Introduction to
x86 ISA and Compilers

High-level Structure of Compiler

High-level source code Java, C++, FORTRAN,....
‘ Assembly language program ‘ Symbolic m/c language

Assembler

‘ Machine language program \ Sequence of 1’s and 0's

There may be different assembly languages for the same ISA.
Example: AT&T (used by gcc) and Intel (used by icc) formats for x86 ISA.

X-86 instruction set

e x-86 ISA is very complex
— CISC instruction set
— Evolved over time:
e 16 bit > 32 bit > 64 bit
* MMX vector instructions
— Assembly format: AT&T format and Intel format
e We will focus on x86-32 bit ISA since it is
easier to understand
¢ Once you figure this out, x86-64 bit ISA is
not hard
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Useful website
e https://godbolt.org/
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X86-32 Quick Overview

¢ Registers:

— General purpose 32bit: eax, ebx, ecx, edx, esi, edi
» Also 16-bit: ax, bx, etc., and 8-bit: al, ah, bl, bh, etc.

— Special registers:

* esp: stack pointer
« ebp: frame base pointer

Note on register hames

Registers are general-purpose: can be used for anything
programmer wants

Historically, the registers were intended to be used as shown
below, hence their odd names:

e AX/EAX/RAX: accumulator
o BX/EBX/RBX: base
) L fots e CX/ECX/RCX: counter
s = | r o DX/EDX/RDX: data/general
g ‘ =X o |- B e SI/ESI/RSI: "source index" for string operations.
*g L o [ & « DI/EDI/RDI: "destination index" for string operations.
2 | eox ox| on o e SP/ESP/RSP: stack pointer for top address of the stack.
H ‘ est e BP/EBP/RBP: stack base pointer for holding the address of the
- current stack frame.
esp e IP/EIP/RIP: instruction pointer. Holds the current instruction
k) address.
(base pointer) o 5
Memory Layout x86 Quick Overview
low )
¢ Instructions:
Code — Arithmetic: add, sub, inc, mod, idiv, imul, etc.
— Logic: and, or, not, xor
— Comparison: cmp, test
Globals, ) — Control flow: jmp, jcc, jecz
Static data Jl Static area — Function calls: call, ret
X X Byte — Data movement: mov (many variants)
Object fields, Heap addressable — Stack manipulations: push, pop
arrays — Other: lea
Locals, .
parameters { Stack high
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Instruction set

e x86 instruction set: two-address instruction set

-Opa,b
¢ a,b specify the two operands
result of operation is stored in b

— warning: AT&T and Intel formats are different: see last slide
— we will assume AT&T format in slides

a,b: registers or memory address
at most one operand can be in memory
memory addresses can be specified as offset from ebp (or other
registers)
— pushl 8(%ebp)
— more generally, address can be specified as disp(base,offset,scale)

— Examples:
addl $3, %eax //add constant 3 to register eax
movl %eax, %ebx //move contents of register eax to register ebx

movl 8(%ebp), %eax //move contents at memory address (8 + contents(ebp))
//to register eax

movl %eax, 8(%ebx,%ecx,4) //effective address is 8 + contents(%ebx) + 4*contents(%ecx)

x86 instruction set can address bytes and supports data of different sizes,
so you have to be aware of the representation of data.

Register
0A0BOCOD Memory Memory | OAOBOCOD

Little-endian

How are 32-bit quantities stored in memory?

Storing value 0x0AOBOCOD in memory

Register

I‘b a Oh

o]
a+1:/0B|

a+l: bt -
u+3:ED7

> a+3:

Little-endian Big-endian

x86 is “little-endian”
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Condition code register gcc/icc stack frame
¢ Condition code register
— Bits in tI&is register are set implicitly when instructions are saved 51
execute g saved EDI T - arguments are pushed right to left
— (eg) ZF bit is the zero flag and is set if the result of the = e ESP 9 P 9
operation is zero ¢ B aaie f(argl,arg2,...,argN)
— (eg) SF bit is the sign flag and is set if the result of the - local variable 1 | [epb]4 - registers are saved by caller and callee
operation is negative “<aved EBP
- Z ot i j = gcc convention
« Branch instructions can test one or more flags and 2 [ eenams | e e ] e B e i
branch conditionally on the outcome : parameter2 | [epb]+12 R
- (eq) je/ijz is “jump if equal”: jumps if ZF is set L parameter3 | [epb]+16 - ebp (FBR) is one of callee save registers
- (eg) jne/jnz is “jump if not equal” Coller saveregiters - eax is used to return a value from function
— Many other conditional branch operations .
- on x64, registers are used to pass arguments|
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Accessing Stack Variables
e To access stack variables: ~ €bp+... Param n
use offsets from ebp ebp+8 — Param 1
E le: Return address
* bxample: ebp —|  Previous fp
8(%ebp) = parameter 1 ebp-4 —| Local 1
0, = e
12(%ebp) = parameter 2 Local n
-4(%ebp) =local 1
esp —
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Accessing Stack Variables

¢ Translate accesses to variables:
— For parameters, compute offset from %ebp using:
¢ Parameter number
o Sizes of other parameters

— For local variables, decide on data layout and assign offsets
from frame pointer to each local

— Store offsets in the symbol table

e Example:
— a: local, offset-4
— p: parameter, offset+16, q: parameter, offset+8
— Assignment a = p + g becomes equivalent to:
-4(%ebp) = 16(%ebp) + 8(%ebp)
— How to write this in assembly?
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Arithmetic Data Movement
e How to translate: p+q ? e Translate a = p+q:
— Assume p and q are locals or parameters — Load memory location (p) into register (%ecx) using a move instr.
— Determine offsets for p and q — Perform the addition
— Perform the arithmetic operation — Store result from register into memory location (a):
mov 16(%ebp), %ecx (load)
« Problem: the ADD instruction in x86 cannot take both operands add 8(%ebp), Yoecx (arithmetic)
from memory; notation for possible operands: mov %ecx, -8(%ebp) (store)
— mem32: register or memory 32 bit (similar for r/m8, r/m16)
— reg32: register 32 bit (similar for reg8, reg16) ¢ Move instructions cannot have two memory operands
- imm32: immediate 32 bit (similar for imm8, imm16) Therefore, copy instructions must be translated using an extra register:
— At most one operand can be mem ! a=p = mov 16(%ebp), %ecx
mov %ecx, -8(%ebp)
¢ Translation requires using an extra register
— Place p into a register (e.g. %ecx): mov 16(%ebp), %ecx ¢ However, loading constants doesn't require extra registers:
— Perform addition of q and %ecx: add 8(%ebp), %ecx a=12 = mov $12, -8(%ebp)
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Exercise: write assembly for example

int plusd (1at x) { int res = x
int doit (ist x) { revara pluss (x
(void) { return doit (8); }

+ 3; return res; }

Tabp 11 save ebp
Teap, Yebp  //ebp points to current frame
//save register esi (==
L Test Mxes , (=
Jlesi +3 > esi g S T Caller save
Jleax nowhas retumvalie | & |_localvarabe3 | Esp .
fIvestore esi g local variable 2 - =
. Yesp =~
o //':fn tf::‘h;a"aﬂﬁ local variable 1 | [epb]4 calies save
saved EBP. D ey e
S return address ‘ [ EBP ] =
z parameter 1| [epb]+8
Tatp H parameter2 | [epbl+12
§ fepb1+16

., Yosp Registers

Loty
sovl  Xesp, Yabp
2 pushl  §8
H call  _deit
% sovl  Xetp, Yesp
2 popl  Tety

Accessing Global Variables

Global (static) variables and constants not stack allocated
Have fixed addresses throughout the execution of the program
— Compile-time known addresses (relative to the base address where
program is loaded)
— Hence, can directly refer to these addresses using symbolic names in
the generated assembly code

Example: string constants
str: .string “Hello world!™

— The string will be allocated in the static area of the program
— Here, “str” is a label representing the address of the string
— Can use $str as a constant in other instructions:

push $str
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Accessing Array Data Control-Flow

e Array accesses in language with dynamic array size e Label instructions

— access a[i] requires: — Simply translated as labels in the assembly code

« Compute address of element: a + i * size - E.g., label2: mov $2, %ebx
o Access memory at that address
— Can use indexed memory accesses to compute addresses
- Example: assume size of array elements is 4 bytes, and local variables ¢ Unconditional jumps:
a, i (offsets -4, -8) — Use jump instruction, with a label argument
alil=1 mov —4(%ebp), Y%ebx (load a) - E.g., jmp label2
mov —8(%ebp), %ecx (load i)
mov $1, (%ebx,%ecx,4)  (store into the heap) e Conditional jumps:
- — Translate conditional jumps using test/cmp instructions:
i af0] ari] - - E.g, tumpbL = cmp %ecx, $0
jnz L
a —_—
ebp ---------- where %ecx hold the value of b, and we assume booleans are
represented as O=false, 1=true
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Run-time Checks

¢ Run-time checks:
— Check if array/object references are non-null
— Check if array index is within bounds

e Example: array bounds checks:

— if v holds the address of an array, insert array bounds checking
code for v before each load (...=V[i]) or store (v[i] = ...)
— Assume array length is stored just before array elements:

cmp $0, -12(%ebp) (compare i to 0)
jl ArrayBoundsError (test lower bound)
mov -8(%ebp), %ecx (load v into %ecx)
mov —4(%ecx), %ecx (load array length into %ecx)
cmp —12(%ebp), %ecx (compare i to array length)
jle ArrayBoundsError (test upper bound)
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X86 Assembly Syntax

Two different notations for assembly syntax:
— AT&T syntax and Intel syntax
— In the examples: AT&T (gcc) syntax

Summary of differences:

Order of operands

op a, b : b is destination

op a, b : ais destination

Memory addressing

disp(base,offset,scale)

[base + offset*scale + disp]

Size of memory

instruction suffixes (b,w,l)

operand prefixes

operands (e.g., movb, movw, movl) | (byte ptr, word ptr, dword ptr)
Registers Y%eax, %ebx, etc. eax, ebx, etc.
Constants $4, $foo, etc 4, foo, etc

CS 412/413  Spring 2008

AT&T

Introduction to Compilers

Intel
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Tutorial
e This website has a simple example with
comments Introduction to Compilers
https://eli.thegreenplace.net/2011/02/04/w
here-the-top-of-the-stack-is-on-x86/
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Optimizing compiler structure

Source code

1
12 (b==10) a=h Understand ]
source code Front end
{machine-independant)
Intermediate code l
—_—
C Optimize Optimizer
Intermediate code
i Back end

Aszsembly code

{machine-dependent)
o sox assembly code ?

Front-end structure

Source code
|character stream)

it (d==0)a=>1

s - Lexical
Lexical Analysis . e
errors

Token stream

< Syntax
Syntax Analysis| —— 7"
errors

Abstract syntax tree

3 R Semantic

Abstract syntax tree

Syntax analysis is also known as parsing.

25
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What Next?

¢ At this point we could generate assembly code

¢ Better:
— Optimize the program first
— Then generate code

e If optimization performed at the IR level, then
they apply to all target machines
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Source code

Optimizations

(character stream) 3

if (b==0)a=b;

Correct program
In High IR (usually trees)

Program

In Low IR (closer to assembly)
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Lexical Analysis

Syntax Analysis [— Errors
Semantic Analysis

IR Generation

o [optmie]
IR Lowering
¢ [optimiz]
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When to Apply Optimizations

Function inlining
‘ Function cloning
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Loop unrolling
Register allocation
Cache optimization

What are Optimizations?

¢ Optimizations = code transformations that
improve the program

o Different kinds
— space optimizations: improve (reduce) memory use
— time optimizations: improve (reduce) execution time

¢ Code transformations must be safe!
— They must preserve the meaning of the program
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Why Optimize? Where to Optimize?
 Programmers don't always write optimal code — e Usual goal: improve time performance
can recognize ways to improve code (e.g., ¢ Problem: many optimizations trade off space
avoid recomputing same expression) versus time
e High-level language may make some » Example: loop unrolling
optimizations inconvenient or impossible to — Increases code space, speeds up one loop
express — Frequently executed code with long loops:
al[illjl=alilljl+1; space/time tradeoff is generally a win
. L. — Infrequently executed code: may want to optimize
L4 ngh-|eve| unOptImlzed COde may be more code space at expense of time
readable._cleaner, modular ¢ Want to optimize program hot spots
int square(x) { return x*x; }
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Many Possible Optimizations

e Many ways to optimize a program
¢ Some of the most common optimizations:
Function Inlining
Function Cloning
Constant folding
Constant propagation
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Branch prediction/optimization
Loop unrolling
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Constant Propagation

« If value of variable is known to be a constant, replace
use of variable with constant

e Example:
n=10
c=2

for (i=0; i<n; i++) { s =s + i*c; }
e Replacen, c:
for (i=0; i<10; i++) {s=s+ i*2; }
¢ Each variable must be replaced only when it has known
constant value:
— Forward from a constant assignment
— Until next assignment of the variable
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Constant Folding

¢ Evaluate an expression if operands are known
at compile time (i.e., they are constants)

e Example:
x=11%2; = X =2.2;

¢ Performed at every stage of compilation
— Constants created by translations or optimizations
intx =al2] = t1=2%4

t2=a+tl
X = *t2
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Algebraic Simplification

* More general form of constant folding: take
advantage of usual simplification rules

a*l = a a*0 = 0
a/l = a a+0 = a
b || false = b b && true = b

¢ Repeatedly apply the above rules
(Y*1+0)/1 = y*1+0=y*1 =y

e Must be careful with floating point!
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Copy Propagation

¢ After assignment x =y, replace uses of x with y
¢ Replace until x is assigned again

X=Y; X=Yy;
if (x> 1) = if(y>1)
s=x*f(x-1); s=y*f(y-1);

e What if there was an assignment y = z before?
— Transitively apply replacements
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Common Subexpression Elimination

o If program computes same expression multiple
time, can reuse the computed value

e Example:
a = b+c; a = b+c;
c = b+c; = C=a;
d = b+c; d = b+c;

¢ Common subexpressions also occur in low-level
code in address calculations for array accesses:

a[i] = b[i] + 1;
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Unreachable Code Elimination

¢ Eliminate code that is never executed
e Example:
#define debug false
s=1; = s=1;
if (debug)
print(“state = ”, s);

¢ Unreachable code may not be obvious in low IR
(or in high-level languages with unstructured
“goto” statements)
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Unreachable Code Elimination

¢ Unreachable code in while/if statements when:
— Loop condition is always false (loop never executed)
— Condition of an if statement is always true or always

false (only one branch executed)
if (false) S

if (true) S else S’
if (false) S else S’

while (false) S
while (2>3) S

LUy Ll
0]
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Dead Code Elimination

If effect of a statement is never observed,
eliminate the statement

X =y+1;
e = V=L
X=2'z X = 2%z;
¢ Variable is dead if value is never used after
definition

Eliminate assignments to dead variables
Other optimizations may create dead code
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Loop Optimizations

¢ Program hot spots are usually loops
(exceptions: OS kernels, compilers)

e Most execution time in most programs is
spent in loops: 90/10 is typical

¢ Loop optimizations are important, effective,
and numerous
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Loop-Invariant Code Motion

o If result of a statement or expression does not
change during loop, and it has no externally-
visible side-effect (!), can hoist its computation
out of the loop

¢ Often useful for array element addressing
computations — invariant code not visible at
source level

e Requires analysis to identify loop-invariant
expressions
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Code Motion Example

¢ Identify invariant expression:

for(i=0; i<n; i++)
afi] = afi] + Oc*x)/(y*y);

¢ Hoist the expression out of the loop:

¢ = (xX")/(y*y);
for(i=0; i<n; i++)
alil = ali] + ¢
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Another Example

¢ Can also hoist statements out of loops
¢ Assume x not updated in the loop body:

;/'v.hile .0« y= X*X;

y=x% = while(.){
, .

o ... Is it safe?
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Strength Reduction

¢ Replaces expensive operations (multiplies, divides) by
cheap ones (adds, subtracts)

e Strength reduction more effective in loops and useful
for address arithmetic

¢ Induction variable = loop variable whose value is
depends linearly on the iteration number

¢ Apply strength reduction to induction variables

s=0;v=-4

s=0; : . )
for (i = 0; i < n; i++) { for (i =0; i <n;i++) {
v = 4%; - vV = Vv+4,
S=s+vV; ) s=s+V;
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Strength Reduction Induction Variable Elimination
e Can apply strength reduction to o If there are multiple induction variables in a loop, can
computation other than induction igmjlirl?cfﬁ the ones that are used only in the test
variables: ¢ Need to rewrite test using the other induction variables
X * 2 = X+ X o Usually applied after strength reduction
!*ZC = !<<C s =0; v=-4; s=0;v=-4
i/ 2¢ = i>>cC for (i = 0; i < n; i++) { for (; v < (4*n-4);) {
vV =Vv+4; — V = v+4;
s=s+v; Ss=s+v;
b by
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Loop Unrolling

Execute loop body multiple times at each
iteration

e Example:
for(i=0;i<n;i++){S?}

Unroll loop four times:
for(i=0;i<n-3;i+=4){S;S;S; S; }
for ( ;i<n;i+4)S;

Gets rid of 34 of conditional branches!
¢ Space-time tradeoff: program size increases
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Function Inlining
e Replace a function call with the body of the function:

int g(int x) { return f(x)-1; }
int f(int n) {int b=1; while (n--) { b = 2*b }; return b; }

intg(int x) {intr;
intn=x;
{intb =1; while (n--) {b=2*b};r=b}
returnr—1; }

¢ Can inline methods, but more difficult
e ... how about recursive procedures?
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Function Cloning When to Apply Optimizations
* Create specialized versions of functions that are called
from different call sites with different arguments Function inlining
Function cloning
void f(int x[], int n, int m) { Constant folding
S A . . . ) Constant propagation
= = *
for(int i=0; i<n; i++) { x[i] = x[i] + i*m; } Value numbering
3 Dead code elimination
Loop-invariant code motion
o For a call f(a, 10, 1), create a specialized version of f: Commaon sub-expression elimination
Strength reduction
void f1(int x Constant folding & propagation
oid ( . [ { . . . . Branch prediction/optimization
for(int i=0; i<10; i++) { x[i] = x[i] +i; } Loop unrolling
} Register allocation
. Cache optimization
¢ For another call f(b, p, 0), create another version f2(...) P
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Summary
e Many useful optimizations that can transform
code to make it faster

e Whole is greater than sum of parts:
optimizations should be applied together,
sometimes more than once, at different levels
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