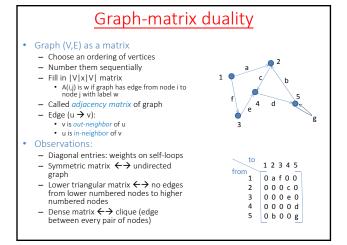


Graph Algorithms

Overview

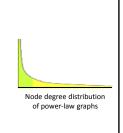
- Graph: abstract data type
 - G = (V,E) where V is set of nodes, E is set of edges \subseteq VxV
- Structural properties of graphs
 - Power-law graphs, uniform-degree graphs
- Graph representations: concrete data type
 - Compressed-row/column, coordinate, adjacency list
- Graph algorithms
 - Operator formulation: abstraction for algorithms
 - Algorithms for single-source shortest-path (SSSP) problem
- Machine learning algorithms
 - Page-rank
 - Matrix-completion for recommendation systems

Structural properties of graphs



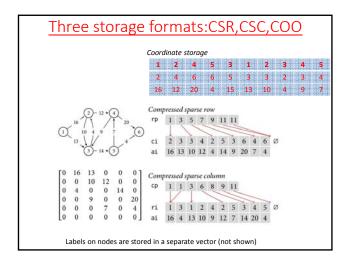
Sparse graphs

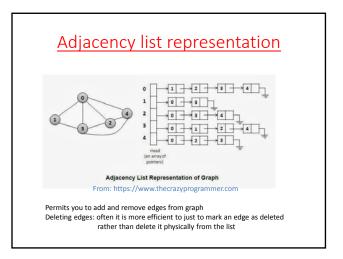
- Terminology:
 - Degree of node: number of edges connected to it
 - (Average) diameter of graph: average number of hops between two nodes
- Power-law graphs
 - small number of very high degree nodes (see next slide for example)
- low diameter
 "six degrees of separation" (Karinthy 1929, Milgram 1967), on Facebook, it is 4.74
 typical of social network graphs like the Internet graph or the Facebook graph
 Uniform-degree graphs
- - nodes have roughly same degree
 - high diameter
- road networks, IC circuits, finite-element meshes
 Random (Erdös-Rènyi) graphs
- constructed by random insertion of edges
- mathematically interesting but few real-life examples



Road map: uniform-degree graph MEXICO

Graph representations: how to store graphs in memory





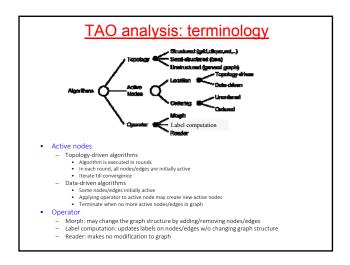
Graph algorithms

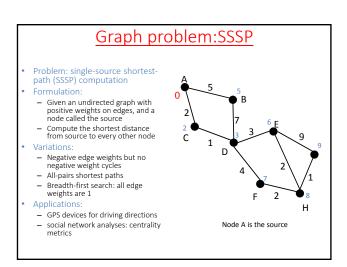
Overview

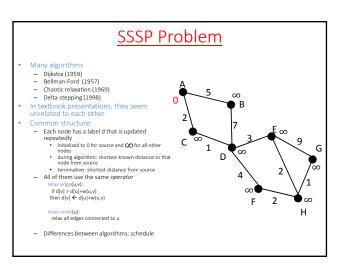
- Algorithms: usually specified by pseudocode
- We take a different approach:
- operator formulation of algorithms
 - data-centric abstraction in which data structures play central role
- Advantages of operator formulation abstraction:
 - Connections between seemingly unrelated algorithms
 - Sources of parallelism and locality become evident
 - Suggests common set of mechanisms for exploiting parallelism and locality for all algorithms

Operator formulation of algorithms • Algorithm = Operator + Schedule • Operator: local view of algorithm - Active node/edge: place in graph where some computation is needed - Operator: specification of computation - Activity: application of operator to active node - Neighborhood: Set of nodes/edges read/written by activity • Schedule: global view of algorithm - Unordered algorithms: • active node can be processed in any order • all schedules produce the same answer but performance may vary - Ordered algorithms:

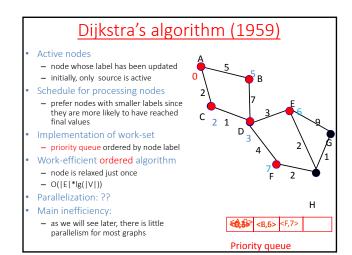
problem-dependent order on active nodes

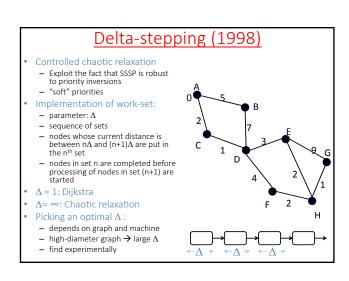


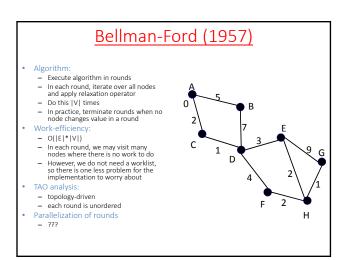




Chaotic relaxation (1969) Active node - node whose label has been updated - initially, only source is active Schedule - pick active node at random use a (work)-set or multiset to track active nodes TAO: unordered, data-driven algorithm Main inefficiency: number of node relaxations depends on the F 16 2 schedule can be exponential in the size of graph Parallelization: A E BFD - ??







Summary of SSSP Algorithms

- Chaotic relaxation
 - unordered, data-driven algorithm
 - · use sets/multisets for work-set
 - amount of work depends on schedule: can be exponential in size of graph
- Dijkstra's algorithm
 - ordered, data-driven algorithm
 - use priority queue for work-set
 - O(|V|log(|E|)): work-efficient but little parallelism
- - controlled chaotic relaxation: parameter Δ
- Δ permits trade-off between parallelism and work-efficiency
- Bellman-Ford algorithm
 - unordered, topology-driven algorithm
 - O(|V||E|) time

Machine learning

- Many machine learning algorithms are sparse graph algorithms
- Examples:
 - Page rank: used to rank webpages to answer Internet search queries
 - Recommender systems: used to make recommendations to users in Netflix, Amazon, Facebook etc.

Web search

- When you type a set of keywords to do an Internet search, which web-pages should be returned and in what order?
- · Basic idea:
 - offline:
 - · crawl the web and gather webpages into data center
 - · build an index from keywords to webpages
 - - when user types keywords, use index to find all pages containing the keywords
 - key problem:
 - usually you end up with tens of thousands of pages
 - how do you rank these pages for the user?

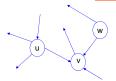
Ranking pages

- Manual ranking
 - Yahoo did something like this initially, but this solution does not scale
- Word counts
 - order webpages by how many times keywords occur in webpages
 - problem: easy to mess with ranking by having lots of meaningless occurrences of keyword
- Citations

 - analogy with citations to articles
 if lots of webpages point to a webpage, rank it higher
 - problem: easy to mess with ranking by creating lots of useless pages that point to your webpage
- PageRank
 - extension of citations idea
 - extension of citations idea
 weight link from webpage A to webpage B by "importance" of A
 if A has few links to it, its links are not very "valuable"

 - how do we make this into an algorithm?

Web graph



Webgraph from commoncrawl.org

- Directed graph: nodes represent webpages, edges represent links
 - edge from u to v represents a link in page u to page v
- Size of graph: commoncrawl.org (2012)
 3.5 billion nodes
 128 billion links
- Intuitive idea of pageRank algorithm:
 - each node in graph has a weight (pageRank) that represents its
 - assume all edges out of a node are equally important
 - $\,$ $\,$ importance of edge is scaled by the pageRank of source node

PageRank (simple version)

Graph G = (V,E)|V| = N

- Iterative algorithm:
- compute a series PR_0 , PR_1 , PR_2 , ... of node labels
- Iterative formula:
 - \forall v∈V. $PR_0(v) = 1/N$
 - $\forall v \in V$. $PR_{i+1}(v) = \sum_{u \in in-neighbors(v)} \frac{PR_i(u)}{out-degree(u)}$
- Implement with two fields PR_{current} and PR_{next} in each node

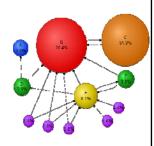
Page Rank (contd.)

- Small twist needed to handle nodes with no outgoing edges
- Damping factor: d
 - small constant: 0.85
 - assume each node may also contribute its pageRank to a randomly selected node with probability (1-d)
- Iterative formula

 - $$\begin{split} & \ \forall v {\in} V. \ PR_0(v) = \frac{1}{N} \\ & \ \forall v {\in} V. \ PR_{i+1}(v) = \frac{1-d}{N} + d * \sum_{u \in in-neighbors(v)} \frac{PR_i(u)}{out-degree(u)} \end{split}$$

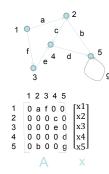
PageRank example

- Nice example from Wikipedia
- - B and E have many in-edges but pageRank of B is much greater
 - C has only one in-edge but high pageRank because its in-edge is very valuable
- Caveat:
 - search engines use many criteria in addition to pageRank to rank webpages



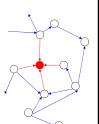
Matrix-vector multiplication

- Matrix computation: $\underline{y} = A\underline{x}$
- Graph interpretation:
 - Each node i has two values (labels) x(i) and y(i)
 - Each node i updates its label y using the x value from each out-neighbor j, scaled by the label on edge (i,j)
 - Topology-driven, unordered
- · Observation:
 - Graph perspective shows dense MVM is special case of sparse MVM
 - What is the interpretation of <u>v</u> = A^T<u>x</u>?
- Page-rank can be expressed as generalized MVM
 - Reinterpret + and * operations



PageRank discussion

- Vertex program (Pregel):
 - value at node is updated using values at immediate neighbors
 - very limited notion of neighborhood but adequate for pageRank and some ML algorithms
- · CombBlas: combinatorial BLAS
 - generalized sparse MVM: + and * in MVM are generalized to other operations like ∨ and ∧
 - adequate for pageRank
- Interesting application of TAO
 - standard pageRank is topology-driven
 - can you think of a data-driven version of pageRank?

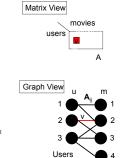


Recommender system

- Problem
 - given a database of users, items, and ratings given by each user to some of the items
 - predict ratings that user might give to items he has not rated yet (usually, we are interested only in the top few items in this set)
- Netflix challenge
 - in 2006, Netflix released a subset of their database and offered \$1 million prize to anyone who improved their algorithm by 10%
 - triggered a lot of interest in recommender systems
 - prize finally given to BellKor's Pragmatic Chaos team in 2009

Data structure for database

- Sparse matrix view:
 - rows are users
 - columns are movies
 - A(u,m) = v is user u has given rating v to movie m
- Graph view:
 - bipartite graph
 - two sets of nodes, one for users, one for movies
 - edge (u,m) with label v
- · Recommendation problem:
 - predict missing entries in sparse matrix
 - predict labels of missing edges in bipartite graph

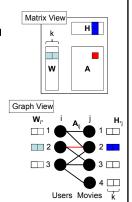


Movies

One approach: matrix completion

• Optimization problem

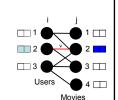
- Find m×k matrix W and k×n matrix H (k << min(m,n)) such that A ≈ WH
- Low-rank approximation
- H and W are dense so all missing values are predicted
- Graph view
 - Label of user nodes i is vector corresponding to row W_{i*}
 - Label of movie node j is vector corresponding to column H_{*i}
 - If graph has edge (u,m), inner product of labels on u and m must be approximately equal to label on edge



One algorithm:SGD

- Stochastic gradient descent (SGD)
- Iterative algorithm:
 - initialize all node labels to some arbitrary values
 - iterate until convergence
 - visit all edges (u,m) in some order and update node labels at u and m based on the residual

- active edges: topology-driven, unordered
- What algorithm does this remind you of?
 - Bellman-Ford



Summary of discussion of algorithms

What we have learned

- Operator formulation:
- data-centric view of algorithms
- TAO classification
- Location of active nodes
 - Topology-driven algorithms
 - Data-driven algorithms
 - Data-driven algorithm may be more work-efficient than topology-driven one
- Ordering of active nodes
 - Unordered algorithms
 - Ordered algorithms
- Some problems
 - have both ordered and unordered algorithms (e.g. SSSP)
 - have both topology-driven and datadriven algorithms (e.g. SSSP, pageRank)

Questions

- What are the sources of parallelism and locality in algorithms?
- Can the operator formulation help us in answering this question?
- How do we exploit parallelism and locality efficiently?