Parallel Computing: Work, Span, Speedup bounds
Goal of lecture

• So far, we have studied
 – how parallelism and locality arise in programs
 – ordering constraints between tasks for correctness or efficiency

• This lecture: introduce some key notions in parallel computing
 – Work
 – Span (critical path)
 – Bounds on speed-up from parallel computing
• DAG with START and END nodes
 – all nodes reachable from START
 – END reachable from all nodes
 – START and END are not essential
• Nodes are computations
 – each computation can be executed by a processor in some number of time-steps
 – computation may require reading/writing shared-memory
 – node weight: time taken by a processor to perform that computation
 – w_i is weight of node i
• Edges are precedence constraints
 – nodes other than START can be executed only after immediate predecessors in graph have been executed
 – known as dependences
• Very old model:
 – PERT charts (late 50’s):
 • Program Evaluation and Review Technique
 • developed by US Navy to manage Polaris submarine contracts
Computer model

- P identical processors
- Memory
 - processors have local memory
 - all shared-data is stored in global memory
- How does a processor know which nodes it must execute?
 - work assignment (scheduling)
- How does a processor know when it is safe to execute a node?
 - (eg) if P1 executes node a and P2 executes node b, how does P2 know when P1 is done?
 - synchronization
- For now, let us defer these questions
- In general, time to execute program depends on work assignment
 - for now, assume only that if there is an idle processor and a ready node, that node is assigned immediately to an idle processor
- $T_P =$ best possible time to execute program on P processors
Work and critical path

- **Work** = $\sum_i w_i$
 - time required to execute program on one processor
 - $= T_1$
- **Path weight**
 - sum of weights of nodes on path
- **Span (critical path)**
 - path from START to END that has maximal weight
 - this work must be done sequentially, so you need this much time regardless of how many processors you have
 - call this T_1
Terminology

- **Instantaneous parallelism**

 \[IP(t) = \text{maximum number of processors that can be kept busy at each point in execution of algorithm} \]

- **Maximal parallelism**

 \[MP = \text{highest instantaneous parallelism} \]

- **Average parallelism**

 \[AP = \frac{T_1}{T_1} \]

- These are properties of the computation DAG, not of the machine or the work assignment

Instantaneous and average parallelism
Speed-up bound (I)

- Speed-up(P) = T_1/T_P
 - intuitively, how much faster is it to execute program on P processors than on 1 processor?

- Bound on speed-up
 - regardless of how many processors you have, you need at least T_1 units of time
 - speed-up(P) · $T_1/T_1 = \sum_i w_i / CP = AP$
Amdahl’s Law

• Special case of previous bound
 – suppose a fraction p of a program can be done in parallel
 – suppose you have an unbounded number of parallel processors and they operate infinitely fast
 – speed-up will be at most $1/(1-p)$.

• Follows trivially from previous result.

• Plug in some numbers:
 – $p = 90\% \Rightarrow$ speed-up $\cdot \ 10$
 – $p = 99\% \Rightarrow$ speed-up $\cdot \ 100$

• To obtain significant speed-up, most of the program must be performed in parallel
 – serial bottlenecks can really hurt you
Scheduling

• Suppose \(P \cdot MP \)
• There will be times during the execution when only a subset of “ready” nodes can be executed.
• Time to execute DAG can depend on which subset of \(P \) nodes is chosen for execution.
• To understand this better, it is useful to have a more detailed machine model

What if we only had 2 processors?
Machine Model

- Processors operate synchronously (in lock-step)
 - barrier synchronization in hardware
 - if a processor has reached step i, it can assume all other processors have completed tasks in all previous steps
- Each processor has private memory
Schedules

Schedule: function from node to (processor, start time)
Also known as “space-time mapping”

Schedule 1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>START</td>
<td>a</td>
<td>c</td>
<td>END</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schedule 2

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>START</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>END</td>
</tr>
<tr>
<td>P1</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intuition: nodes along the critical path should be given preference in scheduling.
Optimal schedules

- **Optimal schedule**
 - shortest possible schedule for a given DAG and the given number of processors

- **Complexity of finding optimal schedules**
 - one of the most studied problems in CS

- **DAG is a tree:**
 - level-by-level schedule is optimal (Aho, Hopcroft)

- **General DAGs**
 - variable number of processors (number of processors is input to problem): NP-complete
 - fixed number of processors
 - 2 processors: polynomial time algorithm
 - 3,4,5…: complexity is unknown!

- Many heuristics available in the literature
Heuristic: list scheduling

• Maintain a list of nodes that are ready to execute
 – all predecessor nodes have completed execution

• Fill in the schedule cycle-by-cycle
 – in each cycle, choose nodes from ready list
 – use heuristics to choose “best” nodes in case you cannot schedule all the ready nodes

• One popular heuristic:
 – assign node priorities before scheduling
 – priority of node n:
 • weight of maximal weight path from n to END
 • intuitively, the “further” a node is from END, the higher its priority
List scheduling algorithm

cycle c = 0;
ready-list = \{START\};
inflight-list = \{};
while (|ready-list|+|inflight-list| > 0) {
 for each node n in ready-list in priority order { //schedule new tasks
 if (a processor is free at this cycle) {
 remove n from ready-list and add to inflight-list;
 add node to schedule at time cycle;
 }
 else break;
 }
 c = c + 1; //increment time
 for each node n in inflight-list { //determine ready tasks
 if (n finishes at time cycle) {
 remove n from inflight-list;
 add every ready successor of n in DAG to ready-list
 }
 }
}
Heuristic picks the good schedule

Not always guaranteed to produce optimal schedule (otherwise we would have a polynomial time algorithm!)
Two applications

- **Static scheduling**
 - create space-time diagram at compile-time
 - VLIW code generation
- **Dynamic scheduling**
 - create space-time diagram at runtime
 - multicore scheduling for dense linear algebra
Scheduling instructions for VLIW machines

- Processors \rightarrow functional units
- Local memories \rightarrow registers
- Global memory \rightarrow memory
- Time \rightarrow instruction
- Nodes in DAG are operations (load/store/add/mul/branch/..)
 - instruction-level parallelism
- List scheduling
 - useful for scheduling innermost loop code for pipelined, superscalar and VLIW machines
 - used widely in commercial compilers
Loop unrolling

- Original program

  ```
  for i = 1,100
    X(i) = i
  ```

- Unroll loop 4 times: not very useful!

  ```
  for i = 1,100,4
    X(i) = i
    i = i+1
    X(i) = i
    i = i+1
    X(i) = i
    i = i+1
    X(i) = i
  ```
Smarter loop unrolling

- Use new name for loop iteration variable in each unrolled instance

```plaintext
for i = 1, 100, 4
    X(i) = i
    i1 = i + 1
    X(i1) = i1
    i2 = i + 2
    X(i2) = i2
    i3 = i + 3
    X(i3) = i3
```
Array dependence analysis

- If compiler can also figure out that \(X(i), X(i+1), X(i+2), \) and \(X(i+3) \) are different locations, we get the following dependence graph for the loop body:

```plaintext
for i = 1, 1, 100, 4
    X(i) = i
    i1 = i+1
    X(i1) = i1
    i2 = i+2
    X(i2) = i2
    i3 = i+3
    X(i3) = i3
```
Historical note on VLIW processors

- Ideas originated in late 70’s-early 80’s
- Two key people:
 - Bob Rau (Stanford, UIUC, TRW, Cydrome, HP)
 - Josh Fisher (NYU, Yale, Multiflow, HP)
- Bob Rau’s contributions:
 - Transformations for making basic blocks larger:
 - Predication
 - Software pipelining
 - Hardware support for these techniques
 - Predicated execution
 - Rotating register files
 - Most of these ideas were later incorporated into the Intel Itanium processor
- Josh Fisher:
 - Transformations for making basic blocks larger:
 - Trace scheduling: uses key idea of branch probabilities
 - Multiflow compiler used loop unrolling
DAG scheduling for multicores

- **Reality:**
 - hard to build single cycle memory that can be accessed by large numbers of cores

- **Architectural change**
 - decouple cores so there is no notion of a global step
 - each core/processor has its own PC and cache
 - memory is accessed independently by each core

- **New problem:**
 - since cores do not operate in lock-step, how does a core know when it is safe to execute a node?

- **Solution: software synchronization**
 - counter associated with each DAG node
 - decremented when predecessor task is done

- **Software synchronization increases overhead of parallel execution**
 - cannot afford to synchronize at the instruction level
 - nodes of DAG must be coarse-grain: loop iterations

How does P2 know when P0 and P1 are done?
Increasing granularity: Block Matrix Algorithms

Original matrix multiplication

\[
\text{for } I = 1, N \\
\quad \text{for } J = 1, N \\
\quad \quad \text{for } K = 1, N \\
\quad \quad \quad C(I, J) = C(I, J) + A(I, K) \times B(K, J)
\]

Block (tiled) matrix multiplication

\[
\text{for } IB = 1, N \text{ step } B \\
\quad \text{for } JB = 1, N \text{ step } B \\
\quad \quad \text{for } KB = 1, N \text{ step } B \\
\quad \quad \quad \text{for } I = IB, IB + B - 1 \\
\quad \quad \quad \quad \text{for } J = JB, JB + B - 1 \\
\quad \quad \quad \quad \quad \text{for } K = KB, KB + B - 1 \\
\quad \quad \quad \quad \quad C(I, J) = C(I, J) + A(I, K) \times B(K, J)
\]

\[
\begin{array}{cc}
B_{00} & B_{01} \\
B_{10} & B_{11} \\
\end{array}
\quad \begin{array}{cc}
A_{00} & A_{01} \\
A_{10} & A_{11} \\
\end{array}
\quad \begin{array}{cc}
C_{00} & C_{01} \\
C_{10} & C_{11} \\
\end{array}
\]

\[
C_{00} = A_{00} \times B_{00} + A_{01} \times B_{10} \\
C_{01} = A_{01} \times B_{01} + A_{00} \times B_{01} \\
C_{11} = A_{11} \times B_{01} + A_{10} \times B_{01} \\
C_{10} = A_{10} \times B_{00} + A_{11} \times B_{10}
\]
New problem

• Difficult to get accurate execution times of coarse-grain nodes
 – conditional inside loop iteration
 – cache misses
 – exceptions
 – O/S processes
 – ….

• Solution: runtime scheduling
Example: DAGuE

• Dongarra et al (UTK)

• Programming model for specifying DAGs for parallel blocked dense linear algebra codes
 – nodes: block computations
 – DAG edges specified by programmer (see next slides)

• Runtime system
 – keeps track of ready nodes
 – assigns ready nodes to cores
 – determines if new nodes become ready when a node completes
FOR k = 0 .. SIZE-1
 A[k][k], T[k][k] <- DGEQRT(A[k][k])
FOR m = k+1 .. SIZE-1
 A[k][k], A[m][k], T[m][k] <-
 DTSQRT(A[k][k], A[m][k], T[m][k])
FOR n = k+1 .. SIZE-1
 A[k][n] <- DORMQR(A[k][k], T[k][k], A[k][n])
FOR m = k+1 .. SIZE-1
 A[k][n], A[m][n] <-
 DSSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

Tiled QR (using tiles and in/out notations)
DAGuE: Tiled QR (2)

Dataflow Graph for 2x2 processor grid Machine: 81 nodes, 648 cores

```
FOR k = 0 .. SIZE-1
    A(k)[k], T(k)[k] <- DGESRT(A(k)[k])
FOR n = k+1 .. SIZE-1
    A(k)[n], A(n)[k], T(k)[k] <- DSSQT(A(k)[k], A(n)[k], T(m)[m])
FOR n = k+1 .. SIZE-1
    A(k)[n(n-1)] <- DORMQR(A(k)[k], T(k)[k], A(k)[n(n-1)])
FOR n = k+1 .. SIZE-1
    A[k][n], A[n][k] <- DSSMQR(A[n][k], T[m][k], A[k][n], A[n][n])
```

Tiled QR

(b) QR factorization.
Summary of multicore scheduling

• Assumptions
 – DAG of tasks is known
 – each task is “heavy-weight” and executing task on one worker exploits adequate locality
 – no assumptions about runtime of tasks
 – no lock-step execution of processors or synchronous global memory

• Scheduling
 – keep a work-list of tasks that are ready to execute
 – use heuristic priorities to choose from ready tasks
Summary

• Dependence graphs
 – nodes are computations
 – edges are dependences

• Limits on speed-ups
 – critical path
 – Amdahl’s law

• DAG scheduling
 – heuristic: list scheduling (many variations)
 – static and dynamic scheduling
 – applications: VLIW code generation, multicore scheduling for dense linear algebra

• Major limitations:
 – works for topology-driven algorithms with fixed neighborhoods since we know tasks and dependences before executing program
 – not very useful for data-driven algorithms since tasks are created dynamically
 • one solution: work-stealing, work-sharing. Study later.