
Abstractions for algorithms

and parallel machines

Keshav Pingali

University of Texas, Austin

High-level idea

• Difficult to work directly with textual programs

– Where is the parallelism in the program?

– Solution: use an abstraction of the program that

highlights opportunities for exploiting parallelism

– What program abstractions are useful?

• Difficult to work directly with a parallel machine

– Solution: use an abstraction of the machine that

exposes features that you want to exploit and hides

features you cannot or do not want to exploit

– What machine abstractions are useful?

Abstractions introduced in lecture

• Program abstraction: computation graph
– nodes are computations

• granularity of nodes can range from single operators (+,*,etc.) to
arbitrarily large computations

– edges are precedence constraints of some kind
• edge a → b may mean computation a must be performed before

computation b

– many variations in the literature
• imperative languages community:

– data-dependence graphs, program dependence graphs

• functional languages community
– dataflow graphs

• Machine abstraction: PRAM
– parallel RAM model

– exposes parallelism

– hides synchronization and communication

Computation DAG’s

• DAG with START and END nodes
– all nodes reachable from START

– END reachable from all nodes

– START and END are not essential

• Nodes are computations
– each computation can be executed by

a processor in some number of time-
steps

– computation may require
reading/writing shared-memory

– node weight: time taken by a processor
to perform that computation

– wi is weight of node i

• Edges are precedence constraints
– nodes other than START can be

executed only after immediate
predecessors in graph have been
executed

– known as dependences

• Very old model:
– PERT charts (late 50’s):

• Program Evaluation and Review
Technique

• developed by US Navy to manage
Polaris submarine contracts

i

START

END

Computation DAG

Processors

1

P

…

M
e
m

o
ry

wi

Computer model

• P identical processors

• Memory
– processors have local memory

– all shared-data is stored in global memory

• How does a processor know which nodes it
must execute?

– work assignment

• How does a processor know when it is safe
to execute a node?

– (eg) if P1 executes node a and P2 executes
node b, how does P2 know when P1 is done?

– synchronization

• For now, let us defer these questions

• In general, time to execute program depends
on work assignment

– for now, assume only that if there is an idle
processor and a ready node, that node is
assigned immediately to an idle processor

• TP = best possible time to execute program
on P processors

START

END

Computation DAG

Processors

1

P

…

M
e
m

o
ry

a

b

Work and critical path

• Work = §i wi

– time required to execute
program on one processor

 = T1

• Path weight
– sum of weights of nodes on

path

• Critical path
– path from START to END

that has maximal weight

– this work must be done
sequentially, so you need
this much time regardless
of how many processors
you have

– call this T1

START

END

Data

Computation DAG

Processors

1

P

…

wi

Unbounded number of processors

• Instantaneous parallelism

IP(t) = maximum number of
processors that can be kept
busy at each point in execution
of algorithm

• Maximal parallelism

 MP = highest instantaneous
parallelism

• Average parallelism

 AP = T1/T1

• These are properties of the
computation DAG, not of the
machine or the work assignment

1

2

3

time

1

1

1

1

1

1

1

1

1

1

Instantaneous and average parallelism

Computing critical path etc.

• Algorithm for computing earliest start times of nodes
– Keep a value called minimum-start-time (mst) with each node,

initialized to 0

– Do a topological sort of the DAG

• ignoring node weights

– For each node n (START) in topological order

• for each node p in predecessors(n)

– mstn = max(mstn, mstp + wp)

• Complexity = O(|V|+|E|)

• Critical path and instantaneous, maximal and average
parallelism can easily be computed from this

Speed-up

• Speed-up(P) = T1/TP

– intuitively, how much faster is it to execute

program on P processors than on 1

processor?

• Bound on speed-up

– regardless of how many processors you have,

you need at least T1 units of time

– speed-up(P) · T1/T1 = §i wi /CP = AP

Amdahl’s law

• Amdahl:
– suppose a fraction p of a program can be done in parallel

– suppose you have an unbounded number of parallel processors
and they operate infinitely fast

– speed-up will be at most 1/(1-p).

• Follows trivially from previous result.

• Plug in some numbers:
– p = 90% ➔ speed-up · 10

– p = 99% ➔ speed-up · 100

• To obtain significant speed-up, most of the program
must be performed in parallel
– serial bottlenecks can really hurt you

Scheduling on finite number of processors

• Suppose P · MP (more
work than cores)

• There will be times during
the execution when only
a subset of “ready” nodes
can be executed.

• Time to execute DAG can
depend on which subset
of P nodes is chosen for
execution.

• To understand this better,
it is useful to have a more
formal model of the
machine

1

2

3

time

1

1

1

1

1

1

1

1

1

1

What if we only had 2 processors?

PRAM Model

• Parallel Random Access

Machine (PRAM)

• Natural extension of RAM

model

• Processors operate

synchronously (in lock-step)

– synchronization in architecture

• Each processor has private

memory

Shared memory

P1 P2 …… Pp

Details

• A PRAM step has three phases
– read: each processor can read a value from shared-memory

– compute: each processor can perform a computation on local
values

– write: each processor can write a value to shared-memory

• Variations:
– Exclusive read, exclusive write (EREW)

• a location can be read or written by only one processor in each step

– Concurrent read, exclusive write (CREW)

– Concurrent read, concurrent write (CRCW)
• some protocol for deciding result of concurrent writes

• We will use the CREW variation
– assume that computation graph ensures exclusive writes

Schedules

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

0 1 2 3 4

P0 START a b d END

P1 c

Schedule 2

Schedule 1

P0

P1

1

1 1 1

1

1

Intuition: nodes along the critical path should be given preference in scheduling

Schedule: function from node to (processor, start time)

Also known as “space-time mapping”

s
p
a
c
e

time

time

s
p
a
c
e

Optimal schedules

• Optimal schedule
– shortest possible schedule for a given DAG and the given number of

processors

• Complexity of finding optimal schedules
– one of the most studied problems in CS

• DAG is a tree:
– level-by-level schedule is optimal (Aho, Hopcroft)

• General DAGs
– variable number of processors (number of processors is input to

problem): NP-complete

– fixed number of processors
• 2 processors: polynomial time algorithm

• 3,4,5…: complexity is unknown!

• Many heuristics available in the literature

Heuristic: list scheduling

• Maintain a list of nodes that are ready to execute
– all predecessor nodes have completed execution

• Fill in the schedule cycle-by-cycle
– in each cycle, choose nodes from ready list

– use heuristics to choose “best” nodes in case you cannot
schedule all the ready nodes

• One popular heuristic:
– assign node priorities before scheduling

– priority of node n:

• weight of maximal weight path from n to END

• intuitively, the “further” a node is from END, the higher its priority

List scheduling algorithm

cycle c = 0;

ready-list = {START};

inflight-list = { };

while (|ready-list|+|inflight-list| > 0) {

 for each node n in ready-list in priority order {

 if (a processor is free at this cycle) {

 remove n from ready-list and add to inflight-list;

 add node to schedule at time cycle;

 }

 else break;

 }

 c = c + 1; //increment time

 for each node n in inflight-list {

 if (n finishes at time cycle) {

 remove n from inflight-list;

 add every ready successor of n in DAG to ready-list

 }

 }

}

Example

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

P0

P1

1

1 1 1

1

1

s
p
a
c
e

time

1

2

2 3 2

4

Heuristic picks the good schedule

Not always guaranteed to produce optimal schedule

(otherwise we would have a polynomial time algorithm!)

Applying scheduling theory in practice
• What should a node be?

– fine-grain: operation like +,*,…

– coarse-grain: single loop iteration

– very coarse-grain: outer loop iteration

– …

• How do we determine the edges between nodes in DAG?
– make user specify them

– let compiler deduce them from sequential program

– …..

• How do we determine how long each node takes to execute?
– ask user to tell us

– use a model

– profiling

– …..

• Binding time:
– when do we know this information?

– consider two applications
• VLIW scheduling: information is known at compile-time

• Multicore scheduling: node + edges known statically, node execution time known
only at runtime

Compile-time scheduling:

VLIW machines

START

END

a b c

d

• Processors ➔ functional units

• Local memories ➔ registers

• Global memory ➔ memory

• Time ➔ instruction

DAG scheduling:

• Nodes in DAG are basic block
operations (load/store/add/mul/..)

– instruction-level parallelism

• Edges: determined by compiler

• Execution time of operation
– known except for loads

Ops

Instruction

Increasing basic block size

• Basic blocks are fairly small
– about 5 RISC operations on the average

• Many solutions for increasing scheduling
scope
– loop unrolling

– trace scheduling: move operations past branches

– predicated execution

– ….

• DAG scheduling is used extensively in
compilers for pipelines, superscalar and
VLIW machines

Historical note on VLIW processors

• Ideas originated in late 70’s-early 80’s

• Two key people:

– Bob Rau (Stanford,UIUC, TRW,
Cydrome, HP)

– Josh Fisher (NYU,Yale, Multiflow, HP)

• Bob Rau’s contributions:

– transformations for making basic blocks
larger:

• predication

• software pipelining

– hardware support for these techniques

• predicated execution

• rotating register files

– most of these ideas were later
incorporated into the Intel Itanium
processor

• Josh Fisher:

– transformations for making basic blocks
larger:

• trace scheduling: uses key idea of
branch probabilities

– Multiflow compiler used loop unrolling

Bob Rau

Josh Fisher

DAG scheduling for multicores
• Reality:

– hard to build single cycle memory that can be
accessed by large numbers of cores

• Architectural change
– decouple cores so there is no notion of a global

step

– each core/processor has its own PC and cache

– memory is accessed independently by each core

• New problem:
– since cores do not operate in lock-step, how does

a core know when it is safe to execute a node?

• Solution: software synchronization
– one solution: flag associated with each edge

– written by processor that executes source of edge

– read by processor that executes destination of
edge

• Software synchronization increases overhead
of parallel execution
➔ cannot afford to synchronize at the instruction

level

➔ nodes of DAG must be coarse-grain: loop
iterations

START

END

a b c

d

P0: a

P1: b

P2: c d

How does P2 know when

P0 and P1 are done?

Increasing granularity:

Block Matrix Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

Original matrix multiplication

for I = 1,N

 for J = 1,N

 for K = 1,N

 C(I,J)= C(I,J)+A(I,K)*B(K,J)

Block (tiled) matrix multiplication

for IB = 1,N step B

 for JB = 1,N step B

 for KB = 1,N step B

 for I = IB, IB+B-1

 for J = JB, JB+B-1

 for K = KB, KB+B-1

 C(I,J) = C(I,J)+A(I,K)*B(K,J)

parallel loops

New problem

• Difficult to get accurate execution times of
coarse-grain nodes

– conditional inside loop iteration

– cache misses

– exceptions

– O/S processes

– ….

• Solution: runtime scheduling

Example: DAGuE

• Dongarra et al (UTK)

• Programming model for specifying DAGs for
parallel tiled dense linear algebra codes
– nodes: tiled computations

– DAG edges specified by programmer (see next
slides)

• Runtime system
– keeps track of ready nodes

– assigns ready nodes to cores

– determines if new nodes become ready when a
node completes

DAGuE: Tiled QR (1)

27

Tiled QR (using tiles and in/out notations)

DAGuE: Tiled QR (2)

28

Dataflow Graph for 2x2 processor grid Machine: 81 nodes, 648 cores

Tiled QR

Summary of DAG scheduling

• DAG:

– Nodes are computations

– Edges are dependences

– Nodes and edges may have associated time
• node: how long to execute

• edge: communication time

• Basic algorithm: list scheduling based on priority

• Binding time: when do you know the DAG?

– VLIW: fine-grain, so known at compile-time

– Multicore: coarse-grain, so accurate execution time of
node is known only at runtime

Variations of dependence

graphs

Program dependence graph

• Program dependence graphs (PDGs) (Ferrante,
Ottenstein, Warren)
 data dependences + control dependences

• Intuition for control dependence
– statement s is control-dependent on statement p if the

execution of p determines whether n is executed

– (eg) statements in the two branches of a conditional
are control-dependent on the predicate

• Control dependence is a subtle concept
– formalizing the notion requires the concept of

postdominance in control-flow graphs

Control dependence

• Intuitive idea:

– node w is control-dependent on a node u if

node u determines whether w is executed

• Example:

e

S1 S2

m

START

END

START

…..

if e then S1 else S2

….

END

We would say S1 and S2 are control-dependent on e

Examples (contd.)

e

S1

START

END

START

…..

while e do S1;

….

END

We would say node S1 is control-dependent on e.

It is also intuitive to say node e is control-dependent on itself:

 - execution of node e determines whether or not e is executed again.

Example (contd.)

• S1 and S3 are control-
dependent on f

• Are they control-dependent on
e?

• Decision at e does not fully
determine if S1 (or S3 is
executed) since there is a later
test that determines this

• So we will NOT say that S1
and S3 are control-dependent
on e
– Intuition: control-dependence

is about “last” decision point

• However, f is control-
dependent on e, and S1 and
S3 are transitively (iteratively)
control-dependent on e

e

S2

m

START

END

f

S1 S3

n

Example (contd.)

• Can a node be control-

dependent on more than

one node?

– yes, see example

– nested repeat-until loops

• n is control-dependent on

t1 and t2 (why?)

• In general, control-

dependence relation can

be quadratic in size of

program

t1

t2

n

Formal definition of control

dependence

• Formalizing these intuitions is quite tricky

• Starting around 1980, lots of proposed
definitions

• Commonly accepted definition due to Ferrane,
Ottenstein, Warren (1987)

• Uses idea of postdominance

• We will use a slightly modified definition due to
Bilardi and Pingali which is easier to think about
and work with

Postdominance relation
• Postdominance: relation on nodes (µ V£ V)

– u postdominates v if u occurs on all paths v !* END

– postdominance is reflexive, transitive and anti-symmetric

– transitive reduction is tree-structured

– postdominator tree can be built in O(|E|+|V|) time (Buchsbaum et al)

– immediate postdominator of u: parent of u in tree

1

2

3 7

4 5

6

8 9

10

11 12

end

end

12

11

910

8

762

1 3 4 5

Control dependence definition

• First cut: given a CFG G, a node w is control-
dependent on an edge (u→v) if
– w postdominates v

– ……. w does not postdominate u

• Intuitively,
– first condition: if control flows from u to v it is

guaranteed that w will be executed

– second condition: but from u we can reach END
without encountering w

– so there is a decision being made at u that
determines whether w is executed

Control dependence definition

• Small caveat: what if w = u in
previous definition?

– See picture: is u control-
dependent on edge u→v?

– Intuition says yes, but
definition on previous slides
says “u should not
postdominate u” and our
definition of postdominance is
reflexive

• Fix: given a CFG G, a node w
is control-dependent on an
edge (u→v) if

– w postdominates v

– if w is not u, w does not
postdominate u

u

v

Strict postdominance

• A node w is said to strictly postdominate a node
u if
– w != u

– w postdominates u

• That is, strict postdominance is the irreflexive
version of the dominance relation

• Control dependence: given a CFG G, a node w
is control-dependent on an edge (u→v) if
– w postdominates v

– w does not strictly postdominate u

Example

START

a

b

c

d e

f

g

END

START→a

f→b

c→d

c→e

a→b

a b c d e f g

x x x x

x x x

x

x

x

Computing control-dependence

relation

• Nodes control
dependent on edge
(u→v) are nodes on
path up the
postdominator tree
from v to ipdom(u),
excluding ipdom(u)
– We will write this as

[v,ipdom(u))
• half-open interval in

tree

END

STARTg

f

d e
c

a

START→a

f→b

c→d

c→e

a→b

a b c d e f g

x x x x

x x x

x

x

x

b

Computing control-dependence

relation

• Compute the postdominator tree

• Overlay each edge u→v on pdom tree and determine
nodes in interval [v,ipdom(u))

• Time and space complexity is O(EV).

• Faster solution: in practice, we do not want the full
relation, we only make queries
– cd(e): what are the nodes control-dependent on an edge e?

– conds(w): what are the edges that w is control-dependent on?

– cdequiv(w): what nodes have the same control-dependences as
node w?

• It is possible to implement a simple data structure that
takes O(E) time and space to build, and that answers
these queries in time proportional to output of query
(optimal) (Pingali and Bilardi 1997).

Effective abstractions

• Program abstraction is effective if you can write

an interpreter for it

• Why is this interesting?

– reasoning about programs becomes easier if you

have an effective abstraction

– (eg) give a formal Plotkin-style structured operational

semantics for the abstraction, and use that to prove

properties of execution sequences

• One problem with PDG

– not clear how to write an interpreter for PDG

Dataflow graphs:

an effective abstraction

• From functional languages community

• Functional languages:
– values and functions from values to values

– no notion of storage that can be overwritten successively with different
values

• Dependence viewpoints:
– only flow-dependences

– no anti-dependences or output-dependences

• Dataflow graph:
– shows how values are used to compute other values

– no notion of control-flow

– control-dependence is encoded as data-dependence

– effective abstraction: interpreter can execute abstraction in parallel

• Major contributors:
– Jack Dennis (MIT): static dataflow graphs

– Arvind (MIT): dynamic dataflow graphs

Static Dataflow Graphs

Slides from Arvind

Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology

Dennis' Program Graphs
Operators connected by arcs

fork arithmetic
operators and
predicates

True gate
(False gate)

T T F

merge

f

Dataflow

• Execution of an operation is enabled by availability of
the required operand values. The completion of one
operation makes the resulting values available to the
elements of the program whose execution depends
on them.

 Dennis

• Execution of an operation must not cause side-effect
to preserve determinacy. The effect of an operation
must be local.

Firing Rules:

Functional Operators

f f

x

xx

x y

f(x,y)

Firing Rules: T-Gate

T T

T T

x

x

x

T

F

The Switch Operator

T F

X

T T F

X

T F

T F

Firing Rules: Merge

T F

x y

T
T F

y

x

T F

x

T
T F

x

Firing Rules: Merge cont

T F

y

T

not ready
to fire

Some Conventions

X1 X2

T F

B

T F

X1 X2

T F T F
B

Some Conventions Cont.

X1 X2

T F T F

B

X1 X2

X1 X2

T F

B

T F

X1 X2

Rules To Form Dataflow

Graphs: Juxtaposition

Given

G2

. . .

. . .

G1

. . .

. . .

G2

. . .

. . .

G1

. . .

. . .
G

Rules To Form Dataflow

Graphs: Iteration

Given

G1

. . .

. . .

G1

. . .

. . .
G

Example:

The Stream Duplicator

1-to-2 SD SD

T F NOT
T

The Gate Operator

Lets X pass through only after C arrives.

What happens if we don't use the gate in the
Stream Duplicator?

C

X

X

The Stream Halver

2-to-1 SH SH

Throws away every other token.

Translation to dataflow graphs

• fact(n) =

 if (n==1) then 1

else n*fact(n-1)

==

1

1

*

dec

fact

n

T F

T F

switch

merge

fact

Determinate Graphs

Graphs whose behavior is time independent,
i.e., the values of output tokens are uniquely
determined by the values of input tokens.

A dataflow graph formed by repeated
juxtaposition and iteration of deterministic
dataflow operators results in a deterministic
graph.

Problem with functional model

• Data structures are values

• No notion of updating elements of data

structures

• Think about our examples:

– How would you do DMR?

– Can you do event-driven simulation without

speculation?

Effective parallel abstractions for

imperative languages

• Beck et al: From Control Flow to Dataflow

• Approach:
– extend dataflow model to include side-effects to

memory

– control dependences are encoded as data-
dependences as in standard dataflow model

• Uses:
– execute imperative languages on dataflow machines

(which were being built back in 1990)

– intermediate language for reasoning operationally
about parallelism in imperative languages

Limitations of computation graphs

• For most irregular algorithms, we cannot generate a
static computation graph
– dependences are a function of runtime data values

• Therefore, much of the scheduling technology developed
for computation graphs is not useful for irregular
algorithms

• Even if we can generate a computation graph, latencies
of operations are often unpredictable

• Bottom-line
– useful to understand what is possible if perfect information about

program is available

– but need heuristics like list-scheduling even in this case!

Summary

• Computation graphs
– nodes are computations

– edges are dependences

– node weights are execution times

• Static computation graphs obtained by
– studying the algorithm

– analyzing the program

• Limits on speed-ups
– critical path

– Amdahl’s law

• DAG scheduling
– heuristic: list scheduling (many variations)

– static scheduling: VLIW code generation problem

– dynamic scheduling: DAGuE

• Static computation graphs are useful for regular algorithms, but not
very useful for irregular algorithms

Generating computation graphs

• How do we produce computation graphs in the
first place?

• Two approaches
– specify DAG explicitly

• like parallel programming

• easy to make mistakes

– race conditions: two nodes that write to same location but are
not ordered by dependence

– by compiler analysis of sequential programs

• Let us study the second approach
– called dependence analysis

Putting it all together

• Write sequential program.

• Compiler produces parallel code
– generates control-flow graph

– produces computation DAG for each basic block by performing
dependence analysis

– generates schedule for each basic block

• use list scheduling or some other heuristic

• branch at end of basic block is scheduled on all processors

• Problem:
– average basic block is fairly small (~ 5 RISC instructions)

• One solution:
– transform the program to produce bigger basic blocks

Limitations

• PRAM model abstracts away too many important details
of real parallel machines
– synchronous model of computing does not scale to large

numbers of processors

– global memory that can be read/written in every cycle by all
processors is hard to implement

• DAG model of programs
– for irregular algorithms, we may not be able to generate static

computation DAG

– even if we could generate a static computation DAG, latencies of
some nodes may be variable on a real machine

• what is the latency of a load?

• Given all these limitation, why study list scheduling on
PRAM’s in so much detail?

Generating computation graphs

• How do we produce computation graphs in the
first place?

• Two approaches
– specify DAG explicitly

• like parallel programming

• easy to make mistakes

– race conditions: two nodes that write to same location but are
not ordered by dependence

– by compiler analysis of sequential programs

• Let us study the second approach
– called dependence analysis

Putting it all together

• Write sequential program.

• Compiler produces parallel code
– generates control-flow graph

– produces computation DAG for each basic block by performing
dependence analysis

– generates schedule for each basic block

• use list scheduling or some other heuristic

• branch at end of basic block is scheduled on all processors

• Problem:
– average basic block is fairly small (~ 5 RISC instructions)

• One solution:
– transform the program to produce bigger basic blocks

Limitations

• PRAM model abstracts away too many important details
of real parallel machines
– synchronous model of computing does not scale to large

numbers of processors

– global memory that can be read/written in every cycle by all
processors is hard to implement

• DAG model of programs
– for irregular algorithms, we may not be able to generate static

computation DAG

– even if we could generate a static computation DAG, latencies of
some nodes may be variable on a real machine

• what is the latency of a load?

• Given all these limitation, why study list scheduling on
PRAM’s in so much detail?

Algorithm and

Data structure

Dependence

Graph
Schedule Execution

Compile-time

Input known

Runtime

Post-execution

Design

	Slide 1: Abstractions for algorithms and parallel machines
	Slide 2: High-level idea
	Slide 3: Abstractions introduced in lecture
	Slide 4: Computation DAG’s
	Slide 5: Computer model
	Slide 6: Work and critical path
	Slide 7: Unbounded number of processors
	Slide 8: Computing critical path etc.
	Slide 9: Speed-up
	Slide 10: Amdahl’s law
	Slide 11: Scheduling on finite number of processors
	Slide 12: PRAM Model
	Slide 13: Details
	Slide 14: Schedules
	Slide 15: Optimal schedules
	Slide 16: Heuristic: list scheduling
	Slide 17: List scheduling algorithm
	Slide 18: Example
	Slide 19: Applying scheduling theory in practice
	Slide 20: Compile-time scheduling: VLIW machines
	Slide 21: Increasing basic block size
	Slide 22: Historical note on VLIW processors
	Slide 23: DAG scheduling for multicores
	Slide 24: Increasing granularity: Block Matrix Algorithms
	Slide 25: New problem
	Slide 26: Example: DAGuE
	Slide 27: DAGuE: Tiled QR (1)
	Slide 28: DAGuE: Tiled QR (2)
	Slide 29: Summary of DAG scheduling
	Slide 30: Variations of dependence graphs
	Slide 31: Program dependence graph
	Slide 32: Control dependence
	Slide 33: Examples (contd.)
	Slide 34: Example (contd.)
	Slide 35: Example (contd.)
	Slide 36: Formal definition of control dependence
	Slide 37: Postdominance relation
	Slide 38: Control dependence definition
	Slide 39: Control dependence definition
	Slide 40: Strict postdominance
	Slide 41: Example
	Slide 42: Computing control-dependence relation
	Slide 43: Computing control-dependence relation
	Slide 44: Effective abstractions
	Slide 45: Dataflow graphs: an effective abstraction
	Slide 46
	Slide 47: Dennis' Program Graphs
	Slide 48: Dataflow
	Slide 49: Firing Rules: Functional Operators
	Slide 50: Firing Rules: T-Gate
	Slide 51: The Switch Operator
	Slide 52: Firing Rules: Merge
	Slide 53: Firing Rules: Merge cont
	Slide 54: Some Conventions
	Slide 55: Some Conventions Cont.
	Slide 56: Rules To Form Dataflow Graphs: Juxtaposition
	Slide 57: Rules To Form Dataflow Graphs: Iteration
	Slide 58: Example: The Stream Duplicator
	Slide 59: The Gate Operator
	Slide 60: The Stream Halver
	Slide 61: Translation to dataflow graphs
	Slide 62: Determinate Graphs
	Slide 63: Problem with functional model
	Slide 64: Effective parallel abstractions for imperative languages
	Slide 65: Limitations of computation graphs
	Slide 66: Summary
	Slide 67: Generating computation graphs
	Slide 68: Putting it all together
	Slide 69: Limitations
	Slide 70: Generating computation graphs
	Slide 71: Putting it all together
	Slide 72: Limitations
	Slide 73

