
1

1

Introduction to
x86 ISA and Compilers

High-level Structure of Compiler
High-level source code

Compiler

Assembly language program

Machine language program

Assembler

Java, C++, FORTRAN,….

Sequence of 1’s and 0’s

Symbolic m/c language

There may be different assembly languages for the same ISA.
Example: AT&T (used by gcc) and Intel (used by icc) formats for x86 ISA.

x-86 instruction set
• x-86 ISA is very complex

– CISC instruction set
– Evolved over time:

• 16 bit  32 bit  64 bit
• MMX vector instructions

– Assembly format: AT&T format and Intel format
• We will focus on x86-32 bit ISA since it is

easier to understand
• Once you figure this out, x86-64 bit ISA is

not hard

CS 412/413 Spring 2008 Introduction to Compilers 3

Useful website
• https://godbolt.org/

CS 412/413 Spring 2008 Introduction to Compilers 4

1 2

3 4

2

5

X86-32 Quick Overview
• Registers:

– General purpose 32bit: eax, ebx, ecx, edx, esi, edi
• Also 16-bit: ax, bx, etc., and 8-bit: al, ah, bl, bh, etc.

– Special registers:
• esp: stack pointer
• ebp: frame base pointer

Note on register names

• AX/EAX/RAX: accumulator
• BX/EBX/RBX: base
• CX/ECX/RCX: counter
• DX/EDX/RDX: data/general
• SI/ESI/RSI: "source index" for string operations.
• DI/EDI/RDI: "destination index" for string operations.
• SP/ESP/RSP: stack pointer for top address of the stack.
• BP/EBP/RBP: stack base pointer for holding the address of the

current stack frame.
• IP/EIP/RIP: instruction pointer. Holds the current instruction

address.

Registers are general-purpose: can be used for anything
programmer wants

Historically, the registers were intended to be used as shown
below, hence their odd names:

CS 412/413 Spring 2008 Introduction to Compilers 7

Memory Layout

Code

Locals,
parameters

Static area

Stack

Object fields,
arrays

Globals,
Static data

Heap

low

high

Byte
addressable

8

x86 Quick Overview
• Instructions:

– Arithmetic: add, sub, inc, mod, idiv, imul, etc.
– Logic: and, or, not, xor
– Comparison: cmp, test
– Control flow: jmp, jcc, jecz
– Function calls: call, ret
– Data movement: mov (many variants)
– Stack manipulations: push, pop
– Other: lea

5 6

7 8

3

Instruction set

• x86 instruction set: two-address instruction set
– Op a, b

• a,b specify the two operands
• result of operation is stored in b

– warning: AT&T and Intel formats are different: see last slide
– we will assume AT&T format in slides

• a,b: registers or memory address
• at most one operand can be in memory
• memory addresses can be specified as offset from ebp (or other

registers)
– pushl 8(%ebp)
– more generally, address can be specified as disp(base,offset,scale)

– Examples:
• addl $3, %eax //add constant 3 to register eax
• movl %eax, %ebx //move contents of register eax to register ebx
• movl 8(%ebp), %eax //move contents at memory address (8 + contents(ebp))

//to register eax
• movl %eax, 8(%ebx,%ecx,4) //effective address is 8 + contents(%ebx) + 4*contents(%ecx)

Little-endian

Storing value 0x0A0B0C0D in memory

x86 is “little-endian”

x86 instruction set can address bytes and supports data of different sizes,
so you have to be aware of the representation of data.

How are 32-bit quantities stored in memory?

Condition code register

• Condition code register
– Bits in this register are set implicitly when instructions are

executed
– (eg) ZF bit is the zero flag and is set if the result of the

operation is zero
– (eg) SF bit is the sign flag and is set if the result of the

operation is negative
– ….

• Branch instructions can test one or more flags and
branch conditionally on the outcome
– (eg) je/jz is “jump if equal”: jumps if ZF is set
– (eg) jne/jnz is “jump if not equal”
– Many other conditional branch operations

gcc/icc stack frame

- arguments are pushed right to left
f(arg1,arg2,…,argN)

- registers are saved by caller and callee
gcc convention
– caller save: eax,ecx,edx
– callee save: ebp,ebx,esi,edi

- ebp (FBR) is one of callee save registers
- eax is used to return a value from function
- on x64, registers are used to pass arguments

Caller save registers

ESP

EBP

9 10

11 12

4

CS 412/413 Spring 2008 Introduction to Compilers 13

Accessing Stack Variables

• To access stack variables:
use offsets from ebp

• Example:
8(%ebp) = parameter 1
12(%ebp) = parameter 2
-4(%ebp) =local 1

Param n

Param 1
Return address

Previous fp

…

Local 1

Local n
…

ebp

…

esp

ebp+8

ebp-4

ebp+…

CS 412/413 Spring 2008 Introduction to Compilers 14

Accessing Stack Variables
• Translate accesses to variables:

– For parameters, compute offset from %ebp using:
• Parameter number
• Sizes of other parameters

– For local variables, decide on data layout and assign offsets
from frame pointer to each local

– Store offsets in the symbol table

• Example:
– a: local, offset-4
– p: parameter, offset+16, q: parameter, offset+8
– Assignment a = p + q becomes equivalent to:

-4(%ebp) = 16(%ebp) + 8(%ebp)
– How to write this in assembly?

CS 412/413 Spring 2008 Introduction to Compilers 15

Arithmetic
• How to translate: p+q ?

– Assume p and q are locals or parameters
– Determine offsets for p and q
– Perform the arithmetic operation

• Problem: the ADD instruction in x86 cannot take both operands
from memory; notation for possible operands:
– mem32: register or memory 32 bit (similar for r/m8, r/m16)
– reg32: register 32 bit (similar for reg8, reg16)
– imm32: immediate 32 bit (similar for imm8, imm16)
– At most one operand can be mem !

• Translation requires using an extra register
– Place p into a register (e.g. %ecx): mov 16(%ebp), %ecx
– Perform addition of q and %ecx: add 8(%ebp), %ecx

CS 412/413 Spring 2008 Introduction to Compilers 16

Data Movement
• Translate a = p+q:

– Load memory location (p) into register (%ecx) using a move instr.
– Perform the addition
– Store result from register into memory location (a):

mov 16(%ebp), %ecx (load)
add 8(%ebp), %ecx (arithmetic)
mov %ecx, -8(%ebp) (store)

• Move instructions cannot have two memory operands
Therefore, copy instructions must be translated using an extra register:

a = p  mov 16(%ebp), %ecx
mov %ecx, -8(%ebp)

• However, loading constants doesn’t require extra registers:
a = 12  mov $12, -8(%ebp)

13 14

15 16

5

Exercise: write assembly for example

//save register esi
//x  esi
//esi + 3  esi
//eax now has return value
//restore esi

// save ebp
//ebp points to current frame

//pop local variables
//restore ebp

caller-save registers

ESP

EBP

CS 412/413 Spring 2008 Introduction to Compilers 18

Accessing Global Variables
• Global (static) variables and constants not stack allocated
• Have fixed addresses throughout the execution of the program

– Compile-time known addresses (relative to the base address where
program is loaded)

– Hence, can directly refer to these addresses using symbolic names in
the generated assembly code

• Example: string constants

str: .string “Hello world!“

– The string will be allocated in the static area of the program
– Here, “str” is a label representing the address of the string
– Can use $str as a constant in other instructions:

push $str

• Array accesses in language with dynamic array size
– access a[i] requires:

• Compute address of element: a + i * size
• Access memory at that address

– Can use indexed memory accesses to compute addresses
– Example: assume size of array elements is 4 bytes, and local variables

a, i (offsets –4, -8)

a[i] = 1 mov –4(%ebp), %ebx (load a)
mov –8(%ebp), %ecx (load i)
mov $1, (%ebx,%ecx,4) (store into the heap)

CS 412/413 Spring 2008 Introduction to Compilers 19

Accessing Array Data

a[1]a[0] ………………..

ebp
a
i

CS 412/413 Spring 2008 Introduction to Compilers 20

Control-Flow
• Label instructions

– Simply translated as labels in the assembly code
– E.g., label2: mov $2, %ebx

• Unconditional jumps:
– Use jump instruction, with a label argument
– E.g., jmp label2

• Conditional jumps:
– Translate conditional jumps using test/cmp instructions:
– E.g., tjump b L  cmp %ecx, $0

jnz L
where %ecx hold the value of b, and we assume booleans are
represented as 0=false, 1=true

17 18

19 20

6

CS 412/413 Spring 2008 Introduction to Compilers 21

Run-time Checks
• Run-time checks:

– Check if array/object references are non-null
– Check if array index is within bounds

• Example: array bounds checks:
– if v holds the address of an array, insert array bounds checking

code for v before each load (…=v[i]) or store (v[i] = …)
– Assume array length is stored just before array elements:

cmp $0, -12(%ebp) (compare i to 0)
jl ArrayBoundsError (test lower bound)
mov –8(%ebp), %ecx (load v into %ecx)
mov –4(%ecx), %ecx (load array length into %ecx)
cmp –12(%ebp), %ecx (compare i to array length)
jle ArrayBoundsError (test upper bound)
. . .

CS 412/413 Spring 2008 Introduction to Compilers 22

X86 Assembly Syntax
• Two different notations for assembly syntax:

– AT&T syntax and Intel syntax
– In the examples: AT&T (gcc) syntax

• Summary of differences:

Order of operands op a, b : b is destination op a, b : a is destination

Memory addressing disp(base,offset,scale) [base + offset*scale + disp]

Size of memory
operands

instruction suffixes (b,w,l)
(e.g., movb, movw, movl)

operand prefixes
(byte ptr, word ptr, dword ptr)

Registers %eax, %ebx, etc. eax, ebx, etc.

Constants $4, $foo, etc 4, foo, etc

AT&T Intel

Tutorial
• This website has a simple example with

comments

https://eli.thegreenplace.net/2011/02/04/w
here-the-top-of-the-stack-is-on-x86/

Introduction to Compilers

21 22

23 24

7

Optimizing compiler structure Front-end structure

Syntax analysis is also known as parsing.

CS 412/413 Spring 2008 Introduction to Compilers 27

What Next?
• At this point we could generate assembly code

• Better:
– Optimize the program first
– Then generate code

• If optimization performed at the IR level, then
they apply to all target machines

CS 412/413 Spring 2008 Introduction to Compilers 28

Optimizations
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis
IR Generation

if (b == 0) a = b;

Correct program
In High IR (usually trees)

IR Lowering

Errors

Program
In Low IR (closer to assembly)

Optimize

Optimize

25 26

27 28

8

CS 412/413 Spring 2008 Introduction to Compilers 29

When to Apply Optimizations

High IR

Low IR

Assembly

Function inlining
Function cloning
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Loop unrolling
Register allocation
Cache optimization

CS 412/413 Spring 2008 Introduction to Compilers 30

What are Optimizations?
• Optimizations = code transformations that

improve the program

• Different kinds
– space optimizations: improve (reduce) memory use
– time optimizations: improve (reduce) execution time

• Code transformations must be safe!
– They must preserve the meaning of the program

CS 412/413 Spring 2008 Introduction to Compilers 31

Why Optimize?
• Programmers don’t always write optimal code –

can recognize ways to improve code (e.g.,
avoid recomputing same expression)

• High-level language may make some
optimizations inconvenient or impossible to
express

a[i][j] = a[i][j] + 1;

• High-level unoptimized code may be more
readable: cleaner, modular

int square(x) { return x*x; }

CS 412/413 Spring 2008 Introduction to Compilers 32

Where to Optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade off space

versus time
• Example: loop unrolling

– Increases code space, speeds up one loop
– Frequently executed code with long loops:

space/time tradeoff is generally a win
– Infrequently executed code: may want to optimize

code space at expense of time
• Want to optimize program hot spots

29 30

31 32

9

CS 412/413 Spring 2008 Introduction to Compilers 33

Many Possible Optimizations

• Many ways to optimize a program
• Some of the most common optimizations:

Function Inlining
Function Cloning
Constant folding
Constant propagation
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Branch prediction/optimization
Loop unrolling

CS 412/413 Spring 2008 Introduction to Compilers 34

Constant Propagation
• If value of variable is known to be a constant, replace

use of variable with constant
• Example:

n = 10
c = 2
for (i=0; i<n; i++) { s = s + i*c; }

• Replace n, c:
for (i=0; i<10; i++) { s = s + i*2; }

• Each variable must be replaced only when it has known
constant value:
– Forward from a constant assignment
– Until next assignment of the variable

CS 412/413 Spring 2008 Introduction to Compilers 35

Constant Folding
• Evaluate an expression if operands are known

at compile time (i.e., they are constants)
• Example:

x = 1.1 * 2;  x = 2.2;

• Performed at every stage of compilation
– Constants created by translations or optimizations

int x = a[2]  t1 = 2*4
t2 = a + t1
x = *t2

CS 412/413 Spring 2008 Introduction to Compilers 36

Algebraic Simplification
• More general form of constant folding: take

advantage of usual simplification rules
a * 1  a a * 0  0
a / 1  a a + 0  a
b || false  b b && true  b

• Repeatedly apply the above rules
(y*1+0)/1  y*1+0  y*1  y

• Must be careful with floating point!

33 34

35 36

10

CS 412/413 Spring 2008 Introduction to Compilers 37

Copy Propagation
• After assignment x = y, replace uses of x with y
• Replace until x is assigned again

• What if there was an assignment y = z before?
– Transitively apply replacements

x = y;
if (x > 1) 

s = x * f(x - 1);

x = y;
if (y > 1)

s = y * f(y - 1);

CS 412/413 Spring 2008 Introduction to Compilers 38

Common Subexpression Elimination
• If program computes same expression multiple

time, can reuse the computed value

• Example:

• Common subexpressions also occur in low-level
code in address calculations for array accesses:

a[i] = b[i] + 1;

a = b+c;
c = b+c; 
d = b+c;

a = b+c;
c = a;
d = b+c;

CS 412/413 Spring 2008 Introduction to Compilers 39

Unreachable Code Elimination
• Eliminate code that is never executed
• Example:

#define debug false
s = 1;
if (debug)

print(“state = ”, s);

• Unreachable code may not be obvious in low IR
(or in high-level languages with unstructured
“goto” statements)

s = 1;

CS 412/413 Spring 2008 Introduction to Compilers 40

Unreachable Code Elimination
• Unreachable code in while/if statements when:

– Loop condition is always false (loop never executed)
– Condition of an if statement is always true or always

false (only one branch executed)

if (false) S  ;

if (true) S else S’  S
if (false) S else S’  S’

while (false) S  ;
while (2>3) S  ;

37 38

39 40

11

CS 412/413 Spring 2008 Introduction to Compilers 41

Dead Code Elimination
• If effect of a statement is never observed,

eliminate the statement

x = y+1;
y = 1;
x = 2*z;

• Variable is dead if value is never used after
definition

• Eliminate assignments to dead variables
• Other optimizations may create dead code

y = 1;
x = 2*z;



CS 412/413 Spring 2008 Introduction to Compilers 42

Loop Optimizations

• Program hot spots are usually loops
(exceptions: OS kernels, compilers)

• Most execution time in most programs is
spent in loops: 90/10 is typical

• Loop optimizations are important, effective,
and numerous

CS 412/413 Spring 2008 Introduction to Compilers 43

Loop-Invariant Code Motion
• If result of a statement or expression does not

change during loop, and it has no externally-
visible side-effect (!), can hoist its computation
out of the loop

• Often useful for array element addressing
computations – invariant code not visible at
source level

• Requires analysis to identify loop-invariant
expressions

CS 412/413 Spring 2008 Introduction to Compilers 44

Code Motion Example
• Identify invariant expression:

for(i=0; i<n; i++)
a[i] = a[i] + (x*x)/(y*y);

• Hoist the expression out of the loop:

c = (x*x)/(y*y);
for(i=0; i<n; i++)

a[i] = a[i] + c;

41 42

43 44

12

CS 412/413 Spring 2008 Introduction to Compilers 45

Another Example
• Can also hoist statements out of loops
• Assume x not updated in the loop body:

…
while (…) {

y = x*x;
…

}
…

• … Is it safe?

…
y = x*x;
while (…) {

…
}
…



CS 412/413 Spring 2008 Introduction to Compilers 46

Strength Reduction
• Replaces expensive operations (multiplies, divides) by

cheap ones (adds, subtracts)
• Strength reduction more effective in loops and useful

for address arithmetic
• Induction variable = loop variable whose value is

depends linearly on the iteration number
• Apply strength reduction to induction variables

s = 0;
for (i = 0; i < n; i++) {

v = 4*i;
s = s + v;

}

s = 0; v = -4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}



CS 412/413 Spring 2008 Introduction to Compilers 47

Strength Reduction
• Can apply strength reduction to

computation other than induction
variables:

x * 2  x + x
i * 2c  i << c
i / 2c  i >> c

CS 412/413 Spring 2008 Introduction to Compilers 48

Induction Variable Elimination
• If there are multiple induction variables in a loop, can

eliminate the ones that are used only in the test
condition

• Need to rewrite test using the other induction variables
• Usually applied after strength reduction

s = 0; v=-4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}

s = 0; v = -4;
for (; v < (4*n-4);) {

v = v+4;
s = s + v;

}



45 46

47 48

13

CS 412/413 Spring 2008 Introduction to Compilers 49

Loop Unrolling
• Execute loop body multiple times at each

iteration

• Example:
for (i = 0; i< n; i++) { S }

• Unroll loop four times:
for (i = 0; i < n-3; i+=4) { S; S; S; S; }
for (; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeoff: program size increases

CS 412/413 Spring 2008 Introduction to Compilers 50

Function Inlining
• Replace a function call with the body of the function:

int g(int x) { return f(x)-1; }
int f(int n) { int b=1; while (n--) { b = 2*b }; return b; }

int g(int x) { int r;
int n = x;
{ int b =1; while (n--) { b = 2*b }; r = b }
return r – 1; }

• Can inline methods, but more difficult
• … how about recursive procedures?

CS 412/413 Spring 2008 Introduction to Compilers 51

Function Cloning
• Create specialized versions of functions that are called

from different call sites with different arguments

void f(int x[], int n, int m) {
for(int i=0; i<n; i++) { x[i] = x[i] + i*m; }

}

• For a call f(a, 10, 1), create a specialized version of f:

void f1(int x[]) {
for(int i=0; i<10; i++) { x[i] = x[i] + i; }

}
• For another call f(b, p, 0), create another version f2(…)

CS 412/413 Spring 2008 Introduction to Compilers 52

When to Apply Optimizations

High IR

Low IR

Assembly

Function inlining
Function cloning
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Loop unrolling
Register allocation
Cache optimization

49 50

51 52

14

CS 412/413 Spring 2008 Introduction to Compilers 53

Summary
• Many useful optimizations that can transform

code to make it faster

• Whole is greater than sum of parts:
optimizations should be applied together,
sometimes more than once, at different levels

53

