CS 377P:
Programming for Performance

Administration

e |nstructors:

— Keshav Pingali (Professor, CS, ECE & Ol)
e 4,126 Peter O’'Donnell Building (POB)
e Email: pingali@cs.utexas.edu

— Intel: i
e Ramesh Peri i“?'%ide
e TA:

— Maohua (Mao) Wang
e Email: maohua.ethan.wang@utexas.edu

Prerequisites

Basic computer architecture course

— (e.g.) PC, ALU, cache, memory, instruction-level
parallelism (ILP)

Basic calculus and linear algebra

— differential equations and matrix operations

Software maturity
— assignments will be in C/C++ on Linux computers
— ability to write medium-sized programs (~1000 lines)

Self-motivation

— willingness to experiment with systems

Coursework

e 6-/ programming projects

— These will be more or less evenly spaced through
the semester

— Some projects will require the use of Intel
performance analysis tools

e One mid-semester exam
— Date: TBA (just before spring break)

e Final exam

Text-book for course

No official book for course

This book is a useful reference.

"Parallel programming in C with MPI and
OpenMP", Michael Quinn, McGraw-Hill
Publishers. ISBN 0-07-282256-2

Lots of material on the web

What this course is not about

e Thisis not a clever hacks course

— We are interested in general scientific principles for
performance programming, not in squeezing out every
last cycle for somebody’s favorite program

e This is not a tools/libraries course

— We will use several tools (Intel Vtune, Advisor) and
libraries (MPI) but for us, they are a means to an end
and not end in themselves.

What this course IS about

Architects invent many hardware features for
boosting program performance

Usually, software can benefit from these features
only if it is carefully written to exploit them

Our agenda in CS 377P:

— Understand key performance-critical architectural
features in modern computers

— Develop general principles and techniques that can
guide us in writing programs to exploit these features

— Use state-of-the-art tools to put these into practice
Two major concerns:

— Exploiting parallelism

— Exploiting locality

Why worry about performance?

e Until ~2005

— Most programmers did not worry about performance
e Programs ran faster on each new generation of computer

e |f you didn’t like the performance, you waited and then bought
a new computer

— Small number of performance programmers
e Caches: exploit locality
e \ectorization

— Even smaller number of programmers
e HPC centers: worried about parallelism and locality

e Since then

— Programs do not run any faster on new hardware
unless they exploit parallelism

e \What drove this evolution?

Moore’s Law

e \What Moore said [1965]:

— Number of transistors on a chip
double every new generation of
technology (~1.5 years)

e \What people think Moore said:

— Processor frequency doubles
every 1.5 years

Gordon Moore (Intel)

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) |

Moore’s law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress = such as processing speed or the price of electronie products = are
stromgly linked to Moore's law.

20,000,000,000
10,000,000,000

5,000,000,000

1,000, 000,000
200,000,000

100,000,000
20,000,000

10,000,000
5,000,000

Transistor couwnt

1,000,000
500,000

100,000
50,000

10,000
5,000

1,000

1M 27 Stomge Cortrler
& rrora Maaen Haawal-F5 \ AR MT
Mot Ot en Berls, 3 F'iwmli i':vl;'llqll:n:dxml -3
B1. ue.'l\ukuu Phii t-' m n Iy
Hetea .3 o X
B-sra K Mafsisi- F:liq, , D:Ein-:l?&‘.ﬂiﬂm *mobiie 5007
2 B0 Hiacn :'-1:::- s KA
Bunl-cos lionkam 2 ‘qu,.m T L’I:' orm | antagoe K

Pemiiim O Fraster
| ke AT (dunl -cors AAME “moble 5ol
hg“E".:i:“m orw | F (| Aoy oy

Iiwdm 3 Madison Skl ‘wﬂﬁﬁ'ﬁf“ gl
F'nanli_mE;-E.mi::lpamzi'3 e 3 D Do

\ﬂ‘m.'E ° 1‘ o :h.:\:\m.EFLIm T Haswl

s 2 Mesinkgh I §Car 2 Doz Wotdale IM

Fontium 4 Prescofi-2 H"'E‘:‘“ Z D Mlianclala
Fentiam 4 Cedar 1

AML HEgp ‘Fﬁ'ﬂl.l'l" 4 Prégcall

Fortium 4 Nodfocdgy, g
P iﬁl:lf::‘hrl::::umm‘ hlll il Tusatin : ool
u
a0 § 0 gppursun il Coppaming e
AMD HE
A0 “ iy 1 sty
At "rq‘ u P o e
Penthimg, .l.rJ |-::.
“bﬁ.!‘ll’l
neite %
|I E |phm| l\.:l.g hi
g I,
imed BUNIGg, il o AN 3
m.:.cnm...
ﬁ:rr I
mu!ﬂ:\ai iliiian aﬁu
m &l ke
W irizl B0186

intal BEAQy @ inie BOBE .aw-m 2 .mtns
1= 8]

T 60 EMZW UEHH ES& mﬁ

FCA 1802 n; I’I:'H‘\

1o ;T‘”E&Eh%g .

FPLELLSSEL LS E LSS

Year of introduction

Dt mource: Willpeia (o en wikipadie.ongwil Translistor_cournt) 10
The date vieusization & svedable &t OuiWordnData.or. There you find mors visualizations and resserch on this topse. Licensad under CC-BY-5A by the author Mas Aosar,

" ~
Microprocessor trend data
40 Years of Microprocessor Trend Data
7
10 : ' ' ' Transistors
e IS R S . 408 ° | thousands)
A A“A&‘:A .
10° OOt SONU USROS SERUTUUTTRTORTO A At | Single-Thread
E oA A o ® @0 Perf
| | gha’a >y erformance
. g SBT3 T (SpecINT x 10°)
107 i *{}f‘ R S -
I T ﬁ‘ gL el il Frequency (MHz)
103 | AALA..e;#,I e B -
s e gl Typical Power
102 b B " ..e'-v;v;}!"ﬁﬂV"v‘z"? ----------- - (Watts)
9 v. v i
' E - '.vv"'v!}‘ ___________ '"*::"i ___________ _| Number of
10 R g $eg e Logical Cores
N v v Yviv vv : ..’:“:
O L o0) P) A e ; D ST _
10 ‘ L 2 L 4 * 0050 mmm L 2 :
| | i |
1970 1980 1990 2000 2010 2020
Year
Original data up to the year 2010 collected and plotted by M. Harowitz, F. Labonte, ®. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
4 Before 2005 S After 2005 .

BEFORE 2005

12

What were all those transistors used for?

On-chip caches

Pipelined instruction
execution

— Instruction-level parallelism
(ILP)

Many functional units

— VLIW or superscalar to keep
functional units busy

Vector units
— (e.g.) Intel’s AVX 512

Wider on-chip data-paths

— 8bit = 16 bit = 32 bit 2
64 bit

CLOCK DRIVER

INSTRUCTION
DECODE

BRANCH
PREDICTION
LOGIC

COMPLEX

BUS INTERFACE
ogic 1
SUPERSCALAR
INTEGER
EXECUTION
UNITS

FA -
LB

INSTRUCTION
SUPPORT

i PIPELINED
FLOATING
POINT

CACHE.... -

MP LOGIC

Intel Pentium floorplan

13

Caches: typical latency numbers
(today)

L1 cache reference/hit 1.5 ns 4 cycles

Floating-point add/mult/FMA operation 1.5 ns 4 cycles

L2 cache reference/hit 5 ns 12 ~ 17 cycles

L3 cache hit 16-40 ns 40-300 cycles

256MB main memory reference 75-120 ns TinyMemBench on "Broadwell" E5-
2690v4

Read 1MB sequentially from disk 5,000,000 ns 5,000 us 5ms ~200MB/sec hard disk (seek

time would be additional latency)
Random Disk Access (seek+rotation) 10,000,000 ns 10,000 us 10 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

Locality is important.

From: Latency numbers every HPC programmer should know **

Vector instructions

for (1=0; i<n; i++) Z[i] = X[i] + Y[i];

 Scalar mode Q Vector (SIMD) mode
— one instruction produces one — one instruction can produce multiple
result results
— E.g. vaddss, (vaddsd) — E.g. vaddps, (vaddpd)
< 8 doubles for AVX-512 >
4
X ﬁ X6 I %5 x4 X3 X2 x1 <0
4
v (o =21 - o -
4

Note: AVX was introduced in 2011
Before that, MMX and SSE.

15

Software challenges for
performance programmers before 2005

e Exploiting instruction-level parallelism

— (e.g.) loop unrolling to create long basic blocks
e Exploiting vector parallelism

— (e.g.) vectorization of innermost loops
e Exploiting memory hierarchy

— exploit spatial and temporal locality

— code and data transformations for enhancing
spatial and temporal locality

— (e.g.) blocking of loops

16

Getting performance is hard

e Amdahl’s Law

— Simple observation that shows that unless most
program operations can be optimized, the benefits of
performance optimization are limited

— Unoptimized portions of program become bottleneck

e Analogy: suppose | go from Austin to Houston at
60 mph, and return “infinitely” fast. What is my
average speed?

— Answer: 120 mph, not infinity

17

Amdahl’s Law (details)

e |n general, program will have both optimized and
unoptimized portions
— Suppose program has N operations
* r*N operations in optimized portion
e (1-r)*N operations in unoptimized portion
e Assume
— Unoptimized portion requires one time unit per operation

— Optimized portion can be executed infinitely fast so it takes zero
time to execute.

e Speed-up:
Original execution time = N = 1
Optimized execution time (1-r)*N (1-r)

e Evenifr=0.99, speed-up is only 100.

Unless most of your program is performance-optimized, you won’t
see much benefit. 18

SINCE 2005

19

Fundamental change since ~2005

e Moore’s Law still holds

— We get more transistors in each new
technology generation

e However

1. Architects have run out of ideas for how to
use these transistors to speed up single-
thread performance

2. Processor clock speed have stalled at roughly
1-3 GHz

20

(1) Using the additional transistors: old

ideas have run out of steam

e More cache

— More cache buys performance until working set of program fits
in cache

e Deeper pipeline

— Deeper pipeline buys frequency at expense of increased branch
mis-prediction penalty

— Deeper pipelines => higher clock frequency => more power
Add more functional units/vector units
— Diminishing returns for adding more units

Wider data paths

— Increases bandwidth between functional units in a
core but we now have comprehensive 64-bit designs

21

2) Processor clock speed increase has stalled

10000

=— 1000
&
~
3

£ 100
c
)
a
o

S 10
)
o

Source: Patrick
Gelsinger, Intel®
1970 1980 1990 2000 2010

Year

One use of transistors: go multicore

Use transistors to build
multiple cores without
increasing clock frequency

— does not require micro-
architectural
breakthroughs

— non-linear scaling of
power density with
frequency will not be a
problem

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 103)

Frequency (MHz)
Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

23

Intel Skylake chip

System
Agent
wi

display,

memory,
&1/0
controllers

Front End Instruction
Cache Tag L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
e
Tag TLB
16 B;‘cycla
Branch -
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
: g
Instruction Queue S &
(50, 2x25 entries) <
=]
o
MicroCode | 54WVay Decode
Seq;;;‘:y Cumplex” Slmple S\mple ‘ Simple |S|mp\=
Decoder Decuder Decoder || Decoder || Decader
(MS ROM)
Lapors Stack
I Engine
(SE)
5 =] |
Decoded Stream Buffer (DSE) ‘0 B
(HOP Cache) |
(L.5k pOPs; B-Way)
154 8 window) ”i"
| Allocation Queus (IDQ) (128, 2x64 LOPs) |
P P P P P P |Branch Order Buffer|
Reglster Alias Table (RAT} l'l llI 5 llI lll IlI (BOB) (48 entry)
g Rename / Allocate / Retirement o o
: Move Ehmman-n ReOrder Buffer (224 entrieg) [ones idioms | [Zeroing idioms]
3
e e S
a | |=
2 5
H ’ Scheduler .
& 1| |nteger Physical Register Filg) \Vector Physical Register File
5 | Siars entries)
LA S m— N
©
S o5
| 2o
[>=]
o
q 8
= ™
B 5
~

Execution Engine

|

Store Buffer & Forwarding
(56 entries)

ili:\! ~

Load Buffer]
(72 entries) | &

L1 Data Cache M

32KiB 8-Way

Line Fill Buffers (LFB)

Memory S

(10 entries)

ubsystem

Block diagram of each core®*

14
aphy/ar9

32B/cycle
To L3

Clusters and data-centers

e 4,200 Intel Knights Landing nodes, each with 68 cores
e 1,736 Intel Xeon Skylake nodes, each with 48 cores

e 100 Gb/sec Intel Omni-Path network with a fat tree
topology employing six core switches

25

Software challenges post-2005

e Exploiting parallelism: keep the cores busy
— Node-level and thread-level parallelism
— Load-balancing

e Exploiting memory hierarchy
— Spatial and temporal locality

— Avoid sharing data with other cores as far as
possible

e New kinds of bugs:

— race conditions, deadlocks

26

Parallel programming

e Shared-memory programming

Architecture: processor has some number of cores (e.g., Intel Skylake has
up to 18 cores depending on the model)

Application program is decomposed into a number of threads, which run
on these cores

Threads communicate by reading and writing memory locations
We will study pThreads and OpenMP for shared-memory programming

e Distributed-memory programming

Architecture: network of machines (Stampede II: 4,200 KNL hosts)

Application program and data structures are partitioned into processes,
which run on machines

Processes communicate by sending and receiving messages since they
have no memory locations in common

We will study MPI for distributed-memory programming

27

Major Lecture Topics

Applications

— Parallelism and locality in important algorithms
Locality

— Memory hierarchy, code and data transformations
Vector parallelism

— Vectorizing compilers

Shared-memory parallelism

— Multicore architectures, pThreads, OpenMP, TBB
Distributed-memory parallelism

— Clusters, MPI

GPUs

— CUDA

28

Intel lectures

e Some lectures will be taught by Intel
researchers

e Special focus on using Intel tools for writing,
debugging and tuning parallel programs

e |f you are registered for the course, you will
get a license later for these tools

29

	CS 377P:�Programming for Performance
	Administration
	Prerequisites
	Coursework
	Text-book for course
	What this course is not about
	What this course IS about
	Why worry about performance?
	Moore’s Law
	Slide Number 10
	Microprocessor trend data
	Before 2005
	What were all those transistors used for?
	Caches: typical latency numbers (today)
	Vector instructions
	Software challenges for �performance programmers before 2005
	Getting performance is hard
	Amdahl’s Law (details)
	Since 2005
	Fundamental change since ~2005
	(1) Using the additional transistors: old ideas have run out of steam
	 (2) Processor clock speed increase has stalled
	One use of transistors: go multicore
	Intel Skylake chip
	Clusters and data-centers
	Software challenges post-2005
	Parallel programming
	Major Lecture Topics
	Intel lectures

