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Agenda

* Shared Memory Review
* Performance implications of shared memory hardware
« Data sharing
» Contested accesses
* Performance implications of shared memory software
» Data races
« Deadlocks
* Poor synchronization
« Static thread scheduling
« Scalability
* Load imbalance
* Oversubscription
* Lock contention
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Shared Memory Review
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Performance Implications of Shared-Memory Hardware

« Modern CPUs have a shared Basic MES|

Local

address space for all the cores Read
. . Remot

« Need to maintain correctness, as —Read ™
different cores work on the same Local
data Wite

. . Remote
« Hardware protocols maintain Write

coherency, but can have
performance impacts

https://people.cs.pitt.edu/~xianeizhang/notes/cache.html
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Performance Implications of Shared-Memory Hardware

« Metrics available in Intel® VTune™ Amplifier General Exploration

&l General Exploration General Exploration viewpoint (change) ©

4 }!'l., Analysis Configuration Collection Log @ Summary ) Bottom-up & Event Count  1i%l Platform

Grouping:| Function / Call Stack

Back-End Bound
Memory Bound

L2 Bound 4 N -
! Contested Accesses i Data Sharing 3 Latency S Fuall
: LY |

Function / Call Stack .

grid_intersect 4.9% | U6%| 97.8%
sphere_intersect 0.0% 0.0% 0.0% 33.1% 0.0%
grid_bounds_intersect 0.0% 0.0% 0.0% 30.9% 0.0%
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Data Sharing

Why: Sharing clean data (read sharing) among cores (at L2 level) has a penalty
at least the first time due to coherency

What Now: If this metric is highlighted for your hotspot, locate the source code

line(s) that is generating HITs by viewing the source.

» Look forthe MEM LOAD L3 HIT_RETIRED.XSNP_HIT_PS event which will tag to the next
instruction after the one that generated the HIT.

= Use knowledge of the code to determine if real or false sharing is taking place. Make
appropriate fixes:
» For real sharing, reduce sharing requirements
» For false sharing, pad variables to cache line boundaries
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Contested Accesses

Why: Sharing modified data among cores (at L2 level) can raise the latency of
data access

What Now: If this metric is highlighted for your hotspot, locate the source code

line(s) that is generating HITMs by viewing the source.
» Look forthe MEM LOAD L3 HIT_RETIRED.XSNP_HITM_PS event which will tag to the next
instruction after the one that generated the HITM.
= Use knowledge of the code to determine if real or false sharing is taking place. Make
appropriate fixes:
» For real sharing, reduce sharing requirements
» For false sharing, pad variables to cache line boundaries
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Performance Implications of Shared-Memory Software

 Dataraces

* Deadlocks

* Poor synchronization
 Static thread scheduling
* Scalability

* Load imbalance

* Oversubscription

 Lock contention




Data Races - SSSP

do {
auto old_dst_dist = dst_data.load();
auto new_dst_dist = src_data.load() + w;
if (new_dst_dist < old_dst_dist) {
dst_data = new_dst_dist;
swapped = true;
}
} while (!swapped);
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Application may:

Crash Immediately

Hang

Run but give incorrect results

Run and give correct results

Run correctly 99 times but crash once
(usually once you ship it to customers)

Non-determinism is always a concern in parallel
programming. It may depend on how the OS
decides to schedule threads.
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Data Races - SSSP

do {

do {
auto old_dst_dist

dst_data.load();

auto old_dst_dist = dst_data.load();
auto new_dst_dist = src_data.load() + w;

auto new_dst_dist = src_data.load() + w;
if (new_dst_dist < old_dst_dist) {

dst_data = new_dst_dist;

if (new_dst_dist < old_dst_dist) {
swapped = true;

}
} while (!swapped);

pthread_mutex_lock(&swap_mutex);
dst_data = new_dst_dist;

swapped = true;
pthread_mutex_unlock(&swap_mutex);

}
} while (!swapped);
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Threading Problems- Deadlock

CRITICAL_SECTION csi;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;

InitializeCriticalSection(&cs1); // Allocation Site (csl)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

LeaveCriticalSection(&cs2);
LeaveCriticalSection(&csl);

Thread #1 Thread #2
EnterCriticalSection(&cs1); EnterCriticalSection(&cs2);
X++; y++;
EnterCriticalSection(&cs2); EnterCriticalSection(&csl);
y++; X++;

LeaveCriticalSection(&csl);
LeaveCriticalSection(&cs2);

Deadlock

1. EnterCriticalSection(&cs1); in thread #1
2. EnterCriticalSection(&cs2); in thread #2
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Poor Synchronization - SSSP

(v) Effective CPU Utilization Histogram

do { @ EIapSEd T'me : 39.869s This histogram displays a percentage of the wall time the sf
& CPU Time “: 436.670s CPU utilization value.
auto old_dst_dist = dst_data.load(); () Effective Time ~': 269.428s
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Efficient Synchronization - SSSP

do .
{ Elapsed Time “: 6.124s
auto old_dst_dist = dst_data.load(); CPU Time ™ 49.720s Effective CPU Utilization Histogram
Total Th"ejﬂd Cf’um: 18 This histogram displays a percentage of the wall time the sp
auto new_dst_dist = src_data.load() + w; Paused Time = 1.253s CPU utilization value.
Top Hotspots e E1z
= =1
. . . This section lists the most active functions in your application. 1500ms+ & g 13
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. Functi Module Module CPUTI =I1&
std::atomic_compare_exchange_weak(&dst_data, unetion adule  Motule ime S'Q
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swapped = true;
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o compute_sssp_thread (TID: 3., ~ @Running
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Efficient Synchronization - SSSP

Elapsed Time “: 39.869s

Effective CPU Utilization Histogram
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Static Thread Scheduling - SSSP

Hardcoding thread counts or relying on inputs can have performance impacts

src_hnode
ihitiﬁli:;_""

num_thread:

ompute

* | know this was used to teach concepts

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc;

long t;

int chunk = limit/NUM_THREADS;

for(t=0;t<NUM_THREADS; t++){
range *r = new range();
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Static Thread Scheduling - SSSP

Hardcoding thread counts or relying on inputs can have performance impacts

Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling
[ il - . - \ ; Avg. Number of Avg. Iteration
' ' : . R 16x Iterations (Tasks): (Task) Duration:
1NnlitlallZe 0O o o0 14 0.374s
- 8x
= © 0.008x 0.008x
. 0.040x 0.040x
e Q 0.200x 0.200x
, —_11x(14) —_11x (0.374s)
num thraad £ 2 0 5x 5x
- g 25% 25%
s I 125% 125x
mpute
— 2 4 8 16 32 64
CPU Count

* | know this was used to teach concepts

Use dynamic processor identification or scalable runtime
library like OpenMP or Threading Building Blocks

NUM-THREADS—=-4; NUM_THREADS = get_num_procs();
pthread_t threads[NUM_THREADS];
int rc;
long t; #pragma omp parallel for
int chunk = limit/NUM_THREADS;
for(t=0;t<NUM_THREADS; t++){

range *r = new range();
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Scalability is Not a Given - SSSP

Elapsed Time . 22.947s

CPU Time ~: 21.470s SSSP

Total Thread Count: 3 25
Dajead Time = 1 257

Elapsed Time “: 15.791s 20

CPU Time ~: 25.830s
Total Thread Count; 4 15

Time

Elapsed Time ~: 10.978s 10

CPU Time ~: 30.200s
Total Thread Count: 6 —9

Elapsed Time ~: 7.239s

CPU Time @ 34.140s 0
Total Thread Count: 10

0 5 10 15 20
Threads

Elapsed Time ~: 6.124s
CPU Time ~: 49.720s
Total Thread Count: 18
Paused Time ~: 1.253s
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Scalability is Not a Given - SSSP

Strong Scaling - Solution time scales with the number of processors for a
fixed total problem size.

Weak Scaling - Solution time scales with the number of processors for a
fixed total problem size per processor - i.e. scales if the problem size also scales

Serial Time will always be a limiting factor as well.

O: o4

CUTTTI WIS SO ap_UTead (T o,

compute_sssp_thread (TID: 3...

Thread

compute_sssp_thread (TID: 3...

compute_sssp_thread (TID: 3...

sssp (TID; 20524)
Thread (TID:; 0)
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Load Balancing

* Work should be divided among threads
evenly

*  Whatis even?
* Loop Iterations? Elements to process?

* Intelligent parallelism uses dynamic workload
balancing

* Work stealing and/or dynamic chunking

Should we divide work by subgraphs?
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Load Balancing - Work Stealing

Worker
thread

\ 4

§
. 4
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Example - Calculating Prime Numbers

41 @int _tmain(int argc, TCHAR* argv[]) .

a2 | { * Is7 prime?

43 DWORD msBegin = timeGetTime(); .

4 * |s 76853341 prime?
45 | #pragma omp parallel for

46 for(int p = 23; p <= limit; p += 2) { ] i ]
47 if (IsPrime(p)) Tick(); Static Scheduling/Chunking:
48 }

49 DWORD msDuration = timeGetTime() - msBegin; ® CheCk 1'1 OOOO

50

51 printf("MS: %d\n", msDuration); * CheCk 10001 _20000
52 printf("primes = %d\n", primes); ° Check 20001 _30000
53 return primes != correctCount;

54 |} ®

55
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Example - Calculating Prime Numbers

41 @int _tmain(int argc, TCHAR* argv[])
a2 | ¢ () CPU Usage Histogram [5
43 DWORD msBegin _ ‘timeGetTime() . This histogram displays a percentage of the wall time the specific number of CPUs
44 _ |
2557 2 5
45 | #pragma omp parallel for : E =
46 for(int p = 3; p <= limit; p += 2) { 25—§ %:
47 if (IsPrime(p)) Tick(); o EY
155 =l
48 + |
49 DWORD msDuration = timeGetTime() - msBegin; 15 :
50 |
. ; 0.55 1
51 printf("M5: %d\n", msDuration); : |
52 printf("primes = %d\n", primes); 0s
53 return primes != correctCount;
sa |} -E_M M
55 N Simultaneously Utilized Logical CPUs
CoQiC-ce 08 1 1s 2 25 3 3% 45 4% 5 ss 6 65 75 [4][Tead v
OMP Worker Thread ... [ Running
OMP Worker Thread ... uk CPU Time
OMP Worker Thread ... ik Spin and Ov...
- OMP Master Thread #... [C]* Hardware Even...
E [+] CPU Time
= V] ik CPU Time
[] duk Spin and Ov...
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Example - Calculating Prime Numbers

41 —int _tmain(int argc, TCHAR* argv[]) ©) CPU Usage Histogram
42 { This histogram displays a percentage of the wall time the specific number of CPUs
43 DWORD msBegin = timeGetTime();
a4 *7e 5!
45 | #pragma omp parallel for schedule (dynamic, 1088) E g:
46 for(int p = 3; p <= limit; p += 2) { 15512 gl
a7 if (IsPrime(p)) Tick(); & g
48 } 15 4 :
19 DWORD msDuration = timeGetTime() - msBegin; I
1% 0.5s 4 :
51 printf({"MS: #d\n", msDuration);
52 printf("primes = %d\n", primes); 0s -
53 return primes != correctCount;
s1 |y -E_M M
55 Simultaneously Utilized Logical CPUs
I I
Qe Ok Q=i . - - = = o .5'5|! Thread v
OMP Worker Thread ... = Running
OMP Master Thread #... Wk CPU Time
— |OMP Worker Thread ... [] uk Spin and Ow...
@ OMP Worker Thread ... []1* Hardware Even..,
= [¥] CPU Time
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Oversubscription

) Elapsed Time ": 4.610s

&) CPU Time 6.760s
(3) Effective Time”: 6.256s
@ spin Time % 0.5045
(3) Overhead Time 7 0s
Total Thread Count: a
Paused Time 7- 0s

(~) Elapsed Time <
© cPU Time &
® Effective Time .

-

(3) Spin Time“:

() Overhead Time

Total Thread Count:
Paused Time -

9.567s

6.34T7s

5.068s
12825 &

Os

132

Os
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Common Causes:

* Nested Parallelism
* Manual Threading
« Library Usage




Lock Contention

Acquiring and releasing a lock isn't free — it has overhead
Threads waiting for a lock also impacts performance
How do we balance these?

Imagine an array that multiple threads read and write
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Lock Contention

|

1 Shared Lock?

T R R R R e e [ihread
|_start (0x628 . . ) : . . . ) B ) ) B [~] @8 Running
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[TBB Worker T| - T LR e g e g g T R TR s e e e
TBE Worker T QoQQ-Qe 5875 5.88s 5.t§9s 595 5915 5925 5935 5945 5955 S'élfis 5975 5985 5.995 65 6.0ls 6.02s 6035 6.04s 6.055 6.06s  |Thread
3 TBB beerT [ start (0x628 T WY W T 4 - W H ) E [+] @ Running
@ [TBB Worker T 'TBB Worker T| [, 20K K I i, sl a.mmh.id.. . e H el ]
E [TBE Worker T i NE— DT IEOUEEE W NN NSNS ISR M- w1 1 v — LM
TBB Worker T T X v IX. 7] ek CPU Time
8B Worker T TBB Worker T ] e - :
-, [TBB Worker T ... BiE YR PR mmpnmig gugany oy ;i Transitions
@ ITBB WOTKET T | [ cnmm i o 0 S 1'E Aim . 1 ! [V]CPU Usage
= [TBB Worker T L] o . Ut CPU Time
CPU Usage [TBB Worker TI{ NI K "W X [“] Thread Conc...
e — | 1
Thread Con... lud Concurre...
K|
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Lock Contention

WIS N ¥ ¥R N

1 Lock per Element?

Lots of locking overhead

What can we do?
* Adjust lock granularity

« Using lock free or thread safe data structures
+ tbb:atomic<int> primes;
* tbb:concurrent_vector<int>all_primes;

* Local storage and reductions
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Summary

* Programming for shared memory is difficult
» Correctness and performance issues are unique

* Issues are from hardware and software
« Data sharing
* Contested accesses
 Deadlock
 Data races
* Poor synchronization
« Static thread scheduling
« Scalability
* Load imbalance
e Oversubscription
* Lock contention
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Software
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