
Parallel Computing:
Work, Span, Speedup bounds

Goal of lecture

• So far, we have studied
– how parallelism and locality arise in programs
– ordering constraints between tasks for

correctness or efficiency
• This lecture: introduce some key notions in

parallel computing
– Work
– Span (critical path)
– Bounds on speed-up from parallel computing

Program Model
• DAG with START and END nodes

– all nodes reachable from START
– END reachable from all nodes
– START and END are not essential

• Nodes are computations
– each computation can be executed by

a processor in some number of time-
steps

– computation may require
reading/writing shared-memory

– node weight: time taken by a processor
to perform that computation

– wi is weight of node i
• Edges are precedence constraints

– nodes other than START can be
executed only after immediate
predecessors in graph have been
executed

– known as dependences
• Very old model:

– PERT charts (late 50’s):
• Program Evaluation and Review

Technique
• developed by US Navy to manage

Polaris submarine contracts

i

START

END

Dependence DAG

Processors

1

P

…

M
em

ory

wi

Computer model
• P identical processors
• Memory

– processors have local memory
– all shared-data is stored in global memory

• How does a processor know which nodes it
must execute?

– work assignment (scheduling)
• How does a processor know when it is safe

to execute a node?
– (eg) if P1 executes node a and P2 executes

node b, how does P2 know when P1 is done?
– synchronization

• For now, let us defer these questions
• In general, time to execute program depends

on work assignment
– for now, assume only that if there is an idle

processor and a ready node, that node is
assigned immediately to an idle processor

• TP = best possible time to execute program
on P processors

START

END

Dependence DAG

Processors

1

P

…

M
em

ory

a

b

Work and critical path
• Work = § i wi

– time required to execute
program on one processor

 = T1

• Path weight
– sum of weights of nodes on

path
• Span (critical path)

– path from START to END
that has maximal weight

– this work must be done
sequentially, so you need
this much time regardless
of how many processors
you have

– call this T1

START

END

Data

Computation DAG

Processors

1

P

…
wi

Terminology

• Instantaneous parallelism
IP(t) = maximum number of

processors that can be kept
busy at each point in execution
of algorithm

• Maximal parallelism
 MP = highest instantaneous

parallelism
• Average parallelism
 AP = T1/T1
• These are properties of the

computation DAG, not of the
machine or the work assignment

1
2
3

time

1

1

1

1

1

1

1

1

1

1

Instantaneous and average parallelism

Speed-up bound (I)

• Speed-up(P) = T1/TP
– intuitively, how much faster is it to execute

program on P processors than on 1
processor?

• Bound on speed-up
– regardless of how many processors you have,

you need at least T1 units of time
– speed-up(P) · T1/T1 = § i wi /CP = AP

Amdahl’s Law

• Special case of previous bound
– suppose a fraction p of a program can be done in parallel
– suppose you have an unbounded number of parallel processors

and they operate infinitely fast
– speed-up will be at most 1/(1-p).

• Follows trivially from previous result.
• Plug in some numbers:

– p = 90%  speed-up · 10
– p = 99%  speed-up · 100

• To obtain significant speed-up, most of the program must
be performed in parallel
– serial bottlenecks can really hurt you

Scheduling

• Suppose P · MP
• There will be times during

the execution when only
a subset of “ready” nodes
can be executed.

• Time to execute DAG can
depend on which subset
of P nodes is chosen for
execution.

• To understand this better,
it is useful to have a more
detailed machine model

1
2
3

time

1

1

1

1

1

1

1

1

1

1

What if we only had 2 processors?

Machine Model

• Processors operate
synchronously (in lock-step)
– barrier synchronization in hardware
– if a processor has reached step i, it

can assume all other processors
have completed tasks in all previous
steps

• Each processor has private
memory

Shared memory

P1 P2 …… Pp

Schedules

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

0 1 2 3 4

P0 START a b d END

P1 c

Schedule 2

Schedule 1

P0

P1

1

1 1 1

1

1

Intuition: nodes along the critical path should be given preference in scheduling

Schedule: function from node to (processor, start time)
Also known as “space-time mapping”

space

time

time

space

Optimal schedules

• Optimal schedule
– shortest possible schedule for a given DAG and the given number of

processors
• Complexity of finding optimal schedules

– one of the most studied problems in CS
• DAG is a tree:

– level-by-level schedule is optimal (Aho, Hopcroft)
• General DAGs

– variable number of processors (number of processors is input to
problem): NP-complete

– fixed number of processors
• 2 processors: polynomial time algorithm
• 3,4,5…: complexity is unknown!

• Many heuristics available in the literature

Heuristic: list scheduling

• Maintain a list of nodes that are ready to execute
– all predecessor nodes have completed execution

• Fill in the schedule cycle-by-cycle
– in each cycle, choose nodes from ready list
– use heuristics to choose “best” nodes in case you cannot

schedule all the ready nodes
• One popular heuristic:

– assign node priorities before scheduling
– priority of node n:

• weight of maximal weight path from n to END
• intuitively, the “further” a node is from END, the higher its priority

List scheduling algorithm
cycle c = 0;
ready-list = {START};
inflight-list = { };
while (|ready-list|+|inflight-list| > 0) {
 for each node n in ready-list in priority order { //schedule new tasks
 if (a processor is free at this cycle) {
 remove n from ready-list and add to inflight-list;
 add node to schedule at time cycle;
 }
 else break;
 }
 c = c + 1; //increment time
 for each node n in inflight-list {//determine ready tasks
 if (n finishes at time cycle) {
 remove n from inflight-list;
 add every ready successor of n in DAG to ready-list
 }
 }
}

Example

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

P0

P1

1

1 1 1

1

1

space

time

1

2

2 3 2

4

Heuristic picks the good schedule

Not always guaranteed to produce optimal schedule
(otherwise we would have a polynomial time algorithm!)

Two applications

• Static scheduling
– create space-time diagram at compile-time
– VLIW code generation

• Dynamic scheduling
– create space-time diagram at runtime
– multicore scheduling for dense linear algebra

Scheduling instructions for VLIW
machines

START

END

a b c

d

• Processors  functional units
• Local memories  registers
• Global memory  memory
• Time  instruction
• Nodes in DAG are operations

(load/store/add/mul/branch/..)
– instruction-level parallelism

• List scheduling
– useful for scheduling innermost loop

code for pipelined, superscalar and
VLIW machines

– used widely in commercial compilers

Ops

Instruction

• Original program
 for i = 1,100
 X(i) = i
• Unroll loop 4 times: not very useful!

 for i = 1,100,4
 X(i) = i
 i = i+1
 X(i) = i
 i = i+1
 X(i) = i
 i = i+1
 X(i) = i

Loop unrolling

o

o

o

• Use new name for loop iteration variable in each
unrolled instance
 for i = 1,100,4
 X(i) = i
 i1 = i+1
 X(i1) = i1
 i2 = i+2
 X(i2) = i2
 i3 = i+3
 X(i3) = i3

Smarter loop unrolling

o

o

o

• If compiler can also figure out that X(i), X(i+1), X(i+2),
and X(i+3) are different locations, we get the following
dependence graph for the loop body

 for i = 1,100,4
 X(i) = i
 i1 = i+1
 X(i1) = i1
 i2 = i+2
 X(i2) = i2
 i3 = i+3
 X(i3) = i3

Array dependence analysis

Historical note on VLIW
processors

• Ideas originated in late 70’s-early 80’s
• Two key people:

– Bob Rau (Stanford,UIUC, TRW, Cydrome, HP)
– Josh Fisher (NYU,Yale, Multiflow, HP)

• Bob Rau’s contributions:
– transformations for making basic blocks larger:

• predication
• software pipelining

– hardware support for these techniques
• predicated execution
• rotating register files

– most of these ideas were later incorporated into the
Intel Itanium processor

• Josh Fisher:
– transformations for making basic blocks larger:

• trace scheduling: uses key idea of branch
probabilities

– Multiflow compiler used loop unrolling

Bob Rau

Josh Fisher

DAG scheduling for multicores
• Reality:

– hard to build single cycle memory that can be
accessed by large numbers of cores

• Architectural change
– decouple cores so there is no notion of a global

step
– each core/processor has its own PC and cache
– memory is accessed independently by each

core
• New problem:

– since cores do not operate in lock-step, how
does a core know when it is safe to execute a
node?

• Solution: software synchronization
– counter associated with each DAG node
– decremented when predecessor task is done

• Software synchronization increases overhead
of parallel execution
 cannot afford to synchronize at the instruction

level
 nodes of DAG must be coarse-grain: loop

iterations

START

END

a b c

d

P0: a
P1: b
P2: c d

How does P2 know when
P0 and P1 are done?

Increasing granularity:
Block Matrix Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

Original matrix multiplication

for I = 1,N
 for J = 1,N
 for K = 1,N
 C(I,J)= C(I,J)+A(I,K)*B(K,J)

Block (tiled) matrix multiplication

for IB = 1,N step B
 for JB = 1,N step B
 for KB = 1,N step B
 for I = IB, IB+B-1
 for J = JB, JB+B-1
 for K = KB, KB+B-1
 C(I,J) = C(I,J)+A(I,K)*B(K,J)

parallel loops

New problem

• Difficult to get accurate execution times of
coarse-grain nodes
– conditional inside loop iteration
– cache misses
– exceptions
– O/S processes
– ….

• Solution: runtime scheduling

Example: DAGuE

• Dongarra et al (UTK)
• Programming model for specifying DAGs for

parallel blocked dense linear algebra codes
– nodes: block computations
– DAG edges specified by programmer (see next

slides)
• Runtime system

– keeps track of ready nodes
– assigns ready nodes to cores
– determines if new nodes become ready when a

node completes

DAGuE: Tiled QR (1)

26

Tiled QR (using tiles and in/out notations)

DAGuE: Tiled QR (2)

27

Dataflow Graph for 2x2 processor grid Machine: 81 nodes, 648 cores

Tiled QR

Summary of multicore
scheduling

• Assumptions
– DAG of tasks is known
– each task is “heavy-weight” and executing task

on one worker exploits adequate locality
– no assumptions about runtime of tasks
– no lock-step execution of processors or

synchronous global memory
• Scheduling

– keep a work-list of tasks that are ready to execute
– use heuristic priorities to choose from ready tasks

Summary
• Dependence graphs

– nodes are computations
– edges are dependences

• Limits on speed-ups
– critical path
– Amdahl’s law

• DAG scheduling
– heuristic: list scheduling (many variations)
– static and dynamic scheduling
– applications: VLIW code generation, multicore scheduling for dense

linear algebra
• Major limitations:

– works for topology-driven algorithms with fixed neighborhoods since we
know tasks and dependences before executing program

– not very useful for data-driven algorithms since tasks are created
dynamically

• one solution: work-stealing, work-sharing. Study later.

	Parallel Computing:�Work, Span, Speedup bounds
	Goal of lecture
	Program Model
	Computer model
	Work and critical path
	Terminology
	Speed-up bound (I)
	Amdahl’s Law �
	Scheduling
	Machine Model
	Schedules
	Optimal schedules
	Heuristic: list scheduling
	List scheduling algorithm
	Example
	Two applications
	Scheduling instructions for VLIW machines
	Loop unrolling
	Smarter loop unrolling
	Array dependence analysis
	 Historical note on VLIW processors
	DAG scheduling for multicores
	Increasing granularity:�Block Matrix Algorithms
	New problem
	Example: DAGuE
	DAGuE: Tiled QR (1)
	DAGuE: Tiled QR (2)
	Summary of multicore scheduling
	Summary

