
Parallel-prefix computation



fromleft



Outline

• Prefix-sum computation problem
– Scan computation: generalization in which addition is 

replaced by an associative operation like *, min, max, 
and, or etc.

• Parallel prefix computation
– Divide and conquer algorithms that expose 

parallelism that is not obvious from get-go
• Applications of parallel prefix computation

– Many seemingly sequential problems can be 
parallelized



Parallelization: two threads

2 4 6 8 1 5 9 8

2 6 12 20 1 6 15 23

2 6 12 20 21 26 35 43

• Step 1: threads compute prefix-sum for left and right halves of array in 
parallel using some algorithm (say sequential algorithm)

• Step 2: add final element from first half to elements of second half 
• Divide work between threads
• Block partitioning so no ping-ponging of cache lines

• Another implementation of step 2: easier to generalize to more threads
• Let Thread 2 perform all the updates to right half of array

Thread 1 Thread 2

Thread 2
fromleft

Step 1

Step 2 Thread 1



Recursive Python program



Serial or recursive scan



Another strategy

2 4 6 8 1 5 9 8

2 4 6 8 1 5 9 8

2 6 12 20 21 26 35 43

• Step 1: each thread computes sum of left/right half of array in 
parallel without updating array

• Step 2: 
• fromleft values

• fromleft = 0 for Thread 1
• fromleft = sum from Thread 1 for Thread 2

• compute prefix-sum for left and right sub-arrays, using fromleft 
values to initialize the prefix-sum computations

Thread 1 Thread 2

Thread 2
fromleft = 20

Step 1

Step 2
Thread 1

fromleft = 0

sum = 20 sum=23 
(discard)



In the limit

• Assume large array, 
unbounded # of processors

• Up-sweep:
– Build a balanced binary tree 

with array elements at leaves
– Compute sum values at each 

node bottom up

• Down-sweep:
– Top-down computation of 

fromleft values, using sum 
values computed in up-sweep 

P

L R

sum[Leafnode] = input[Leafnode]
sum[P] = sum[L] + sum[R] 

fromleft[Root] = 0
fromleft[L] = fromleft[P]
fromleft[R] = fromleft[L]+sum[L]

2 4 6 8 1 5 9 8
input





















Quicksort

Best / expected case work
O(1)
O(n)

1. Pick a pivot element
2. Partition all the data into:

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Easy: Do the two recursive calls in parallel
• Work: unchanged. Total: O(n log n)
• Span: now T(n) = O(n) + 1T(n/2) = O(n)











Summary

• Important parallel programming patterns
– map: f x sequence → sequence

• apply f to each element of input sequence to produce output sequence

– reduce: f x sequence → value
• f is reduction function: binary and associative (sometimes commutative 

as well)
• combine elements of sequence using f to produce output

– filter: p x sequence → sequence
• p is predicate
• output elements in input sequence that satisfy predicate

– scan: f x sequence → sequence
• f is reduction function
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