CRASH COURSE ON
COMPUTER ARCHITECTURE

Areg Melik-Adamyan, PhD

Engineering Manager, Intel Developer Products Division

Topics covered in lecture

* |nstruction level parallelism (ILP)
* Pipelined execution
e Superscalar
* QOut-of-order execution

* Limit on ILP: data and control dependences between
instructions

e Out-of-order execution implementation
e Out of order execution, in-order completion (commit)
 RAW dependences: forwarding
* WAR and WAW dependences: register renaming

 Control dependences: branch prediction and speculative
execution

Texbooks and References

* Try to hit the tip of the iceberg

* Explain main concepts only

* Not enough to develop your own microprocessor...

* But allow better understand behavior and performance of your program

« Hennesy, Patterson, Computer Architecture: Quantative Approach, 6t Ed.

« Blaauw, Brooks, Computer Architecture: Concepts and Evolution |

i d__HiH COMPUTER
COMPUTER ARCHITECTURE
ARCHITECTURE Soro3d

A Quantitative Approach

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Layers of Abstraction

Application

Algorithms
- Software

Programming Languages

Operating Systems/Libraries

Interface between

HW and SW Instruction Set Architecture

Microarchitecture
Gates/Register-Transfer Level (RTL)

Hardware - : :
Circuits

Physics

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Basic CPU Actions

4ns 8ns time
< L >

F DE MW

1. Fetch instruction by PC from memory
Decode it and read its operands from registers
Execute calculations

Read/write memory

ok~ WD

Write the result into registers and update PC

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Non-Pipelined Processing

Sync signal
(clocks) ‘ l

4ns 8ns 12ns 16ns time
£ 2 >

>
F[ou M((,

instr 0 f lo £ M W

instr 1 o
°©
§ T
instr 2 % F D [
v = ! =

* Instructions are processed sequentially, one per cycle
 How to speed-up?

 SW: decrease number of instructions

« HW: decrease the time to process one instruction

or overlap their processing. i.e. make pipeline

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline

el R AR IR ERARARER

4ns 8ns 12ns 16ns time
> > -> - »
instr 0 F D E M W
instrl | 2 F ' D E M W
% |
o
instr2 | % F D E M 'W
' - > J

* Processing is split into several steps called “stages”
* Each stage takes one cycle
* The clock cycle is determined by the longest stage
* Instructions are overlapped
* A new instruction occupies a stage as soon as the previous one leaves it

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline vs Non-Pipeline

Non-Pipelined

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline vs Non-Pipeline

Non-Pipelined
we an
nstr 3 8ns
i
Pipelined * Pipeline improves
throughput, not latency
» Effective time to process
we | pipeline fill tol FT instruction is one clock
str 3 (:) e
. ’%(- — Clock length is defined by
| ‘/,;/ - the longest stage
o

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pipeline Limitations

* Max speed of the pipeline is one instruction per clock

* [tis rare due to dependencies among instructions (data or control) and in-
order processing

F|D|E|IM|W

F|DIE|M|W
F|D|E|M|W
F|D|E|M|W
F| D|E|M|W
F|D|E|M|W

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

Other names and brands may be claimed as the property of others.

Recap from basic architecture
course: Data Dependences

« A statement/instruction S2 is said to be
data dependent on statement/instruction
S1if
— S1 executes before S2 in the original program

— S1 and S2 access the same data item
— At least one of the accesses is a write.

Data Dependence

Flow dependence (RAW, True dependence)

S1: X=A+B
S2: C= X+A

Anti dependence (WAR)
S1:A=X+B
S2: Xx=C+D

Output dependence (WAW)

S1: X=A+B
S2: X=C+D

(8(2) (B2 (B2

Data Dependence

* Dependences indicate an execution order that must be
honored.

* Executing statements/instructions in the order of the
dependences guarantee correct results.

 Statements/instructions not dependent on each other can
be reordered, executed in parallel, or coalesced into a
vector operation.

Pipeline Limitations

e Various types of hazards:
* read after write (RAW), true/flow dependence
e write after read (WAR), anti-dependence
e write after write (WAW), output dependence

F|D|E| M| W
F|ID|IE|M|W
F | D BE M
3

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Superscalar: Wide Pipeline

* Pipeline exploits instruction level parallelism (ILP)
« Can we improve? Execute, instructions in parallel
* Need to double HW structures

* Max speedup is 2 instructions per cycle (IPC=2)
 Thereal speedup is less due to dependencies and in-order execution

Flo|lE|[m|w

FlolEe|m|w
Flo|E|m|\d
F

o
=
=

o
=
=

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Is Superscalar Good Enough?

* Theoretically can execute multiple instructions in parallel

* Wide pipeline => more performance

 But...
* Only independent subsequent instructions can be executed in parallel

 Whereas subsequent instructions are often dependent

* So the utilization of the second pipe is often low

 Solution: out-of-order execution

* Execute instructions based on the “data flow” graph, rather than
program order

» Still need to keep the visibility of in-order execution

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data Flow Analysis

Example: Data Flow Graph

(1) rl <« r4 / r7 o e o
r1 N r5&=

(2) r8 «— rl + r2

(3) 'S« nrS +1 \ ¥
(4) «— ré - r3 0 9
(S) r4 < load [I‘S +] r8 v\ /7 rd

(6) r7 «<— r8 * r4 o

In-order execution Out-of-order execution

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Instruction “Grinder”

Then technology allowed building wide HW, but the code representation
remained sequential

Decision: extract parallelism back by means of hardware
Compatibility burden: needs to look like sequential hardware

N

Sophisticated s

Parallel

Sequential Visibility of
algorithms

code (ISA) parallel sequential HW

\
R

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Why Order is Important?

* Many mechanisms rely on original program order

— Precise exceptions: nothing after instruction caused an
exception can be executed

(1) #3 &= ¥l + "2. that if they are executed in the
(2) S« rd / r3™s following order: (1) = (3) = (2)

(3) P2 = r7 + P6 and then (2) leads to exception?

— Memory model: inter-thread communication requires that
the memory accesses are ordered

LD A ST B . LDA LD B

LD B STA STB STA
Load A returns new data, Load B Both loads return new data =
returns old data = NOT ALLOWED | | NOT ALLOWED

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Maintaining Architectural State

* Solution: support two state, speculative and architectural

* Update arch state in program order using special buffer
called ROB (reorder buffer) or instruction window
— Instructions written and stored in-order

— Instruction leaves ROB (retired) and update arch state only if it is
the oldest one and has been executed

b . Visibility of
Sequential Fetch & Instruction . oy,
, ' . Retirement sequential

code Decode window
N execution

L) N

| ArchitecturaIJ
Y

Speculative Out-of-order state
state r execution \

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Out-of-order execution: key ideas

Out-of-order execution, in-order completion (commit/retire)
* Precise exceptions, memory model of processor

(1) Dataflow execution: instructions execute when operands are available
* Reorder buffer (ROB): window of instructions
* Instructions enter ROB in program order, retire from ROB in program order
* Instructions in ROB execute when operands are available
* However, results are stored in ROB until instruction retires

(I1) Register renaming
* Goal: eliminate flow and anti-dependences on registers

* Two register files
* Architected register file: registers visible to programmer and ISA
* Physical register file:
* Larger set of registers that hold values for inflight instructions
* Not visible to programmer or ISA, managed by hardware

* 0OO0O processors implement both dataflow execution and register renaming but useful to study separately

(111) Branch prediction
* How to get a big window of instructions to work on

OO0 execution without renaming

v(alid) value consumers
HW instruction window (ROB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO-_-
Fetch Retire

Al °RRE ARCR i
7 } }

| 4

Registers

* |Invariants (ROB):
1. At most one instruction in flight writes to a given register
2. Instruction executes when all operands available but result stored in result slot of ROB entry
3. Destination register is updated only when instruction is retired

* Invariant (Registers):
4. Rx.v =2 Noinstruction in flight writes to register rx

5. ! Rx.v =2 An inflight instruction will write to rx and ROB entries for younger instructions that
need that value are in Rx.consumers

Actions: (r3 < rl1+9in ROB n)

HW instruction window (ROB)
Fetch Retire
?
‘,‘ 13 »

* Enter: * Retire:

if (! R3.v) //inflight instruction will modify r3 _ _
wait until R3.v = true; (Invariant 1) R3.value = ROB|n].result;
R3.v = true; (Invariant 3)

R3.v = false; (Invariant 1)
Enter instruction into ROB# n; Notify all ROB entries in R3.consumers; (Invariant 5)

if (R1.v) then
{ROB[n].slot1l = R1.value; (Invariant 4)
Mark instruction as ready;}
else Add #n to R1.consumers; (Invariant 5)

* Execute:
Dispatch to free functional unit;
Write result back to ROB[n].result

Dependences and precise exceptions

value consumers
HW instruction window (ROB)

Fetch Retire
?
1 T “1 "1

* Invariants (ROB):
1. At most one instruction in flight writes to a given register
2. Instruction executes when all operands available but result stored in result slot
of ROB entry
3. Destination register is updated only when instruction is retired
* Invariant (Registers):
4, Rx.v = true =» No instruction in flight writes to register rx
5. if (! Rx.v) ROB entries for all inflight instructions that read rx are in
Rx.Consumers

* Flow dependences
* |nvariants (4) and (5,3)

* Anti- and output dependences
* |nvariant (1)

* Precise exceptions
* |nvariants (2) and (3)

Limitations of scheme:

* Consider instruction (r3 < r1 +9)

* Register r3 value not forwarded to consumers in ROB until instruction
retires

* Why not forward value to consumers in ROB as soon as it is
computed?

* More parallelism

* One implementation of idea: register renaming

O0OQO execution with renaming

v(alid) value PR#

HW instruction window (ROB)
Retire
Fetch II I II I R1

Architected Registers

* Two sets of registers
* Architected registers: registers visible to the ISA and programmer
* Physical registers:
* Different and larger set of registers that hold values temporarily while instructions are in flight
* Not visible to ISA or programmer, managed entirely by hardware
* Register renaming
* Eliminate anti- and output-dependences within instruction window by using physical registers

v(alid) value consumers

pro [N
PR1

Physical Registers

* There can be several instructions in flight that write to same architected register, but they will write to different physical registers

O0OQO execution with renaming

v(alid) ~ value PR# v(alid) value consumers

HW instruction window (ROB)
Fetch Retire
) :))

Architected Registers

* Invariants (ROB):
1. At most one instruction in flight writes to a given physical register
2. Instruction executes when all operands available but result stored in physical register
3. Architected register is updated when instruction is retired

* Invariant (Registers):
4. Rx.v =2 Noinstruction in flight writes to register rx
5. (! Rx.v) = Youngest instruction that writes to rx will store result in Rx[PR#]
6. (!Rx.vand Rx.PR#.v) = Youngest instruction that writes to rx has completed and value is in Rx.PR#.value
7

('Rx.v and ! Rx.PR#.v) = Youngest instruction that writes to rx has not completed and ROB entries for all
inflight instructions that read its value are in Rx[PR#].consumers

Physical Registers

OO0 execution with renaming: (r3 €< r1 +9 in ROB# n)

v(alid) value PR# v(alid) value consumers

HW instruction window (ROB)
Fetch Retire
” ' ’ l) ssss e

Architected Registers

* Enter:
PRm = free physical register;
R3.PR# = PRm; Phvsi .
sical Registers
R3[v] = false; . Y 8
PRm.v = false; * Retire:
Enter instruction and PRm into ROB[n]; (Invariant 5) R3.value = R3.PR#.Va|ue;
if (R1.v) then — . ;
{ROB[n].slotl = R1.value; (Invariant 4) R3.v = true' (lnvarlant 3)
Mark instruction as ready;}
else if (R1.PR#.v) then * Execute:
{ROB[n].slot1 = R1.PR#.value; (Invariants 5 and 6) D|spatch to free functional un|t
Mark instruction as ready;} pr = ROB[n].PR# //physical register associated with r3
else Write result to pr.value;
Add #n to R1.PR#.consumers; (Invariant 7) pr.v = true; (Invariant 6)

Notify all ROB entries in pr.Consumers; (Invariant 7)

How large should ROB be?

* |n principle, larger the better
* Find more independent instructions
* Hide longer memory latencies

* Example
* Many CPUs have ROB of size ~200 - l

e Main limitation: branches
* On average, 1 in every 5 instructions is branch
* How to fetch instructions into ROB when branch has not been resolved?

* One solution: guess randomly which way branch will go

* Probability of getting one branch right: 50%
* Probability that 100" instruction in window will be executed is (0.5)*20 = 0.0001%

Dynamic Branch Prediction

* Dynamic branch prediction approach:

— As soon as branch is fetched (at IF stage) change the PC to the
predicted path

— Switch to the right path after the branch execution if the prediction
was wrong

It required complex hardware at IF stage that will predicts:
— Is it a branch

— Branch taken or not
— Taken branch target

PC

. Target PC | Prediction (T/NT)
- .

* Structure performs
such function is
called BPU

m W BN

weny,

Mt

How To Predict Branch?

* A saturating counter or bimodal predictor is a state machine
with four states:

* Why four states?
- Bimodal predictor make only one mistake on a loop back branch
(on the loop exit)

* Advantages:
—~ Small = only 2 bits per branch
— Predicts well branches with stable behaviour

* Disadvantages
—~ Cannot predict well branches which often change their outcome:

e @& T, NT,T,NT, T,NT,T,NT,T, ..

More elaborate branch predictors exist: (e.g.) Perceptron-based branch predictor (Calvin Lin)

Using History Patterns

* Remember not just most often outcome, but most
often outcome after certain history patterns

present
future past

Pattern hnstory table
> | >
Branch

utrrmqryl m weakly | '
sequence: k

1001|060 0(10 0 “*'“‘“’”
= - Q”’ U)

Prediction: 7]

TRU E 11 5"("“3’)': ‘ wer ﬂ ly | (\! ongl y\
Result:

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Local Predictor

* Local branch predictor has a separate history buffer
and pattern table for each branch

pistory [

=) Prediction

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Global Predictor

* Global predictor have common history and pattern table
for all branches

* Can have very large history if (a == 3)
{
* Can see correlation among different
branches }
* The real branch predictor is a if (a > 6)

combination of different local, global
and more sophisticated predictors)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Topics covered in lecture

* |nstruction level parallelism (ILP)
* Pipelined execution
e Superscalar
* QOut-of-order execution

* Limit on ILP: data and control dependences between
instructions

e Out-of-order execution implementation
e Out of order execution, in-order completion (commit)
 RAW dependences: forwarding
* WAR and WAW dependences: register renaming

 Control dependences: branch prediction and speculative
execution

Intel Processor Roadmap

Year ’ 2008 2010 2011 2012 PAES 2014 2015 2016

Haswell

Tech

45 nm 32 nm 22 nm 14 nm 10 nm
Process

Nehalem Westmere Ivy Bridge Haswell Broadwell Skylake Cannonlake

Tick-Tock model

— A new microarchitecture (Tock) is followed by process
compaction (Tick)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Haswell Floorplan

. S§l§‘tlem,
ﬁi\gent '
N
E ,;.I\Aeq.lory
' ‘ Controller. 192 Entry Reorder Buffer (ROB)
==Shared’L3'Cache ™= Tu | f T ¢[: I 1]
‘ ey T (regme) ([g) Comtermmes) (comtmer) (s e
. 60 Entry Uniﬁe‘cri Scheduler - -]
* 22nm process -.--
« 1.4 Billion transistors ; .

* Diesize: 160 mm2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

f‘uu
E/§=]

w.{’.

....3__!

Haswell (56 pop Decode Queue)

Block Diagram —]

192 Entry Reorder Buffer (ROB)
|

.
Branch Haswell _r Instruction
Predictors 'l Fetch Unit 168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
/ Heglsters Registers Order Buffer Load Buffer Store Buffer
LI ITLBI 32KB L1 I-Cache (8 way)
[60 Entry Unified Scheduler]

168~
w

P::-rt 0 Port 1] Port 5 Port 6 Port 2 Port 3 |Port 4
[16B Predecode, Fetch Buffer] F | 1 i J |
6 Instructions ALU 256-bit ALU ALU 256-bit
v Branch VMUL LEA Fast LEA VALU
[2x20 Instruction Queue] Shift VShift MUL VShuffle
)

k 4 w
256—blt 256-bit 256-bit 256-bit ALU
FMA FMA VALU FShuffle] | Branch
FBlend FADD VBlend FBlend Shift

w

code Complex}| Simple || Simple Simple
H Decoder] |Decoder] | Decoder) | Decode

4uOPS"‘"-. THop™~ THopSW luop""
[1.5K pop Cache (8 wayH 56 pop Decode Queue J
4 pops

328

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd

Instruction Fetch and Decode
« 32 KB 8-way Icache

* 4 decoders, up to 4 inst/cycle

 CISC to RISC transformation

6 Instructions

* Decode Pipeline supports 16
bytes per cycle

e’ Hops .

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Instruction Decode

* Four decoding units decode instructions
Into uops
* The first can decode all instructions
up to four uops in size
* Uops emitted by the decoders are
directed to the Decode Queue and to
the Decoded Uop Cache
* Instructions with >4 uoops generate
their uops from the MSROM
« The MSROM bandwith is 4 uops per
cycle

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Decode UOP Cache

* The UC is an accelerator of the
legacy decode pipeline
— Caches the uops coming out of the
instruction decoder

-~ Next time uops are taken from the UC
- The UC holds up to 1536 uops
— Average hit rate of 80% of the uops

6 Instructions

» Skips fetch and decode for the cached uops
- Reduces latency on branch mispredictions
-~ Increases uop delivery bandwidth to the OO0 engine
— Reduces front end power consumption

* The UCis virtually addressed — —
— Flushed on a context switch —_————

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Loop Stream Detector

« LSD detects small loops that fitin the
Decode Queue
 The loop streams from the uop queue,
with no more fetching, decoding, or
reading uops from any of the caches L1ime |
* Works until a branch misprediction '"
* The loops with the following attributes
quallfy for LSD replay
Up to 56 uops
 All uops are also resident in the UC
« No more than eight taken branches
* No CALL or RET
* No mismatched stack operations (e.g.
more PUSH than POP)

6 Instructions

=7 4 uops '

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FrontEnd: Macro-Fusion

* Merge two instructions into a single uop
* |Increased decode, rename and retire
bandwidth
* Power savings from representing
more work in fewer bits
* The first instruction of a macro-fused pair
modifies flags
« CMP, TEST, ADD, SUB, AND, INC, DEC
« The 2"dinst of a macro-fusible pairis a
conditional branch
* For each first instruction, some
branches can fuse with it
These pairs are common in many apps

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OOO Structures

4 Hops \l\

(192 Entry Reorder Buffer (ROB)]
|

¥ y Y Y y

168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer
60 Entry Unified Scheduler]

Window (BOB)

In-flight Loads (LB) 48 64 72
In-flight Stores (SB) 32 36 42
Scheduler Entries (RS) 36 54 60
Integer Registers Equal to ROB 160 168
FP Registers Equal to ROB 144 168

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O0O0O: Renamer

* Rename 4 uops / cycle and provide to the OO0 engine

— Renames architectural sources and destinations of the uops to micro-
architectural sources and destinations

-~ Allocates resources to the uops, e.g., load or store buffers
- Binds the uop to an appropriate dispatch port

* Some uops can execute to completion during rename,
effectively costing no execution bandwidth
- Zero idioms (dependency breaking idioms)
— NOP
- VZEROUPPER
- FXCHG
— A subset of register-to-register MOV

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OOO: Dependency Breaking Idiom

* Move elimination
— Moves just update RAT w/o real copy of register value

— Example: eax is renamed to prl0,
after mov eax->ebx, ebx is also renamed to prl0

* Instruction parallelism can be improved by zeroing register
content

* Zero idiom examples
—~ XOR REG,REG
— SUB REG,REG

* Zero idioms are detected and removed by the renamer
— Have zero execution latency
— They do not consume any execution resource

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

EXE

&0-entry Unifiad Reservation Station

Port 2 Port 3 Port 4 Port 5

Load/
Store
Address

Integer

ALULEA

Branch

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Core Cache Size/Latency/Bandwidth

Metric Nehalem
L1 Instruction Cache 32K, 4-way
L1 Data Cache 32K, 8-way
Fastest Load-to-use 4 cycles
Load bandwidth 16 Bytes/cycle
Store bandwidth 16 Bytes/cycle
L2 Unified Cache 256K, 8-way
Fastest load-to-use 10 cycles

Bandwidth to L1

L1 Instruction TLB

32 Bytes/cycle

4K: 128, 4-way
2M/4M: 7/thread

4K: 64, 4-way

L1 Data TLB

L2 Unified TLB

All caches use 64-byte lines

2M/4M: 32, 4-way

1G: fractured

4K: 512, 4-way

\

Sandy Bridge Haswell
32K, B-way 32K, 8-way
32K, 8-way 32K, 8-way

4 cycles 4 cycles
32 Bytes/cycle
(banked) 64 Bytes/cycie

16 Bytes/cycle 32 Bytes/cycle

256K, 8-way 256K, 8-way
11 cycles 11 cycles
32 Bytes/cycle [64 Byheslcycla]

4K: 128, 4-way
2M/4M: 8/thread

4K: 128, 4-way
2M/4M: 8/thread

4K: 64, 4-way 4K: 64, 4-way
2M/4M: 32, 4-way | 2M/4M: 32, 4-way
1G: 4, 4-way 1G: 4, 4-way
: £ 4K+2M shared:
4K: 512, 4-way [1024, 8-way L

15 Intet® Miroarchitecture {(Haswell); intel® Microarchitecture (Sandy Bridge); Intet® Microarchitecture (Nehalem)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

	architecture
	architecture-areg.pdf
	Binder1.pdf
	architecture-areg
	A9R1efepa4_16dfxnv_ad0.tmp
	dependence.pdf
	Definition of Dependence
	Data Dependence
	Data Dependence

	architecture-areg

	ILP-overview.pdf
	Topics covered in lecture

	ooo
	Out-of-order execution: key ideas
	OOO execution without renaming
	Actions: (r3  r1 + 9 in ROB# n)
	Dependences and precise exceptions
	Limitations of scheme:
	OOO execution with renaming
	OOO execution with renaming
	OOO execution with renaming: (r3  r1 + 9 in ROB# n)
	How large should ROB be?
	Slide Number 10
	Slide Number 11

