CASE STUDY OF SHARED-MEMORY
PARALLELIZATION

aaaaaaaaaaaaaaaaaa



Agenda

* Shared Memory Review
* Performance implications of shared memory hardware
« Data sharing
» Contested accesses
* Performance implications of shared memory software
» Data races
« Deadlocks
* Poor synchronization
« Static thread scheduling
« Scalability
* Load imbalance
* Oversubscription
* Lock contention

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Shared Memory Review

'T’UUIT
, .""" ". I . u---
Core Core E[®Core. Core
| U"wtl‘,ht.a“&'g! {
" — Fn E'-'.'F‘n —, ﬁ‘n
= = = o |

e Shared L3 Cache o[
| B | *

Optimization Notice . L
Copyright ® 2018, Intel Corporation. All r gh erved. (inte

*Other names and bral dma\/b llmed hp operty of othe



Performance Implications of Shared-Memory Hardware

« Modern CPUs have a shared Basic MES|

Local

address space for all the cores Read
. . Remot

« Need to maintain correctness, as —Read ™
different cores work on the same Local
data Wite

. . Remote
« Hardware protocols maintain Write

coherency, but can have
performance impacts

https://people.cs.pitt.edu/~xianeizhang/notes/cache.html

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
and e


https://people.cs.pitt.edu/~xianeizhang/notes/cache.html

Performance Implications of Shared-Memory Hardware

« Metrics available in Intel® VTune™ Amplifier General Exploration

&l General Exploration General Exploration viewpoint (change) ©

4 }!'l., Analysis Configuration Collection Log @ Summary ) Bottom-up & Event Count  1i%l Platform

Grouping:| Function / Call Stack

Back-End Bound
Memory Bound

L2 Bound 4 N -
! Contested Accesses i Data Sharing 3 Latency S Fuall
: LY |

Function / Call Stack .

grid_intersect 4.9% | U6%| 97.8%
sphere_intersect 0.0% 0.0% 0.0% 33.1% 0.0%
grid_bounds_intersect 0.0% 0.0% 0.0% 30.9% 0.0%

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Data Sharing

Why: Sharing clean data (read sharing) among cores (at L2 level) has a penalty
at least the first time due to coherency

What Now: If this metric is highlighted for your hotspot, locate the source code

line(s) that is generating HITs by viewing the source.

» Look forthe MEM LOAD L3 HIT_RETIRED.XSNP_HIT_PS event which will tag to the next
instruction after the one that generated the HIT.

= Use knowledge of the code to determine if real or false sharing is taking place. Make
appropriate fixes:
» For real sharing, reduce sharing requirements
» For false sharing, pad variables to cache line boundaries

Optimization Notice

Copyright © 2018, Intel C
*



Contested Accesses

Why: Sharing modified data among cores (at L2 level) can raise the latency of
data access

What Now: If this metric is highlighted for your hotspot, locate the source code

line(s) that is generating HITMs by viewing the source.
» Look forthe MEM LOAD L3 HIT_RETIRED.XSNP_HITM_PS event which will tag to the next
instruction after the one that generated the HITM.
= Use knowledge of the code to determine if real or false sharing is taking place. Make
appropriate fixes:
» For real sharing, reduce sharing requirements
» For false sharing, pad variables to cache line boundaries

Optimization Notice

Copyright © 2018, Intel C
*



Performance Implications of Shared-Memory Software

 Dataraces

* Deadlocks

* Poor synchronization
 Static thread scheduling
* Scalability

* Load imbalance

* Oversubscription

 Lock contention




Data Races - SSSP

do {
auto old_dst_dist = dst_data.load();
auto new_dst_dist = src_data.load() + w;
if (new_dst_dist < old_dst_dist) {
dst_data = new_dst_dist;
swapped = true;
}
} while (!swapped);

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

Application may:

Crash Immediately

Hang

Run but give incorrect results

Run and give correct results

Run correctly 99 times but crash once
(usually once you ship it to customers)

Non-determinism is always a concern in parallel
programming. It may depend on how the OS
decides to schedule threads.

*Other names and brands may be claimed as the property of others.



Data Races - SSSP

do {

do {
auto old_dst_dist

dst_data.load();

auto old_dst_dist = dst_data.load();
auto new_dst_dist = src_data.load() + w;

auto new_dst_dist = src_data.load() + w;
if (new_dst_dist < old_dst_dist) {

dst_data = new_dst_dist;

if (new_dst_dist < old_dst_dist) {
swapped = true;

}
} while (!swapped);

pthread_mutex_lock(&swap_mutex);
dst_data = new_dst_dist;

swapped = true;
pthread_mutex_unlock(&swap_mutex);

}
} while (!swapped);

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Threading Problems- Deadlock

CRITICAL_SECTION csi;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;

InitializeCriticalSection(&cs1); // Allocation Site (csl)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

LeaveCriticalSection(&cs2);
LeaveCriticalSection(&csl);

Thread #1 Thread #2
EnterCriticalSection(&cs1); EnterCriticalSection(&cs2);
X++; y++;
EnterCriticalSection(&cs2); EnterCriticalSection(&csl);
y++; X++;

LeaveCriticalSection(&csl);
LeaveCriticalSection(&cs2);

Deadlock

1. EnterCriticalSection(&cs1); in thread #1
2. EnterCriticalSection(&cs2); in thread #2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Poor Synchronization - SSSP

(v) Effective CPU Utilization Histogram

do { @ EIapSEd T'me : 39.869s This histogram displays a percentage of the wall time the sf
& CPU Time “: 436.670s CPU utilization value.
auto old_dst_dist = dst_data.load(); () Effective Time ~': 269.428s
Spin Time = 167.242s & 854 g cp
. . @ o
auto new_dst_dist = src_data.load() + w; Overhead Time *: 0s E = : %
Total Thread Count: 18 654 @ % e
Paused Time 1.265s =1 i
[ 5la
. . . 45+ 018
if (new_dst_dist < old _dst_dist) { 3o
(~) Top Hotspots 519
pthread_mutex_lock(&swap_mutex); This section lists the most active functions in your application. 251 : E
Optimizing these hotspot functions typically results in improving overall 5
_ . . application performance. 054 I - . .
&dst_data = new_dst_dist; 0 18 o 20 20
Function Module Module CPU Time © g " Py
pthread_mutex_unlock(&swap_mutex); _L_unlock_697 libpthread.s0.0 libpthread.s0.0  176.103s
} _L_lock_791 libpthread.so0.0 libpthread.so.0 148.5768
else {
D: o 0s 55 10s 15s 20s 255 30s 35s ~ Thread v
swapped = true; :
~ wSpin and Overhead Ti...
s 1 . -
} unite (1suapped); oo s | OO ...
" CPU Utilization
— n_thrond (TN [PPSR T PV P T YT RPN YT PR T Ye——— | ¥ wuSpin and Overhead Ti...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Efficient Synchronization - SSSP

do .
{ Elapsed Time “: 6.124s
auto old_dst_dist = dst_data.load(); CPU Time ™ 49.720s Effective CPU Utilization Histogram
Total Th"ejﬂd Cf’um: 18 This histogram displays a percentage of the wall time the sp
auto new_dst_dist = src_data.load() + w; Paused Time = 1.253s CPU utilization value.
Top Hotspots e E1z
= =1
. . . This section lists the most active functions in your application. 1500ms+ & g 13
if (new_dst_dist < old_dst_dist) { Optimizing these hotspot functions typically results in improving overall E =13
application performance. & o : o
swapped = 1000ms - 8 ,%-
. Functi Module Module CPUTI =I1&
std::atomic_compare_exchange_weak(&dst_data, unetion adule  Motule ime S'Q
&old_dst_dist, new_dst_dist); compute_sssp_thread s535p 355p 23.977s 500ms 4 E’: g
graph::get_data sssp Sssp 8.740s % S
Changed I - swapped; std::__atomic_base<int>::load sssp Sssp 6.128s oms 21
- =. T T
std::__atomic_base<int>::compare_e 0 %og 20 30
sssp s5sp 2.854s
} xchange_weak d
graph::get_edge_dst sssp sSSp 2.270s
else {

"W/A Is applied to non-summable metrics.

swapped = true;

= .
o compute_sssp_thread (TID: 3., ~ @Running
) £ ¥ wCPU Time
= compute_sssp_thread (TID: 3... + oo and Overhead T
compute_sssp_thread (TID: 3... ® CPU Sample

} while (!swapped);
compute_sssp_thread (TID: 3... ~ CPU Utilization
~ @aCPU Time

~ wSpin and Overhead Ti...

compute_sssp_thread (TID: 3.

CPU Utilization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth




Efficient Synchronization - SSSP

Elapsed Time “: 39.869s

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the s

CPU Time ~: 436.670s . N
do { Effective Time ~: 269.428s CPU utllization value.
Spin Time ~; 167.242s &
. ' G . 854

auto old_dst_dist = dst_data.load(); Overhead Time 05 2 §Z
- - - Total Thread Count: 18 = E | E
. Paused Time “: 1.2658 654 @ =18
auto new_dst_dist = src_data.load() + w; g ale
I} 5 Q.
Top Hotspots 454 SiE
This section lists the most active functions in your application. % | Q
Optillmizi.ng the;e hotspot functions typically results in improving overall e } E
. . . application performance. c
if (new_dst_dist < old_dst_dist) { =
Function Module Module CPU Time os- L
(=]

-
ve
u
]
o
w
o

" " 4]
swapped = ~unlock 697 libpthread. 0.0 - libpthread. 0.0 176.103s r—_
. _L_lock_791 libpthread.so.0  libpthread.so.0 148.576s
std::atomic_compare_exchange_weak(&dst_data,

&old_dst_dist, new_dst_dist);

Elapsed Time ~: 6.124s Effective CPU Utilization Histogram
changed |= swapped; e e T This histogram displays a percentage of the wall time the s
paused Time %: 1.253s CPU utilization value.

}

1 Top Hotspots 2 51z
else { This section lists the most active functions in your application. 1500ms 4 & el : jul
Optimizing these hotspot functions typically results in improving overall 3 o IB
application performance. @ 5 1 ©
swapped = true; = .5
Function Module Module CPU Time 1000ms-w 8 I%
compute_sssp_thread sssp sssp 23.977s = e
} graph::get_data sSSP sSSP 8.740s % : Q
std::__atomic_base<int>:load sssp sssp 6.128s 500ms E‘| @
} while ( | swa ed) . std::__atomic_base<int>::compare_e v I s
. pp ] o i - - sssp sssp 2.854s ]
xchange_weak 0 ol
ms - = T T
raph::get_edge_dst $S8| BN 2.270s
graph=get_edge P P 0 05 20 30

‘N/A is applied to non-summable metrics.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth




Static Thread Scheduling - SSSP

Hardcoding thread counts or relying on inputs can have performance impacts

src_hnode
ihitiﬁli:;_""

num_thread:

ompute

* | know this was used to teach concepts

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc;

long t;

int chunk = limit/NUM_THREADS;

for(t=0;t<NUM_THREADS; t++){
range *r = new range();

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

UIPD) 3115 LUNLUIXE ]

x4

2%

=

Scalability of Maximum Site Gain

4 8 16
CPU Count

32

64

Loop lterations (Tasks) Modeling

Avg. Number of
Iterations (Tasks):
14

0.008x

0.040x

0.200x
114

5x

25x

125x

Avg. Iteration
(Task) Duration:
0.374s

0.008x

0.040x

0.200x
—11x (0.374s)

5x

25x

125%

Apply




Static Thread Scheduling - SSSP

Hardcoding thread counts or relying on inputs can have performance impacts

Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling
[ il - . - \ ; Avg. Number of Avg. Iteration
' ' : . R 16x Iterations (Tasks): (Task) Duration:
1NnlitlallZe 0O o o0 14 0.374s
- 8x
= © 0.008x 0.008x
. 0.040x 0.040x
e Q 0.200x 0.200x
, —_11x(14) —_11x (0.374s)
num thraad £ 2 0 5x 5x
- g 25% 25%
s I 125% 125x
mpute
— 2 4 8 16 32 64
CPU Count

* | know this was used to teach concepts

Use dynamic processor identification or scalable runtime
library like OpenMP or Threading Building Blocks

NUM-THREADS—=-4; NUM_THREADS = get_num_procs();
pthread_t threads[NUM_THREADS];
int rc;
long t; #pragma omp parallel for
int chunk = limit/NUM_THREADS;
for(t=0;t<NUM_THREADS; t++){

range *r = new range();

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.



Scalability is Not a Given - SSSP

Elapsed Time . 22.947s

CPU Time ~: 21.470s SSSP

Total Thread Count: 3 25
Dajead Time = 1 257

Elapsed Time “: 15.791s 20

CPU Time ~: 25.830s
Total Thread Count; 4 15

Time

Elapsed Time ~: 10.978s 10

CPU Time ~: 30.200s
Total Thread Count: 6 —9

Elapsed Time ~: 7.239s

CPU Time @ 34.140s 0
Total Thread Count: 10

0 5 10 15 20
Threads

Elapsed Time ~: 6.124s
CPU Time ~: 49.720s
Total Thread Count: 18
Paused Time ~: 1.253s

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Scalability is Not a Given - SSSP

Strong Scaling - Solution time scales with the number of processors for a
fixed total problem size.

Weak Scaling - Solution time scales with the number of processors for a
fixed total problem size per processor - i.e. scales if the problem size also scales

Serial Time will always be a limiting factor as well.

O: o4

CUTTTI WIS SO ap_UTead (T o,

compute_sssp_thread (TID: 3...

Thread

compute_sssp_thread (TID: 3...

compute_sssp_thread (TID: 3...

sssp (TID; 20524)
Thread (TID:; 0)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
and brands may be claimed as the property of others.



Load Balancing

* Work should be divided among threads
evenly

*  Whatis even?
* Loop Iterations? Elements to process?

* Intelligent parallelism uses dynamic workload
balancing

* Work stealing and/or dynamic chunking

Should we divide work by subgraphs?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Load Balancing - Work Stealing

Worker
thread

\ 4

§
. 4

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Example - Calculating Prime Numbers

41 @int _tmain(int argc, TCHAR* argv[]) .

a2 | { * Is7 prime?

43 DWORD msBegin = timeGetTime(); .

4 * |s 76853341 prime?
45 | #pragma omp parallel for

46 for(int p = 23; p <= limit; p += 2) { ] i ]
47 if (IsPrime(p)) Tick(); Static Scheduling/Chunking:
48 }

49 DWORD msDuration = timeGetTime() - msBegin; ® CheCk 1'1 OOOO

50

51 printf("MS: %d\n", msDuration); * CheCk 10001 _20000
52 printf("primes = %d\n", primes); ° Check 20001 _30000
53 return primes != correctCount;

54 |} ®

55

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Example - Calculating Prime Numbers

41 @int _tmain(int argc, TCHAR* argv[])
a2 | ¢ () CPU Usage Histogram [5
43 DWORD msBegin _ ‘timeGetTime() . This histogram displays a percentage of the wall time the specific number of CPUs
44 _ |
2557 2 5
45 | #pragma omp parallel for : E =
46 for(int p = 3; p <= limit; p += 2) { 25—§ %:
47 if (IsPrime(p)) Tick(); o EY
155 =l
48 + |
49 DWORD msDuration = timeGetTime() - msBegin; 15 :
50 |
. ; 0.55 1
51 printf("M5: %d\n", msDuration); : |
52 printf("primes = %d\n", primes); 0s
53 return primes != correctCount;
sa |} -E_M M
55 N Simultaneously Utilized Logical CPUs
CoQiC-ce 08 1 1s 2 25 3 3% 45 4% 5 ss 6 65 75 [4][Tead v
OMP Worker Thread ... [ Running
OMP Worker Thread ... uk CPU Time
OMP Worker Thread ... ik Spin and Ov...
- OMP Master Thread #... [C]* Hardware Even...
E [+] CPU Time
= V] ik CPU Time
[] duk Spin and Ov...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Example - Calculating Prime Numbers

41 —int _tmain(int argc, TCHAR* argv[]) ©) CPU Usage Histogram
42 { This histogram displays a percentage of the wall time the specific number of CPUs
43 DWORD msBegin = timeGetTime();
a4 *7e 5!
45 | #pragma omp parallel for schedule (dynamic, 1088) E g:
46 for(int p = 3; p <= limit; p += 2) { 15512 gl
a7 if (IsPrime(p)) Tick(); & g
48 } 15 4 :
19 DWORD msDuration = timeGetTime() - msBegin; I
1% 0.5s 4 :
51 printf({"MS: #d\n", msDuration);
52 printf("primes = %d\n", primes); 0s -
53 return primes != correctCount;
s1 |y -E_M M
55 Simultaneously Utilized Logical CPUs
I I
Qe Ok Q=i . - - = = o .5'5|! Thread v
OMP Worker Thread ... = Running
OMP Master Thread #... Wk CPU Time
— |OMP Worker Thread ... [] uk Spin and Ow...
@ OMP Worker Thread ... []1* Hardware Even..,
= [¥] CPU Time

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Oversubscription

) Elapsed Time ": 4.610s

&) CPU Time 6.760s
(3) Effective Time”: 6.256s
@ spin Time % 0.5045
(3) Overhead Time 7 0s
Total Thread Count: a
Paused Time 7- 0s

(~) Elapsed Time <
© cPU Time &
® Effective Time .

-

(3) Spin Time“:

() Overhead Time

Total Thread Count:
Paused Time -

9.567s

6.34T7s

5.068s
12825 &

Os

132

Os

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Common Causes:

* Nested Parallelism
* Manual Threading
« Library Usage




Lock Contention

Acquiring and releasing a lock isn't free — it has overhead
Threads waiting for a lock also impacts performance
How do we balance these?

Imagine an array that multiple threads read and write

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Lock Contention

|

1 Shared Lock?

T R R R R e e [ihread
|_start (0x628 . . ) : . . . ) B ) ) B [~] @8 Running
TBB\M::erT | [¥] ] Waits
[TBB Worker T| - T LR e g e g g T R TR s e e e
TBE Worker T QoQQ-Qe 5875 5.88s 5.t§9s 595 5915 5925 5935 5945 5955 S'élfis 5975 5985 5.995 65 6.0ls 6.02s 6035 6.04s 6.055 6.06s  |Thread
3 TBB beerT [ start (0x628 T WY W T 4 - W H ) E [+] @ Running
@ [TBB Worker T 'TBB Worker T| [, 20K K I i, sl a.mmh.id.. . e H el ]
E [TBE Worker T i NE— DT IEOUEEE W NN NSNS ISR M- w1 1 v — LM
TBB Worker T T X v IX. 7] ek CPU Time
8B Worker T TBB Worker T ] e - :
-, [TBB Worker T ... BiE YR PR mmpnmig gugany oy ;i Transitions
@ ITBB WOTKET T | [ cnmm i o 0 S 1'E Aim . 1 ! [V]CPU Usage
= [TBB Worker T L] o . Ut CPU Time
CPU Usage [TBB Worker TI{ NI K "W X [“] Thread Conc...
e — | 1
Thread Con... lud Concurre...
K|

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth




Lock Contention

WIS N ¥ ¥R N

1 Lock per Element?

Lots of locking overhead

What can we do?
* Adjust lock granularity

« Using lock free or thread safe data structures
+ tbb:atomic<int> primes;
* tbb:concurrent_vector<int>all_primes;

* Local storage and reductions

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Summary

* Programming for shared memory is difficult
» Correctness and performance issues are unique

* Issues are from hardware and software
« Data sharing
* Contested accesses
 Deadlock
 Data races
* Poor synchronization
« Static thread scheduling
« Scalability
* Load imbalance
e Oversubscription
* Lock contention

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Software



Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.


https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

