
Parallel-prefix computation



fromleft



Outline

• Prefix-sum computation problem
– Scan computation: generalization in which addition is 

replaced by an associative operation like *, min, max, 
and, or etc.

• Parallel prefix computation
– Divide and conquer algorithms that expose 

parallelism that is not obvious from get-go
• Applications of parallel prefix computation

– Many seemingly sequential problems can be 
parallelized



Parallelization: two threads

2 4 6 8 1 5 9 8

2 6 12 20 1 6 15 23

2 6 12 20 21 26 35 43

• Step 1: threads compute prefix-sum for left and right halves of array in 
parallel using some algorithm (say sequential algorithm)

• Step 2: add final element from first half to elements of second half 
• Divide work between threads
• Block partitioning so no ping-ponging of cache lines

• Another implementation of step 2: easier to generalize to more threads
• Let Thread 2 perform all the updates to right half of array

Thread 1 Thread 2

Thread 2
fromleft

Step 1

Step 2 Thread 1



Recursive Python program



Serial or recursive scan



Another strategy

2 4 6 8 1 5 9 8

2 4 6 8 1 5 9 8

2 6 12 20 21 26 35 43

• Step 1: each thread computes sum of left/right half of array in 
parallel without updating array

• Step 2: 
• fromleft values

• fromleft = 0 for Thread 1
• fromleft = sum from Thread 1 for Thread 2

• compute prefix-sum for left and right sub-arrays, using fromleft 
values to initialize the prefix-sum computations

Thread 1 Thread 2

Thread 2
fromleft = 20

Step 1

Step 2
Thread 1

fromleft = 0

sum = 20 sum=23 
(discard)



In the limit

• Assume large array, 
unbounded # of processors

• Up-sweep:
– Build a balanced binary tree 

with array elements at leaves
– Compute sum values at each 

node bottom up

• Down-sweep:
– Top-down computation of 

fromleft values, using sum 
values computed in up-sweep 

P

L R

sum[Leafnode] = input[Leafnode]
sum[P] = sum[L] + sum[R] 

fromleft[Root] = 0
fromleft[L] = fromleft[P]
fromleft[R] = fromleft[L]+sum[L]

2 4 6 8 1 5 9 8
input





















Quicksort

Best / expected case work
O(1)
O(n)

1. Pick a pivot element
2. Partition all the data into:

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Easy: Do the two recursive calls in parallel
• Work: unchanged. Total: O(n log n)
• Span: now T(n) = O(n) + 1T(n/2) = O(n)











Summary

• Important parallel programming patterns
– map: f x sequence → sequence

• apply f to each element of input sequence to produce output sequence

– reduce: f x sequence → value
• f is reduction function: binary and associative (sometimes commutative 

as well)
• combine elements of sequence using f to produce output

– filter: p x sequence → sequence
• p is predicate
• output elements in input sequence that satisfy predicate

– scan: f x sequence → sequence
• f is reduction function


	�Parallel-prefix computation
	Slide Number 2
	Outline
	Parallelization: two threads
	Recursive Python program
	Slide Number 6
	Another strategy
	In the limit
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Quicksort
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Summary

