
Jackson Marusarz - Intel

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

• Shared Memory Review
• Performance implications of shared memory hardware

• Data sharing
• Contested accesses

• Performance implications of shared memory software
• Data races
• Deadlocks
• Poor synchronization
• Static thread scheduling
• Scalability
• Load imbalance
• Oversubscription
• Lock contention

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Shared Memory Review

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Modern CPUs have a shared
address space for all the cores

• Need to maintain correctness, as
different cores work on the same
data

• Hardware protocols maintain
coherency, but can have
performance impacts

Performance Implications of Shared-Memory Hardware

https://people.cs.pitt.edu/~xianeizhang/notes/cache.html

https://people.cs.pitt.edu/~xianeizhang/notes/cache.html

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Metrics available in Intel® VTune™ Amplifier General Exploration

Performance Implications of Shared-Memory Hardware

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: Sharing clean data (read sharing) among cores (at L2 level) has a penalty
at least the first time due to coherency

What Now: If this metric is highlighted for your hotspot, locate the source code
line(s) that is generating HITs by viewing the source.
 Look for the MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS event which will tag to the next

instruction after the one that generated the HIT.
 Use knowledge of the code to determine if real or false sharing is taking place. Make

appropriate fixes:
 For real sharing, reduce sharing requirements
 For false sharing, pad variables to cache line boundaries

Data Sharing

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why: Sharing modified data among cores (at L2 level) can raise the latency of
data access

What Now: If this metric is highlighted for your hotspot, locate the source code
line(s) that is generating HITMs by viewing the source.
 Look for the MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS event which will tag to the next

instruction after the one that generated the HITM.
 Use knowledge of the code to determine if real or false sharing is taking place. Make

appropriate fixes:
 For real sharing, reduce sharing requirements
 For false sharing, pad variables to cache line boundaries

Contested Accesses

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Data races

• Deadlocks

• Poor synchronization

• Static thread scheduling

• Scalability

• Load imbalance

• Oversubscription

• Lock contention

Performance Implications of Shared-Memory Software

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

do {

auto old_dst_dist = dst_data.load();

auto new_dst_dist = src_data.load() + w;

if (new_dst_dist < old_dst_dist) {

dst_data = new_dst_dist;

swapped = true;

}

} while (!swapped);

Data Races - SSSP

Shared variables
unprotected

Application may:
• Crash Immediately

• Hang

• Run but give incorrect results

• Run and give correct results

• Run correctly 99 times but crash once

(usually once you ship it to customers)

Non-determinism is always a concern in parallel

programming. It may depend on how the OS

decides to schedule threads.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

do {

auto old_dst_dist = dst_data.load();

auto new_dst_dist = src_data.load() + w;

if (new_dst_dist < old_dst_dist) {

dst_data = new_dst_dist;

swapped = true;

}

} while (!swapped);

Data Races - SSSP

Shared variables
unprotected

do {

auto old_dst_dist = dst_data.load();

auto new_dst_dist = src_data.load() + w;

if (new_dst_dist < old_dst_dist) {

pthread_mutex_lock(&swap_mutex);

dst_data = new_dst_dist;

swapped = true;

pthread_mutex_unlock(&swap_mutex);

}

} while (!swapped);

Add a critical
section

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Threading Problems- Deadlock
CRITICAL_SECTION cs1;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;
InitializeCriticalSection(&cs1); // Allocation Site (cs1)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

EnterCriticalSection(&cs1);
x++;
EnterCriticalSection(&cs2);
y++;
LeaveCriticalSection(&cs2);
LeaveCriticalSection(&cs1);

EnterCriticalSection(&cs2);
y++;
EnterCriticalSection(&cs1);
x++;
LeaveCriticalSection(&cs1);
LeaveCriticalSection(&cs2);

Thread #1 Thread #2

Deadlock

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #2

1
1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

do {

auto old_dst_dist = dst_data.load();

auto new_dst_dist = src_data.load() + w;

if (new_dst_dist < old_dst_dist) {

pthread_mutex_lock(&swap_mutex);

&dst_data = new_dst_dist;

pthread_mutex_unlock(&swap_mutex);

}

else {

swapped = true;

}

} while (!swapped);

Poor Synchronization - SSSP

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Efficient Synchronization - SSSP

do {

auto old_dst_dist = dst_data.load();

auto new_dst_dist = src_data.load() + w;

if (new_dst_dist < old_dst_dist) {

swapped =
std::atomic_compare_exchange_weak(&dst_data,
&old_dst_dist, new_dst_dist);

changed |= swapped;

}

else {

swapped = true;

}

} while (!swapped);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Efficient Synchronization - SSSP

do {

auto old_dst_dist = dst_data.load();

auto new_dst_dist = src_data.load() + w;

if (new_dst_dist < old_dst_dist) {

swapped =
std::atomic_compare_exchange_weak(&dst_data,
&old_dst_dist, new_dst_dist);

changed |= swapped;

}

else {

swapped = true;

}

} while (!swapped);

O
ri

g
in

a
l

E
ff

ic
ie

n
t

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardcoding thread counts or relying on inputs can have performance impacts

Static Thread Scheduling - SSSP

* I know this was used to teach concepts

…

NUM_THREADS = 4;

pthread_t threads[NUM_THREADS];

int rc;

long t;

int chunk = limit/NUM_THREADS;

for(t=0;t<NUM_THREADS;t++){

range *r = new range();

…

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardcoding thread counts or relying on inputs can have performance impacts

Static Thread Scheduling - SSSP

* I know this was used to teach concepts

…

NUM_THREADS = 4; NUM_THREADS = get_num_procs();

pthread_t threads[NUM_THREADS];

int rc;

long t;

int chunk = limit/NUM_THREADS;

for(t=0;t<NUM_THREADS;t++){

range *r = new range();

…

Use dynamic processor identification or scalable runtime
library like OpenMP or Threading Building Blocks

#pragma omp parallel for

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Scalability is Not a Given - SSSP

0

5

10

15

20

25

0 5 10 15 20
T

im
e

Threads

SSSP

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Scalability is Not a Given - SSSP

Strong Scaling - Solution time scales with the number of processors for a
fixed total problem size.

Weak Scaling - Solution time scales with the number of processors for a
fixed total problem size per processor - i.e. scales if the problem size also scales

Serial Time will always be a limiting factor as well.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Load Balancing
• Work should be divided among threads

evenly

• What is even?

• Loop Iterations? Elements to process?

• Intelligent parallelism uses dynamic workload
balancing

• Work stealing and/or dynamic chunking

Should we divide work by subgraphs?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Load Balancing – Work Stealing

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example – Calculating Prime Numbers

• Is 7 prime?
• Is 76853341 prime?

Static Scheduling/Chunking:
• Check 1-10000
• Check 10001-20000
• Check 20001-30000
• …

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example – Calculating Prime Numbers

Load
Imbalance

OpenMP uses
Static Scheduling

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example – Calculating Prime Numbers

More Balanced
Threads

Switch to
Dynamic

Scheduling

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Oversubscription

Common Causes:
• Nested Parallelism
• Manual Threading
• Library Usage

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Lock Contention

• Acquiring and releasing a lock isn’t free – it has overhead
• Threads waiting for a lock also impacts performance
• How do we balance these?

0 N…

• Imagine an array that multiple threads read and write

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Lock Contention

0 N…

1 Shared Lock?

Dense lock
contention and

stalls

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Lock Contention

0 N…

1 Lock per Element?

Lots of locking overhead

What can we do?
• Adjust lock granularity
• Using lock free or thread safe data structures

• tbb::atomic<int> primes;
• tbb::concurrent_vector<int> all_primes;

• Local storage and reductions

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary

• Programming for shared memory is difficult
• Correctness and performance issues are unique
• Issues are from hardware and software

• Data sharing
• Contested accesses
• Deadlock
• Data races
• Poor synchronization
• Static thread scheduling
• Scalability
• Load imbalance
• Oversubscription
• Lock contention

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

30

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

