1/30/2018

Overview

* Graph: abstract data type

— G = (V,E) where V is set of nodes, E is set of edges < VxV
e Structural properties of graphs

— Power-law graphs, uniform-degree graphs
* Graph representations: concrete data type

— Compressed-row/column, coordinate, adjacency list
. e Graph algorithms
G ra p h Algo r|th m S — Operator formulation: abstraction for algorithms

— Algorithms for single-source shortest-path (SSSP) problem
* Machine learning algorithms

— Page-rank

— Matrix-completion for recommendation systems

Graph-matrix duality
* Graph (V,E) as a matrix
— Choose an ordering of vertices 2
— Number them sequentially %\
— Fillin |V|x|V| matrix ¢ \p
* A(i,j) is wif graph has edge from node i to \
node j with label w — \ 5
— Called adjacency matrix of graph d K
H — Edge (U= v):
Structural propertles + vis out-neighbor of u 8
* uisin-neighbor of v
Of gra phS * Observations:
— Diagonal entries: weights on self-loops - to
— Symmetric matrix €-> undirected ~. 12345
h from — —
grap 1 0afoo
— Lower triangular matrix €= no edges 2 lo0o00co ‘
from lower numbered nodes to higher 3 (000e0
numbered nodes ‘ ‘
. . 4 '0000d
— Dense matrix €= clique (edge 5 (0bo0o
between every pair of nodes) L g

1/30/2018

Sparse graphs

Terminology:
— Degree of node: number of edges connected to it
— (Average) diameter of graph: average number of
hops between two nodes
Power-law graphs
— small number of very high degree nodes (see next
slide for example)
— low diameter
« “six degrees of separation” (Karinthy 1929, Milgram
1967), on Facebook, it is 4.74

— typical of social network graphs like the Internet
graph or the Facebook graph

Uniform-degree graphs

— nodes have roughly same degree

— high diameter

— road networks, IC circuits, finite-element meshes
Random (Erdds-Renyi) graphs

— constructed by random insertion of edges

— mathematically interesting but few real-life
examples

Node degree distribution
of power-law graphs

Airline route map: power-law graph

Curunt Rovte Moo (@)

uniTeo oy

Road map: uniform-degree graph

Graph representations:
how to store graphs in memory

1/30/2018

Three storage formats:CSR,CSC,COO

Adjacency list representation

Coordinate storage

m/@-u-! 0 P
i }& O

\ .' 1 -~
1 __'L gi | 4 ci
1 :] ai o

{3 arayof
pointers)

o 16 13 0 0 i) - . .

000 10 12 0 0 :’::rrpr:ssui 5;:1:'s£ L "I:m" Adjacency List Representation of Graph

o 4 0 0 14 0 1 ESE 6 2 From: https://www.thecrazyprogrammer.com

o0 9 0 0 20 174 ~ S

00 0 7 0 4] fi 131242534502 Permits you to add and remove edges from graph

0 0 0 0 0 0] ai 16 4 13109 12 7 1420 4 Deleting edges: often it is more efficient to just to mark an edge as deleted

rather than delete it physically from the list

Labels on nodes are stored in a separate vector (not shown)

Overview

* Algorithms: usually specified by pseudocode
* We take a different approach:
— operator formulation of algorithms
— data-centric abstraction in which data structures play

Graph algorithms central role

* Advantages of operator formulation abstraction:
— Connections between seemingly unrelated algorithms
— Sources of parallelism and locality become evident

— Suggests common set of mechanisms for exploiting
parallelism and locality for all algorithms

1/30/2018

Operator formulation of algorithms

Algorithm = Operator + Schedule

Operator: local view of algorithm
— Active node/edge: place in graph where
some computation is needed
— Operator: specification of computation
— Activity: application of operator to active
node
— Neighborhood: Set of nodes/edges
read/written by activity
Schedule: global view of algorithm
— Unordered algorithms: @ :activenode
* active nodes can be processed in any order
« all schedules produce the same answer but
performance may vary
— Ordered algorithms:
« problem-dependent order on active nodes

neighborhood

TAOQO analysis: terminology

S it de st
“Tapolay B ehuchT et)
Lirwirch st (el grapsing

o o
o "“"‘(:<t':

- u—— (LT CErTn
Readar

¢ Active nodes
— Topology-driven algorithms
o Algorithm is executed in rounds
« Ineach round, all nodes/edges are initially active
* lterate till convergence
— Data-driven algorithms
« Some nodes/edges initially active
« Applying operator to active node may create new active nodes
« Terminate when no more active nodes/edges in graph
e Operator
— Morph: may change the graph structure by adding/removing nodes/edges
— Label computation: updates labels on nodes/edges w/o changing graph structure
— Reader: makes no modification to graph

Graph problem:SSSP

Problem: single-source shortest-
path (SSSP) computation
Formulation:

— Given an undirected graph with
positive weights on edges, and a
node called the source

— Compute the shortest distance
from source to every other node

Variations:

— Negative edge weights but no
negative weight cycles

— All-pairs shortest paths
— Breadth-first search: all edge
weights are 1
Applications:
— GPS devices for driving directions
— social network analyses: centrality
metrics

Node A is the source

SSSP Problem

Many algorithms
— Dijkstra (1959)
— Bellman-Ford (1957)
— Chaotic relaxation (1969)
— Delta-stepping (1998)
In textbook presentations, they seem
unrelated to each other
Common structure:
— Each node has a label d that is updated
repeatedly
initialized to 0 for source and OO for all other
nodes
during algorithm: shortest known distance to that
node from source
+ termination: shortest distance from source
— All of them use the same operator
relax-edge(u,v)
if dv] > d{u]+w(u,v)
then d[v] € d[ul+w(u,y)

relax-node(u):
relax all edges connected to u

— Differences between algorithms: schedule

1/30/2018

Chaotic relaxation (1969)

Active node
— node whose label has been updated
— initially, only source is active
Schedule
— pick active node at random

— use a (work)-set or multiset to track active
nodes

TAO: unordered, data-driven
algorithm

Main inefficiency: number of
node relaxations depends on the
schedule

— can be exponential in the size of graph

Parallelization: GJEF\>
\ D
D

C 2

-

Dijkstra’s algorithm (1959)

Active nodes

— node whose label has been updated
— initially, only source is active
Schedule for processing nodes

— prefer nodes with smaller labels since
they are more likely to have reached
final values

Implementation of work-set

— priority queue ordered by node label

Work-efficient ordered algorithm

— node is relaxed just once

— O(IE[*Ig(IV])

Parallelization: ??

Main inefficiency:

— as we will see later, there is little
parallelism for most graphs

LR A

Priority queue

Delta-stepping (1998)

Controlled chaotic relaxation

- Explqit Fhe_fact t_hat SSSP is robust

to priority inversions

— “soft” priorities
Implementation of work-set:

— parameter: A

— sequence of sets

— nodes whose current distance is

between nA and (n+1)A are putin
the nth set

— nodes in set n are completed before
processing of nodes in set (n+1) are
started

A = 1: Dijkstra

A= =o: Chaotic relaxation
Picking an optimal A :

— depends on graph and machine
— high-diameter graph = large A
— find experimentally

Bellman-Ford (1957)

Algorithm:
— Execute algorithm in rounds
— Ineach round, iterate over all nodes
and apply relaxation operator
— Do this |V] times
— In practice, terminate rounds when no
node changes value in a round
Work-efficiency
— O(EI*IVI)
— Ineach round, we may visit many
nodes where there is no work to do
— However, we do not need a worklist,
so there is one less problem for the
implementation to worry about
TAO analysis
— topology-driven
— eachround is unordered
Parallelization of rounds
- 77

1/30/2018

Summary of SSSP Algorithms

e Chaotic relaxation
— unordered, data-driven algorithm
« use sets/multisets for work-set

— amount of work depends on schedule: can be exponential in size
of graph

e Dijkstra’s algorithm

— ordered, data-driven algorithm

« use priority queue for work-set

— O(]V]log(|E|)): work-efficient but little parallelism
* Delta-stepping

— controlled chaotic relaxation: parameter A

— A permits trade-off between parallelism and work-efficiency
* Bellman-Ford algorithm

— unordered, topology-driven algorithm

— O(|VI][E]) time

Machine learning

* Many machine learning algorithms are sparse
graph algorithms

* Examples:

— Page rank: used to rank webpages to answer
Internet search queries

— Recommender systems: used to make

recommendations to users in Netflix, Amazon,
Facebook etc.

Web search

e When you type a set of keywords to do an Internet
search, which web-pages should be returned and in
what order?

e Basicidea:

— offline:
* crawl the web and gather webpages into data center
¢ build an index from keywords to webpages

— online:

* when user types keywords, use index to find all pages containing
the keywords

— key problem:

* usually you end up with tens of thousands of pages
* how do you rank these pages for the user?

Ranking pages

Manual ranking

— Yahoo did something like this initially, but this solution does not scale
Word counts

— order webpages by how many times keywords occur in webpages

— problem: easy to mess with ranking by having lots of meaningless occurrences
of keyword

Citations
— analogy with citations to articles
— if lots of webpages point to a webpage, rank it higher

— problem: easy to mess with ranking by creating lots of useless pages that point
to your webpage

PageRank

extension of citations idea

weight link from webpage A to webpage B by “importance” of A
if A has few links to it, its links are not very “valuable”

how do we make this into an algorithm?

1/30/2018

Web graph

Webgraph from commoncrawl.org

e Directed graph: nodes represent webpages, edges represent links
- edge from u to v represents a link in page u to page v

¢ Size of graph: commoncrawl.org (2012)
- 3.5 billion nodes
- 128 billion links

¢ Intuitive idea of pageRank algorithm:

- each node in graph has a weight (pageRank) that represents its
importance

- assume all edges out of a node are equally important
- importance of edge is scaled by the pageRank of source node

PageRank (simple version)

Graph G = (V,E)
VI=N

e [terative algorithm:
— compute a series PRy, PRy, PR,, ... of node labels
e |terative formula:

- VveV.PRy(v) =1/N
- YveV.PR, (V) =X PR;(u)

u€in—neighbors(v) oyt—degree(u)

e Implement with two fields PR ... and PR, in each node

Page Rank (contd.)

¢ Small twist needed to handle nodes with no outgoing
edges
e Damping factor: d
— small constant: 0.85
— assume each node may also contribute its pageRank to a
randomly selected node with probability (1-d)

e |terative formula
1

- YveV.PRy(v) = N

1-d PR (u)
= VveV. PR (V) = = + d * Tucin-neighbors(v) gur_degree(s)

PageRank example

¢ Nice example from Wikipedia
e Note
— Band E have many in-edges but
pageRank of B is much greater

— Chas only one in-edge but high
pageRank because its in-edge is
very valuable

e Caveat:

— search engines use many
criteria in addition to pageRank
to rank webpages

1/30/2018

Matrix-vector multiplication

e Matrix computation: y = Ax
e Graph interpretation:
— Each node i has two values (labels)
x(i) and y(i)
— Each node i updates its label y using
the x value from each out-neighbor j,
scaled by the label on edge (i,j)
— Topology-driven, unordered
algorithm
e Observation:
— Graph perspective shows dense
MVM is special case of sparse MVM
— What is the interpretation of y = Ax ?
e Page-rank can be expressed as
generalized MVM
— Reinterpret + and * operations

aswWwN =

2
a
G b
f 4 d
e
3
12345
oafoo [x!
000c0 |x2
000e0 |x3
0000d |x4
0bo00g lxs5

PageRank discussion

e Vertex program (Pregel):
— value at node is updated using values at
immediate neighbors
— very limited notion of neighborhood but
adequate for pageRank and some ML
algorithms
e CombBlas: combinatorial BLAS

— generalized sparse MVM: + and * in
MVM are generalized to other
operations like v and A

— adequate for pageRank
¢ Interesting application of TAO
— standard pageRank is topology-driven

— can you think of a data-driven version of
pageRank?

Recommender system

e Problem

— given a database of users, items, and ratings given by each

user to some of the items

— predict ratings that user might give to items he has not
rated yet (usually, we are interested only in the top few

Data structure for database

e Sparse matrix view:
— rOws are users
— columns are movies

— A(u,m) = vis user u has given rating v
to movie m

movies
users T
[]

items in this set) Graph view: A
¢ Netflix challenge — bipartite graph
— in 2006, Netflix released a subset of their database and — two sets of nodes, one for users, one i
lix relea i . o sets A
offered $1 million prize to anyone who improved their or movies A
algorithm by 10% — edge (u,m) with label v 1 1
— triggered a lot of interest in recommender systems e Recommendation problem: 2 v 2
— prize finally given to BellKor’s Pragmatic Chaos team in — predict missing entries in sparse matrix
— predict labels of missing edges in 3 3
bipartite graph Users 4
Movies

1/30/2018

One approach: matrix completion One algorithm:SGD
 Optimization problem [Matix View}———— e Stochastic gradient descent (SGD)

— Find mxk matrix W and kxn matrix H k EI] « |terative algorithm:

(k << min(m,n)) such that A= WH — o : i j

A) — initialize all node labels to some
— Low-rank approximation [| arbitrary values mng 100
" Hand Ware dense ol mising . ~ Rerateun convergence @ mm
- e visit all edges (u,m) in some order and
e Graph view update node labels at u and m based 113 3
. he residual

— Label of user nodes i is vector Graph Vie ont . u

corresponding to row Wi i i " TAO analysis: sers _ 4
— Label of movie node j is vector Dﬁ1 Ay 1 EDJ — active edges: topology-driven, Movies

corresponding to column H.,; unordered
— If graph has edge (u,m), inner 0oo2 2. What algorithm does this remind

product of labels on u and m must you of?

be approximately equal to label on s st _ Bellman-Ford

edge 4

Users Movies T
What we have learned
e Operator formulation:
— data-centric view of algorithms r_..{-__...l
e TAO classification L griina)

Summary of discussion of
algorithms

Location of active nodes
— Topology-driven algorithms
— Data-driven algorithms

Mt

— Data-driven algorithm may be more gk
work-efficient than topology-driven Ol <:—

one
Ordering of active nodes
— Unordered algorithms
— Ordered algorithms
Some problems

— have both ordered and unordered
algorithms (e.g. SSSP)

— have both topology-driven and data-
driven algorithms (e.g. SSSP,
pageRank)

Questions

What are the sources of parallelism and locality in
algorithms?

Can the operator formulation help us in answering this
question?

How do we exploit parallelism and locality efficiently?

1/30/2018

10

