
CS 377P: Programming for Performance 

Assignment 6: Parallel pagerank algorithm 

Due date: 10 PM, April 28nd, 2021 

Late submission policy: Submission can be at the most 2 days late. There will be a 10% penalty 

for each day after the due date (cumulative).  

 

Clarifications to the assignment will be posted at the bottom of the page. 

    Recall that in Assignment 4, you wrote a sequential program for push-style pagerank 

computation on graphs represented in DIMACS format on file and in Compressed Sparse Row 

(CSR) format in memory. We will provide you with a sequential program for this algorithm, which 

implements the following approach. 

i) Topology-driven algorithm: the algorithm executes in rounds, and in each round, it 

applies a push-style algorithm to all vertices. 

ii) Jacobi-style iteration: vertices have two labels: old and new. In each round, the old 

label is read and the new label is written. These labels will be stored in two arrays 

old and new. 

iii) Convergence: pagerank iterations are terminated when no node changes its 

pagerank value by more than 10-4 between successive iterations. 

iv) After convergence, the pagerank values of all vertices are scaled so that their sum 

is one. 

v) The scaled pagerank values are sorted in descending order. If there is a tie, vertices 

are sorted by their node IDs in ascending order. The vertex IDs of the vertices with 

the top 10 pagerank values are printed along with their pagerank values.  

     

      In this assignment, you will write parallel programs to implement the same algorithm. You 

may use classes from the C++ STL and boost libraries if you wish. In your implementation, you 

can use either pthreads or C++ threads.  

  

Coding 

 

0. Run the sequential program given to you. Your parallel code should produce the same 

output (round-off errors might affect the output slightly but the answers from your 

parallel program should be roughly the same).  

 

1. (60 points) Work assignment: One way to assign work to threads is to divide the vertices 

in the graph uniformly between threads. This will give good load balance for uniform-

degree graphs but not for power-law graphs, but it is a start. Each thread should process 

the outgoing edges of all vertices assigned to it.  

https://www.cs.utexas.edu/~pingali/CS377P/2020sp/assignments/hw6/pagerank.cpp


 

The main complexity in a parallel push-style program is ensuring that updates to vertex 

labels are done atomically. Implement these different forms of synchronization (different 

versions of the same algorithm): 

 

1. Mutex on each node:  Before relaxing any edge, acquire a lock on the destination 

node. Release it after relaxation. This is fine-grain locking. 

2. Spin-lock on each node: For each edge to be relaxed, try acquiring a lock on the 

destination node. If it succeeds, relax the edge and release the lock. Otherwise, try 

relaxing it again. 

3. Compare and swap: To relax an edge, perform an atomic update on the destination 

node using std::atomic::compare exchange weak() in C++11 standard atomics library 

(more information below).  

 

In the versions that use locks, you will need to implement a preprocessing step in which 

you allocate a lock for each vertex. Therefore, each vertex will have an old pagerank 

value, a new pagerank value, and a lock. Use an array of structures to represent all the 

vertex labels to get good locality.  

 

You should also parallelize the loop that checks convergence after each sweep since it is 

executed in each round. 

 

In your studies, you should time only the main computation loop. You can ignore any 

preprocessing step for timing.  

 

2. (40 points) Better work assignment: Assigning equal number of vertices to threads will 

result in poor load-balancing for power-law graphs. You can get better load-balancing for 

these graphs by assigning equal number of edges to threads. In this approach, you will 

need to find the source vertex for each edge. Do not precompute the source vertex for 

each edge because that will require a lot of storage. Each thread should perform binary 

search to determine the range of source vertices for the edges assigned to it, and then 

iterate over outgoing edges of each of these vertices during the computation (you may 

need to process a subset of the edges for the first and last vertices in the range). It is fine 

for threads to precompute and store the range of vertices for the edges assigned to them.  

 

Implement this approach, using only the compare-and-swap approach for 

synchronization. 

 

Input graphs 

     Input graphs: use rmat15, rmat23, and road-NY in DIMACS format. Note that rmat23 is 

pretty huge, more than 2GB.  

 

 

http://en.cppreference.com/w/cpp/atomic/atomic
http://en.cppreference.com/w/cpp/atomic/atomic
https://www.cs.utexas.edu/~rbchen/graphs/rmat15.dimacs
https://www.cs.utexas.edu/~rbchen/graphs/rmat23.dimacs
https://www.cs.utexas.edu/~rbchen/graphs/road-NY.dimacs


  

What to turn in 

1) Report the running time of the serial code for each input graph.  

2) Write a short description of your implementations to help us understand your programs. 

3) Report the running times and speedups for 1,2,4,8,16 threads for rmat15, rmat23 and 

road-NY (baselines for speedup are the times for your serial code) using the three ways 

of implementing atomic updates discussed above. Graph the running times and speedups 

for each input graph as a function of the number of threads. Based on these experiments, 

what is the best way to implement the atomic updates for pagerank?  

4) Repeat part 2 with the edge-based assignment of work to threads. Do you get better 

performance? 

Submission 

Submit (in canvas) your code and all the items listed in the experiments above. 

 

Compare-and-swap 

Figure 3 shows a way to use C++11 atomic compare and swap to achieve the same functionality 

as a mutex. var is the variable whose value is of type double to be synchronized. It is declared as 

std::atomic<double>. The function call compare exchange weak(old, new, ..) on var compares its 

value with old. If it is equal, it sets new as its value and returns true. Otherwise, it copies its 

value to old and returns false. All this is done atomically. 
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