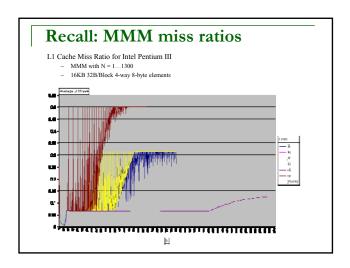
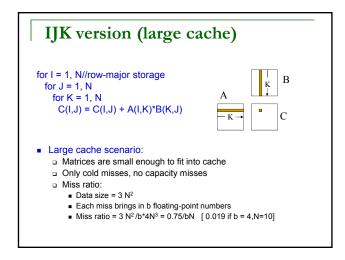
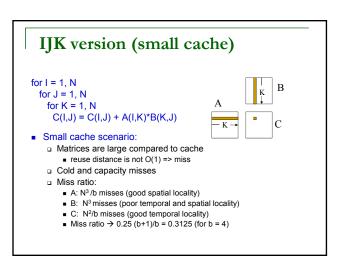
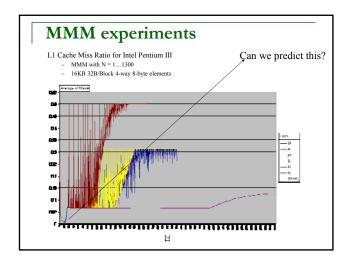
Optimizing MMM & ATLAS Library Generator









How large can matrices be and still not suffer capacity misses?

for I = 1, N
for J = 1, N
for K = 1, N

$$C(I,J) = C(I,J) + A(I,K)*B(K,J)$$

A

C

C

- How large can these matrices be without suffering capacity misses?
- Each iteration of outermost loop walks over entire B matrix, so all of B must be in cache
 - We walk over rows of A and successive iterations of middle loop touch same row of A, so one row of A must be in cache
 - We walk over elements of C one line at a time.
 - □ So inequality is N² + N + b <= Capacity of cache

Check with experiment

- For our machine, capacity of L1 cache is 16KB/8 doubles = 2¹¹ doubles
- If matrices are square, we must solve N² + N + 4 = 2¹¹

which gives us N ~ 45

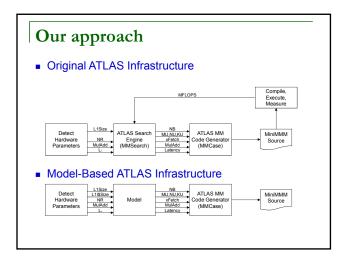
• This agrees with experiment.

High-level picture of high-performance MMM code

- Block the code for each level of memory hierarchy
 - Registers
 - □ L1 cache
 - **-**
- Choose block sizes at each level using the theory described previously
 - Useful optimization: choose block size at level
 L+1 to be multiple of the block size at level L

ATLAS

- Library generator for MMM and other BLAS
- Blocks only for registers and L1 cache
- Uses search to determine block sizes, rather than the analytical formulas we used
 - Search takes more time, but we do it once when library is produced
- Let us study structure of ATLAS in little more detail



BLAS

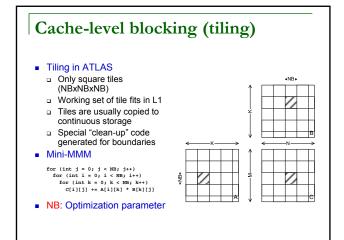
Let us focus on MMM:

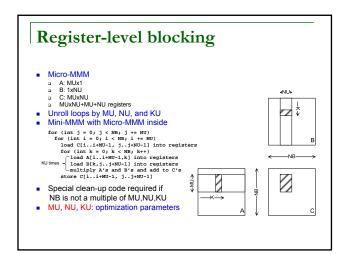
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < K; k++)
C[i][j] += A[i][k]*B[k][j]</pre>

- Properties
 - □ Very good reuse: O(N²) data, O(N³) computation
 - Many optimization opportunities
 - Few "real" dependencies
 - Will run poorly on modern machines
 - Poor use of cache and registers
 - Poor use of processor pipelines

Optimizations

- Cache-level blocking (tiling)
 - Atlas blocks only for L1 cache
- NB: L1 cache time size
 Register-level blocking
- Important to hold array values in registers
- MU,NU: register tile size
- Filling the processor pipeline
- Unroll and schedule operations
- Latency, xFetch: scheduling parameters
- Versioning
 - Dynamically decide which way to compute
- Back-end compiler optimizations
 - Scalar Optimizations
 - Instruction Scheduling



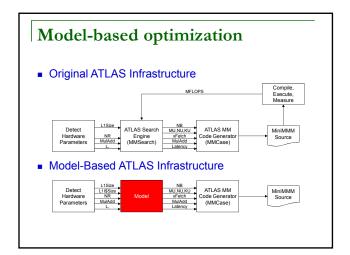


Scheduling FMA Present? Schedule Computation Using Latency Schedule Memory Operations Using IFetch, NFetch, FFetch Latency, xFetch: optimization parameters

Multi-dimensional optimization problem: Independent parameters: NB,MU,NU,KU,.... Dependent variable: MFlops Function from parameters to variables is given implicitly; can be evaluated repeatedly One optimization strategy: orthogonal line search Optimize along one dimension at a time, using reference values for parameters not yet optimized Not guaranteed to find optimal point, but might come close

Find Best NB

- Search in following range
 - □ 16 <= NB <= 80
 - □ NB² <= L1Size
- In this search, use simple estimates for other parameters
 - □ (eg) KU: Test each candidate for
 - Full K unrolling (KU = NB)
 - No K unrolling (KU = 1)



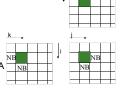
Modeling for Optimization Parameters

- Optimization parameters
 - □ NB
 - Hierarchy of Models (later)
 - □ MU, NU
 - $MU * NU + MU + NU + Latency \le NR$
 - □ KŪ
 - maximize subject to L1 Instruction Cache

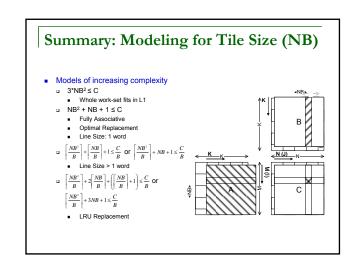
 - Latency■ [(L_{*} + 1)/2]
 - MulAdd
 - hardware parameter
 - xFetch
 - set to 2

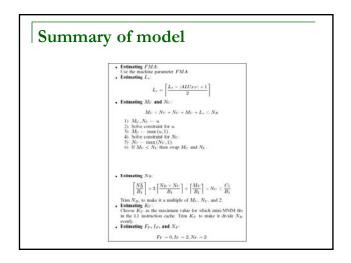
Largest NB for no capacity/conflict misses

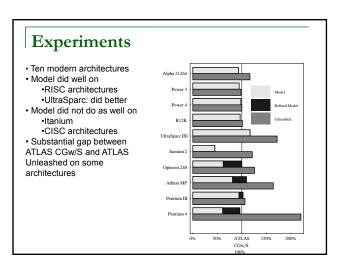
If tiles are copied into contiguous memory, condition for only cold misses: □ 3*NB² <= L1Size



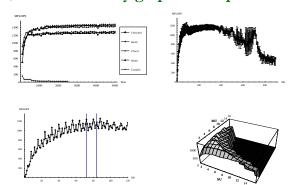
Largest NB for no capacity misses ■ MMM: for (int j = 0, 1 < N, 1++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0, 3 < N, 3++) for (int i = 0





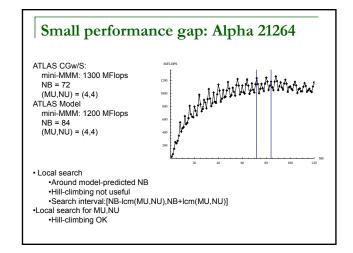


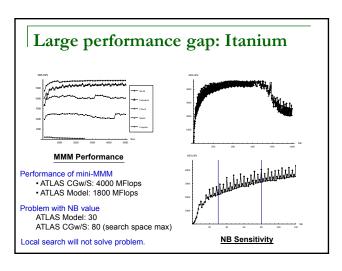
Some sensitivity graphs for Alpha 21264



Eliminating performance gaps

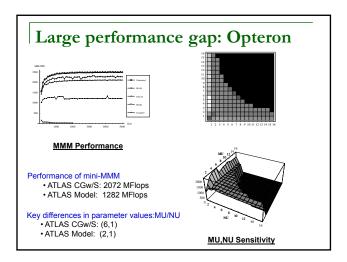
- Think globally, search locally
- Gap between model-based optimization and empirical optimization can be eliminated by
 - Local search:
 - for small performance gaps
 - in neighborhood of model-predicted values
 - Model refinement:
 - for large performance gaps
 - must be done manually
 - (future) machine learning: learn new models automatically
- Model-based optimization and empirical optimization are not in conflict





Itanium diagnosis and solution

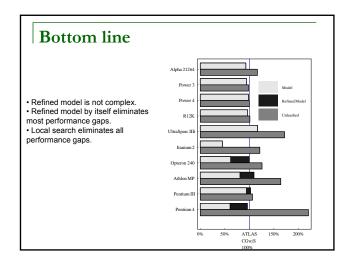
- Memory hierarchy
 - □ L1 data cache: 16 KB
 - □ L2 cache: 256 KB
 - □ L3 cache: 3 MB
- Diagnosis:
 - Model tiles for L1 cache
 - On Itanium, FP values not cached in L1 cache!
 - Performance gap goes away if we model for L2 cache (NB = 105)
 - Obtain even better performance if we model for L3 cache (NB = 360, 4.6 GFlops)
- Problem:
 - □ Tiling for L2 or L3 may be better than tiling for L1
 - How do we determine which cache level to tile for??
- Our solution: model refinement + a little search
 - Determine tile sizes for all cache levels
 - Choose between them empirically



Opteron diagnosis and solution

- Opteron characteristics
 - Small number of logical registers
 - Out-of-order issue
 - Register renaming
- For such processors, it is better to
 - let hardware take care of scheduling dependent instructions,
 - use logical registers to implement a bigger register tile.
- x86 has 8 logical registers
 - \neg register tiles must be of the form (x,1) or (1,x)

Refined model • Estinating FMA. Use the machine parameter FMA . • Estinating L_c : $L_c = \left[\frac{L_{\sigma^{\times}} \times |ALU_{FF}| + 1}{2}\right]$ • Estinating M_C and N_C : $M_{W^{\times}} \times N_C + N_C + M_C + L_c \le N_B$ 1) $M_{G^{\times}} \times N_C = 0$. 2) Solve constraint for N_C . 3) $M_C = \max \{N_C\}$. 5) $N_C = \max \{N_C\}$. 5) $N_C = \max \{N_C\}$. 6) If $M_C \in N_C$ then soop M_C and N_C . 7) Refuned Models if $N_C = 1$ then $= \frac{N_C}{N_C} = \frac{N_C}{N_C} = \frac{N_C}{N_C} = \frac{N_C}{N_C}$ 7) $N_C = \frac{N_C}{N_C} = \frac{N_C}{N_C}$ 1 Estinating $N_{D^{\times}}$ Find N_C to make it a multiple of M_C , N_C , and 2. • Estinating N_C . 1 Estinating N_C . 2 Estinating N_C .



Future Directions

- Repeat study with FFTW/SPIRAL
 - Uses search to choose between algorithms
- Feed insights back into compilers
 - Build a linear algebra compiler for generating highperformance code for dense linear algebra codes
 - Start from high-level algorithmic descriptions
 - Use restructuring compiler technology
 - Generalize to other problem domains