Parallel Computing: Work, Span, Speedup bounds

Goal of lecture

- So far, we have studied
 - how parallelism and locality arise in programs
 - ordering constraints between tasks for correctness or efficiency
- This lecture: introduce some key notions in parallel computing
 - Work
 - Span (critical path)
 - Bounds on speed-up from parallel computing

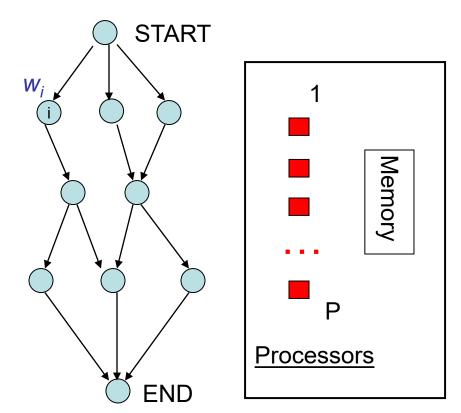
Program Model

• DAG with START and END nodes

- all nodes reachable from START
- END reachable from all nodes
- START and END are not essential

Nodes are computations

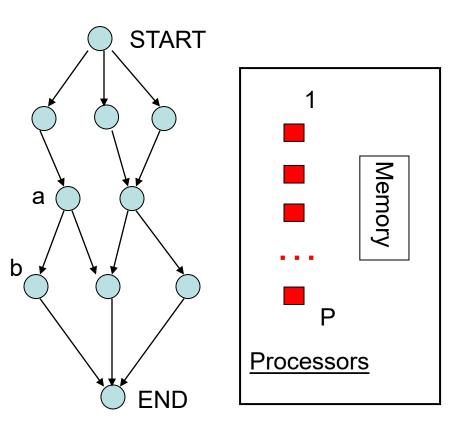
- each computation can be executed by a processor in some number of timesteps
- computation may require reading/writing shared-memory
- node weight: time taken by a processor to perform that computation
- *w_i* is weight of node *i*
- Edges are precedence constraints
 - nodes other than START can be executed only after immediate predecessors in graph have been executed
 - known as dependences
- Very old model:
 - PERT charts (late 50's):
 - Program Evaluation and Review Technique
 - developed by US Navy to manage Polaris submarine contracts



Dependence DAG

Computer model

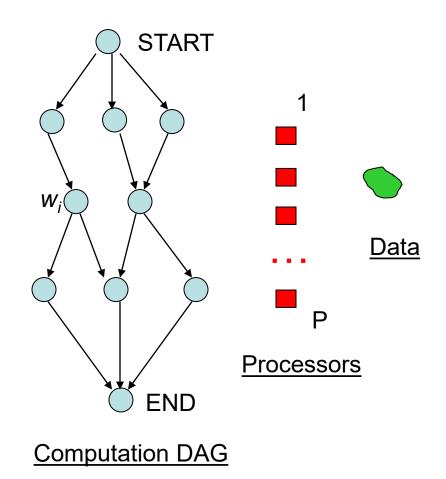
- P identical processors
- Memory
 - processors have local memory
 - all shared-data is stored in global memory
- How does a processor know which nodes it must execute?
 - work assignment (scheduling)
- How does a processor know when it is safe to execute a node?
 - (eg) if P1 executes node a and P2 executes node b, how does P2 know when P1 is done?
 - synchronization
- For now, let us defer these questions
- In general, time to execute program depends
 on work assignment
 - for now, assume only that if there is an idle processor and a ready node, that node is assigned immediately to an idle processor
- T_P = best possible time to execute program on P processors



Dependence DAG

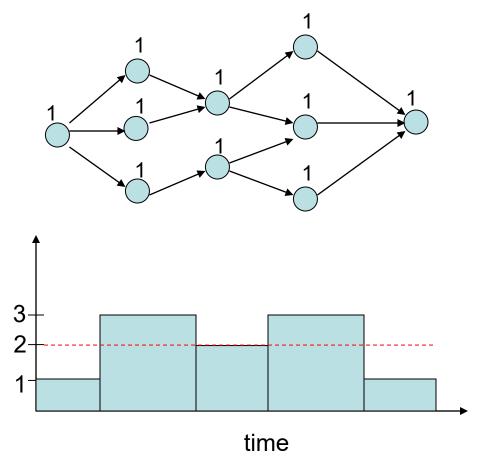
Work and critical path

- Work = $\S_i w_i$
 - time required to execute program on one processor
 T₁
- Path weight
 - sum of weights of nodes on path
- Span (critical path)
 - path from START to END that has maximal weight
 - this work must be done sequentially, so you need this much time regardless of how many processors you have
 - call this T₁



Terminology

- Instantaneous parallelism
 - IP(t) = maximum number of processors that can be kept busy at each point in execution of algorithm
- Maximal parallelism
 MP = highest instantaneous parallelism
- Average parallelism AP = T_1/T_1
- These are properties of the computation DAG, not of the machine or the work assignment



Instantaneous and average parallelism

Speed-up bound (I)

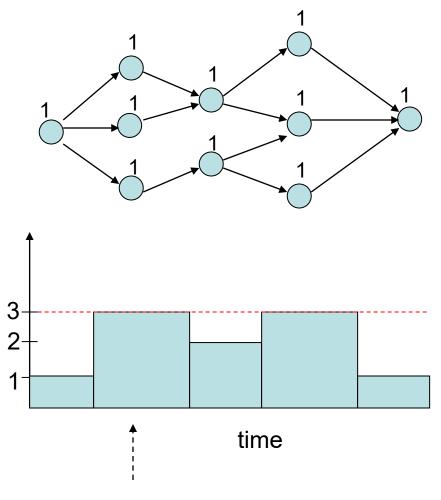
- Speed-up(P) = T_1/T_P
 - intuitively, how much faster is it to execute program on P processors than on 1 processor?
- Bound on speed-up
 - regardless of how many processors you have, you need at least T_1 units of time
 - speed-up(P) $\cdot T_1/T_1 = \S_i w_i/CP = AP$

Amdahl's Law

- Special case of previous bound
 - suppose a fraction p of a program can be done in parallel
 - suppose you have an unbounded number of parallel processors and they operate infinitely fast
 - speed-up will be at most 1/(1-p).
- Follows trivially from previous result.
- Plug in some numbers:
 - $p = 90\% \rightarrow \text{speed-up} \cdot 10$
 - p = 99% → speed-up · 100
- To obtain significant speed-up, most of the program must be performed in parallel
 - serial bottlenecks can really hurt you

Scheduling

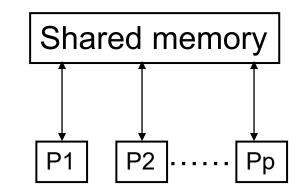
- Suppose P · MP
- There will be times during the execution when only a subset of "ready" nodes can be executed.
- Time to execute DAG can depend on which subset of P nodes is chosen for execution.
- To understand this better, it is useful to have a more detailed machine model



What if we only had 2 processors?

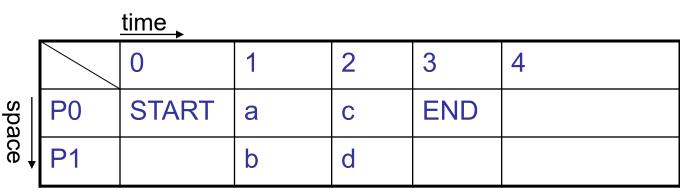
Machine Model

- Processors operate synchronously (in lock-step)
 - barrier synchronization in hardware
 - if a processor has reached step i, it can assume all other processors have completed tasks in all previous steps
- Each processor has private memory



Schedule: function from node to (processor, start time) Also known as "space-time mapping"

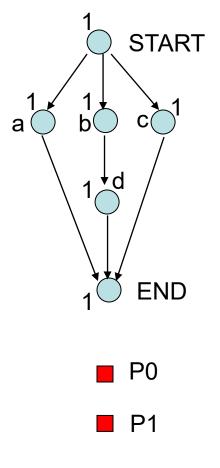
Schedule 1



Schedule 2

time

space		0	1	2	3	4	
	P0	START	а	b	d	END	
	P1		С				



Intuition: nodes along the critical path should be given preference in scheduling

Optimal schedules

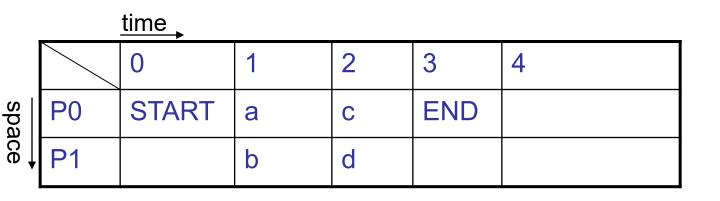
- Optimal schedule
 - shortest possible schedule for a given DAG and the given number of processors
- Complexity of finding optimal schedules
 - one of the most studied problems in CS
- DAG is a tree:
 - level-by-level schedule is optimal (Aho, Hopcroft)
- General DAGs
 - variable number of processors (number of processors is input to problem): NP-complete
 - fixed number of processors
 - 2 processors: polynomial time algorithm
 - 3,4,5...: complexity is unknown!
- Many heuristics available in the literature

Heuristic: list scheduling

- Maintain a list of nodes that are ready to execute
 - all predecessor nodes have completed execution
- Fill in the schedule cycle-by-cycle
 - in each cycle, choose nodes from ready list
 - use heuristics to choose "best" nodes in case you cannot schedule all the ready nodes
- One popular heuristic:
 - assign node priorities before scheduling
 - priority of node n:
 - weight of maximal weight path from n to END
 - intuitively, the "further" a node is from END, the higher its priority

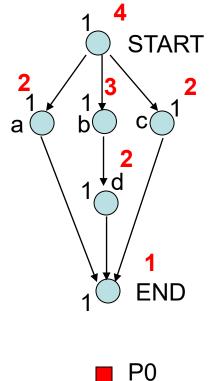
List scheduling algorithm

```
cycle c = 0;
ready-list = {START};
inflight-list = \{ \};
while (|ready-list|+|inflight-list| > 0) {
    for each node n in ready-list in priority order { //schedule new tasks
           if (a processor is free at this cycle) {
                      remove n from ready-list and add to inflight-list;
                      add node to schedule at time cycle;
           }
           else break;
    c = c + 1; //increment time
    for each node n in inflight-list {//determine ready tasks
           if (n finishes at time cycle) {
             remove n from inflight-list;
             add every ready successor of n in DAG to ready-list
           }
```

Heuristic picks the good schedule

Not always guaranteed to produce optimal schedule (otherwise we would have a polynomial time algorithm!)



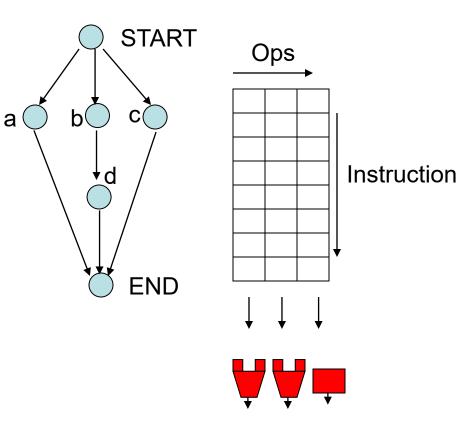
P1

Two applications

- Static scheduling
 - create space-time diagram at compile-time
 - VLIW code generation
- Dynamic scheduling
 - create space-time diagram at runtime
 - multicore scheduling for dense linear algebra

Scheduling instructions for VLIW machines

- Processors
 → functional units
- Local memories → registers
- Global memory → memory
- Time → instruction
- Nodes in DAG are operations (load/store/add/mul/branch/..)
 - instruction-level parallelism
- List scheduling
 - useful for scheduling innermost loop code for pipelined, superscalar and VLIW machines
 - used widely in commercial compilers



Loop unrolling

Original program

for i = 1,100 X(i) = i

Unroll loop 4 times: not very useful!
 for i = 1,100,4
 X(i) = i

$$x(i) = i$$

 $i = i+1$
 $x(i) = i$
 $i = i+1$
 $X(i) = i$
 $i = i+1$
 $X(i) = i$
 $X(i) = i$

Smarter loop unrolling

• Use new name for loop iteration variable in each unrolled instance

for
$$i = 1, 100, 4$$

 $X(i) = i$
 $i1 = i+1$
 $X(i1) = i1$
 $i2 = i+2$
 $X(i2) = i2$
 $i3 = i+3$
 $X(i3) = i3$

 $f_{-n} := 1 \ 1 \ 0 \ 0 \ 1$

Array dependence analysis

 If compiler can also figure out that X(i), X(i+1), X(i+2), and X(i+3) are different locations, we get the following dependence graph for the loop body

for i = 1,100,4

$$X(i) = i$$

 $i1 = i+1$
 $X(i1) = i1$
 $i2 = i+2$
 $X(i2) = i2$
 $i3 = i+3$
 $X(i3) = i3$

Historical note on VLIW

processors

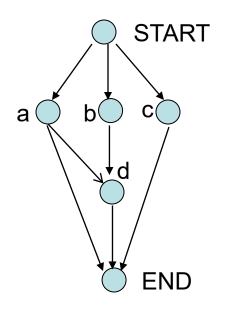
- Ideas originated in late 70's-early 80's
- Two key people:
 - Bob Rau (Stanford, UIUC, TRW, Cydrome, HP)
 - Josh Fisher (NYU, Yale, Multiflow, HP)
- Bob Rau's contributions:
 - transformations for making basic blocks larger:
 - predication
 - software pipelining
 - hardware support for these techniques
 - predicated execution
 - rotating register files
 - most of these ideas were later incorporated into the Intel Itanium processor
- Josh Fisher:
 - transformations for making basic blocks larger:
 - trace scheduling: uses key idea of branch probabilities
 - Multiflow compiler used loop unrolling

Bob Rau

Josh Fisher

DAG scheduling for multicores

- Reality:
 - hard to build single cycle memory that can be accessed by large numbers of cores
- Architectural change
 - decouple cores so there is no notion of a global step
 - each core/processor has its own PC and cache
 - memory is accessed independently by each core
- New problem:
 - since cores do not operate in lock-step, how does a core know when it is safe to execute a node?
- Solution: software synchronization
 - counter associated with each DAG node
 - decremented when predecessor task is done
- Software synchronization increases overhead of parallel execution
 - cannot afford to synchronize at the instruction level
 - nodes of DAG must be coarse-grain: loop iterations



P0:	а
P1:	b
P2:	c d

How does P2 know when P0 and P1 are done?

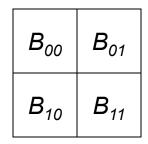
Increasing granularity: Block Matrix Algorithms

Original matrix multiplication

for I = 1, Nfor J = 1, Nfor K = 1, NC(I,J) = C(I,J) + A(I,K) * B(K,J)

Block (tiled) matrix multiplication

for IB = 1, N step B for JB = 1, N step B for KB = 1, N step B for I = IB, IB+B-1for J = JB, JB+B-1for K = KB, KB+B-1C(I,J) = C(I,J)+A(I,K)*B(K,J)



A ₀₀	A ₀₀ A ₀₁		<i>C</i> ₀₀	<i>C</i> ₀₁	
A ₁₀	A ₁₁		C ₁₀	C ₁₁	

$$C_{00} = A_{00} * B_{00} + A_{01} * B_{10}$$

$$C_{01} = A_{01} * B_{11} + A_{00} * B_{01}$$

$$C_{11} = A_{11} * B_{01} + A_{10} * B_{01}$$

$$C_{10} = A_{10} * B_{00} + A_{11} * B_{10}$$

New problem

- Difficult to get accurate execution times of coarse-grain nodes
 - conditional inside loop iteration
 - cache misses
 - exceptions

.

- O/S processes
- Solution: runtime scheduling

Example: DAGuE

- Dongarra et al (UTK)
- Programming model for specifying DAGs for parallel blocked dense linear algebra codes
 - nodes: block computations
 - DAG edges specified by programmer (see next slides)
- Runtime system
 - keeps track of ready nodes
 - assigns ready nodes to cores
 - determines if new nodes become ready when a node completes

DAGuE: Tiled QR (1)

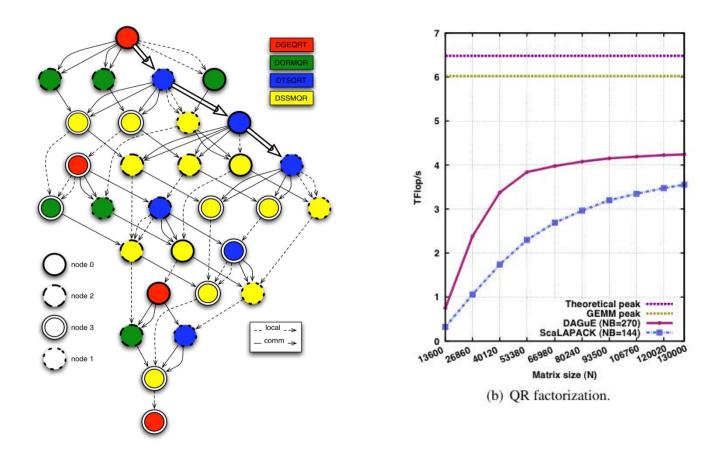
```
FOR k = 0 .. SIZE-1
 A[k][k], T[k][k] <- DGEQRT(A[k][k])
  FOR m = k+1 .. SIZE-1
   A[k][k], A[m][k], T[m][k] <-
         DTSQRT(A[k][k], A[m][k], T[m][k])
  FOR n = k+1 .. SIZE-1
   A[k][n] \leq DORMQR(A[k][k], T[k][k], A[k][n])
    FOR m = k+1 .. SIZE-1
     A[k][n], A[m][n] < -
           DSSMQR(A[m][k], T[m][k], A[k][n], A[m][n])
```

A _{0,0}	A _{0,1}	A _{0,2}	$A_{0,3}$	$A_{0,4}$	A _{0,5}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}	A _{1,5}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}	A _{2,5}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}	A _{3,5}
A _{4,0}	A _{4,1}	A _{4,2}	$A_{4,3}$	A _{4,4}	A _{4,5}
A _{5,0}	A _{5,1}	A _{5,2}	$A_{5,3}$	A _{5,4}	A _{5,5}

Tiled QR (using tiles and in/out notations)

DAGuE: Tiled QR (2)

FOR k = 0 .. SIZE-1
A[k][k], T[k][k] <- DGEQRT(A[k][k])
FOR m = k+1 .. SIZE-1
A[k][k], A[m][k], T[m][k] <DTSQRT(A[k][k], A[m][k], T[m][k])
FOR n = k+1 .. SIZE-1
A[k][n] <- DORMQR(A[k][k], T[k][k], A[k][n])
FOR m = k+1 .. SIZE-1
A[k][n], A[m][n] <DSSMQR(A[m][k], T[m][k], A[k][n], A[m][n])</pre>



Dataflow Graph for 2x2 processor grid Machine: 81 nodes, 648 cores

Summary of multicore scheduling

Assumptions

- DAG of tasks is known
- each task is "heavy-weight" and executing task on one worker exploits adequate locality
- no assumptions about runtime of tasks
- no lock-step execution of processors or synchronous global memory
- Scheduling

keep a work-list of tasks that are ready to execute
use heuristic priorities to choose from ready tasks

<u>Summary</u>

- Dependence graphs
 - nodes are computations
 - edges are dependences
- Limits on speed-ups
 - critical path
 - Amdahl's law
- DAG scheduling
 - heuristic: list scheduling (many variations)
 - static and dynamic scheduling
 - applications: VLIW code generation, multicore scheduling for dense linear algebra
- Major limitations:
 - works for topology-driven algorithms with fixed neighborhoods since we know tasks and dependences before executing program
 - not very useful for data-driven algorithms since tasks are created dynamically
 - one solution: work-stealing, work-sharing. Study later.