because it
has higher overhead that would interfere with timing measurements.

• Vectorization is most effective on inner loops with high iteration counts.

• It may be beneficial to swap small inner loops and larger outer loops.

• For maximum performance, iteration counts that are a multiple of the vector length
are ideal.

• Trip Counts is useful in diagnosing data alignment and padding problems in
loops that traverse multidimensional arrays.

• In such cases, the trip counts on
peel and remainder loops may
change as rows/columns push
each other out of alignment.

11

Trip Counts

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Trip Counts and FLOPS are the same collection type, but can be toggled
independently using the checkboxes in the workflow or command line flags.

• FLOPS collects information about Floating Point Operations,
or FLOPs. This is used with Survey data to calculate
FLOPS, Floating Point Operations Per Second.

• It also collects some memory data, so it can calculate Arithmetic Intensity.

• Arithmetic Intensity is a measurement of
FLOPs/Byte accessed. This is a trait of the
algorithm of a function/loop itself.

12

… and FLOPS
Part of the Trip Counts Collection

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s look at our example again…

13

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

What is a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

• Where are the bottlenecks?

• How much performance is
being left on the table?

• Which bottlenecks can be
addressed, and which should
be addressed?

• What’s the most likely cause?

• What are the next steps?
Roofline first proposed by University of California at Berkeley:

Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009
Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Roofline Metrics

Roofline is based on Arithmetic Intensity (AI) and FLOPS.

• Arithmetic Intensity: FLOP / Byte Accessed

• This is a characteristic of your algorithm

• FLOPS: Floating-Point Operations / Second

• Is a measure of an implementation (it achieves a certain FLOPS)

• And there is a maximum that a platform can provide

SpMV FFTs N-body

Low AI High AI

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Plotting a Roofline Chart

A Roofline Chart uses AI as its X
axis and FLOPS as its Y axis.

The maximum FLOPS as a product of
ops/byte (AI) and maximum bytes

supplied per second is a diagonal line.

A loop or
function can
be plotted as

a point on
the graph.

The CPU’s
maximum
FLOPS can

be plotted as
a horizontal

line.

FLOPS

Arithmetic Intensity
FLOP/Byte

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Classic vs. Cache-Aware Roofline

Intel® Advisor uses the Cache-Aware Roofline model, which has a different
definition of Arithmetic Intensity than the original (“Classic”) model.

• Traffic measured from one level of memory (usually DRAM)

• AI may change with data set size

• AI changes as a result of memory optimizations

Classical Roofline

• Traffic measured from all levels of memory

• AI is tied to the algorithm and will not change with data set size

• Optimization does not change AI*, only the performance

Cache-Aware Roofline

*Compiler optimizations may modify the algorithm, which may change the AI.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ultimately
Compute-Bound

Ultimately
Memory-Bound

18

Ultimate Performance Limits

FLOPS

Arithmetic Intensity
FLOP/Byte

Performance cannot exceed the
machine’s capabilities, so each loop is
ultimately limited by either compute

or memory capacity.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vector with FMAs

Vector

Scalar

19

Sub-Roofs and Current Limits

FLOPS

Arithmetic Intensity
FLOP/Byte

Additional
roofs can be
plotted for

specific
computation

types or
cache levels.

These sub-
roofs can be
used to help

diagnose
bottlenecks.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

The Intel® Advisor Roofline Interface

• Roofs are based on benchmarks
run before the application.

• Roofs can be hidden,
highlighted, or adjusted.

• Intel® Advisor has size- and
color-coding for dots.

• Color code by duration or
vectorization status

• Categories, cutoffs, and visual
style can be modified.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Identifying Good Optimization Candidates

Focus optimization
effort where it makes
the most difference.

• Large, red loops
have the most
impact.

• Loops far from
the upper roofs
have more room
to improve.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Identifying Potential Bottlenecks

Final roofs do apply;
sub-roofs may apply.

• Roofs above indicate
potential bottlenecks

• Closer roofs are the
most likely suspects

• Roofs below may
contribute but are
generally not primary
bottlenecks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Back to the example…

23

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Overcoming the Scalar Add Peak

• Survey and Code Analytics
tabs indicate vectorization
status with colored icons.

• “Why No Vectorization” tab
and column in Survey explain
what prevented vectorization.

• Recommendations tab may
help you vectorize the loop.

• Dependencies determines if
it’s safe to force vectorization.

= Scalar = Vectorized

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Generally, you don’t need to run Dependencies analysis unless Advisor tells
you to. It produces recommendations to do so if it detects:

• Loops that remained unvectorized
because the compiler was playing it
safe with autovectorization.

• Use the survey checkboxes to
select which loops to analyze.

• If no dependencies are found, it’s safe to force vectorization.

• Otherwise, use the reported variable read/write
information to see if you can rework the code
to eliminate the dependency.

25

Dependencies Analysis
Vectorization Advisor

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Back to our example…

26

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• If you have low vector efficiency, or see that a loop did not vectorize because
it was deemed “possible but inefficient”, you may want to run a MAP
analysis.

• Advisor will also recommend a MAP analysis if
it detects a possible inefficient access pattern.

• Memory access patterns affect vectorization efficiency because they affect
how data is loaded into and stored from the vector registers.

• Select the loops you want to run the MAP on using the checkboxes. It may
be helpful to reduce the problem size, as MAP only needs to detect patterns,
and has high overhead.

• Note that if changing the problem size requires recompiling, you will need to re-
collect the survey before running MAP.

27

Memory Access Patterns Analysis
Collecting a MAP

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• MAP is color coded by stride type. From
best to worst:

is unit/uniform (stepping by 1 or 0)

is constant (stepping a set
distance)

is variable (a changing step distance)

• Click a loop in the top pane to see a
detailed report below.

• The strides that contribute to the loop are
broken down in this table.

28

Memory Access Patterns Analysis
Reading a MAP

https://software.intel.com/en-us/videos/memory-access-101
https://software.intel.com/en-us/videos/memory-access-101

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

29

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

30

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The original 1D table in the peel example

4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

0 1 2 3

28 29 30 31 32 33 43

256 bytes
(8x4 byte floats)

Peel

Remainder

Body

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The original 1D table when aligned

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

32 33 34

256 bytes
(8x4 byte floats)

Remainder

Body

24 25 26 27 28 29 30 31

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The original 1D table when aligned, padded

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

32 33 34

256 bytes
(8x4 byte floats)

Body

24 25 26 27 28 29 30 31

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

The 2D case
256 bytes

(8x4 byte floats)

Row 1

Row 2

