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High-level idea

• Difficult to work directly with textual programs

– Where is the parallelism in the program?

– Solution: use an abstraction of the program that 

highlights opportunities for exploiting parallelism

– What program abstractions are useful?

• Difficult to work directly with a parallel machine

– Solution: use an abstraction of the machine that 

exposes features that you want to exploit and hides 

features you cannot or do not want to exploit

– What machine abstractions are useful?



Abstractions introduced in lecture

• Program abstraction: computation graph
– nodes are computations

• granularity of nodes can range from single operators (+,*,etc.) to 
arbitrarily large computations

– edges are precedence constraints of some kind
• edge a → b may mean computation a must be performed before 

computation b

– many variations in the literature
• imperative languages community: 

– data-dependence graphs, program dependence graphs

• functional languages community
– dataflow graphs

• Machine abstraction: PRAM
– parallel RAM model

– exposes parallelism

– hides synchronization and communication



Computation DAG’s

• DAG with START and END nodes
– all nodes reachable from START

– END reachable from all nodes

– START and END are not essential

• Nodes are computations
– each computation can be executed by 

a processor in some number of time-
steps

– computation may require 
reading/writing shared-memory

– node weight: time taken by a processor 
to perform that computation

– wi is weight of node i 

• Edges are precedence constraints 
– nodes other than START can be 

executed only after immediate 
predecessors in graph have been 
executed

– known as dependences

• Very old model:
– PERT charts (late 50’s):

• Program Evaluation and Review 
Technique 

• developed by US Navy to manage 
Polaris submarine contracts
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Computer model

• P identical processors

• Memory
– processors have local memory

– all shared-data is stored in global memory

• How does a processor know which nodes it 
must execute?

– work assignment 

• How does a processor know when it is safe 
to execute a node?

– (eg) if P1 executes node a and P2 executes 
node b, how does P2 know when P1 is done?

– synchronization

• For now, let us defer these questions

• In general, time to execute program depends 
on work assignment

– for now, assume only that if there is an idle 
processor and a ready node, that node is 
assigned immediately to an idle processor

• TP = best possible time to execute program 
on P processors 
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Work and critical path

• Work = §i wi

– time required to execute 
program on one processor 

    =  T1

• Path weight
– sum of weights of nodes on 

path

• Critical path
– path from START to END 

that has maximal weight

– this work must be done 
sequentially, so you need 
this much time regardless 
of how many processors 
you have

– call this T1 
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Unbounded number of processors

• Instantaneous parallelism  

IP(t) = maximum number of 
processors that can be kept 
busy at each point in execution 
of algorithm

• Maximal parallelism

    MP = highest instantaneous    
parallelism

• Average parallelism 

     AP = T1/T1

• These are properties of the 
computation DAG, not of the 
machine or the work assignment
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Computing critical path etc.

• Algorithm for computing earliest start times of nodes
– Keep a value called minimum-start-time (mst) with each node, 

initialized to 0

– Do a topological sort of the DAG

• ignoring node weights

– For each node n ( START) in topological order

• for each node p in predecessors(n)

– mstn = max(mstn, mstp + wp)

• Complexity = O(|V|+|E|)

• Critical path and instantaneous, maximal and average 
parallelism can easily be computed from this



Speed-up

• Speed-up(P) = T1/TP

– intuitively, how much faster is it to execute 

program on P processors than on 1 

processor?

• Bound on speed-up

– regardless of how many processors you have, 

you need at least T1 units of time

– speed-up(P) · T1/T1 = §i wi /CP  = AP



Amdahl’s law

• Amdahl: 
– suppose a fraction p of a program can be done in parallel 

– suppose you have an unbounded number of parallel processors 
and they operate infinitely fast

– speed-up will be at most 1/(1-p). 

• Follows trivially from previous result.

• Plug in some numbers:
– p = 90% ➔ speed-up · 10

– p = 99% ➔ speed-up · 100

• To obtain significant speed-up, most of the program 
must be performed in parallel
– serial bottlenecks can really hurt you



Scheduling on finite number of processors

• Suppose P · MP (more 
work than cores)

• There will be times during 
the execution when only 
a subset of “ready” nodes 
can be executed.

• Time to execute DAG can 
depend on which subset 
of P nodes is chosen for 
execution.

• To understand this better, 
it is useful to have a more 
formal model of the 
machine
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PRAM Model

• Parallel Random Access 

Machine (PRAM)

• Natural extension of RAM 

model

• Processors operate 

synchronously (in lock-step)

– synchronization in architecture

• Each processor has private 

memory

Shared memory

P1 P2 …… Pp



Details

• A PRAM step has three phases
– read: each processor can read a value from shared-memory

– compute: each processor can perform a computation on local 
values

– write: each processor can write a value to shared-memory

• Variations:
– Exclusive read, exclusive write (EREW)

• a location can be read or written by only one processor in each step

– Concurrent read, exclusive write (CREW)

– Concurrent read, concurrent write (CRCW)
• some protocol for deciding result of concurrent writes 

• We will use the CREW variation
– assume that computation graph ensures exclusive writes



Schedules 

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

0 1 2 3 4

P0 START a b d END

P1 c

Schedule 2

Schedule 1

P0

P1

1

1 1 1

1

1

Intuition: nodes along the critical path should be given preference in scheduling

Schedule: function from node to (processor, start time)

Also known as “space-time mapping”

s
p
a
c
e

time

time

s
p
a
c
e



Optimal schedules

• Optimal schedule
– shortest possible schedule for a given DAG and the given number of 

processors

• Complexity of finding optimal schedules
– one of the most studied problems in CS

• DAG is a tree:
– level-by-level schedule is optimal (Aho, Hopcroft)

• General DAGs
– variable number of processors (number of processors is input to 

problem): NP-complete

– fixed number of processors 
• 2 processors: polynomial time algorithm

• 3,4,5…: complexity is unknown!

• Many heuristics available in the literature



Heuristic: list scheduling

• Maintain a list of nodes that are ready to execute
– all predecessor nodes have completed execution

• Fill in the schedule cycle-by-cycle 
– in each cycle, choose nodes from ready list

– use heuristics to choose “best” nodes in case you cannot 
schedule all the ready nodes

• One popular heuristic:
– assign node priorities before scheduling

– priority of node n:

• weight of maximal weight path from n to END

• intuitively, the “further” a node is from END, the higher its priority



List scheduling algorithm

cycle c = 0;

ready-list = {START};

inflight-list = { };

while (|ready-list|+|inflight-list| > 0)  {

 for each node n in ready-list in priority order {

  if (a processor is free at this cycle) {

   remove n from ready-list and add to inflight-list;

   add node to schedule at time cycle;

  }

  else break;

 }

 c = c + 1; //increment time

 for each node n in inflight-list {

  if (n finishes at time cycle) {

     remove n from inflight-list;

                   add every ready successor of n in DAG to ready-list

  }

 }

}



Example
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Heuristic picks the good schedule

Not always guaranteed to produce optimal schedule

(otherwise we would have a polynomial time algorithm!)



Applying scheduling theory in practice
• What should a node be?

– fine-grain: operation like +,*,…

– coarse-grain: single loop iteration

– very coarse-grain: outer loop iteration

– …

• How do we determine the edges between nodes in DAG?
– make user specify them

– let compiler deduce them from sequential program

– …..

• How do we determine how long each node takes to execute?
– ask user to tell us

– use a model

– profiling

– …..

• Binding time:
– when do we know this information?

– consider two applications
• VLIW scheduling: information is known at compile-time

• Multicore scheduling: node + edges known statically, node execution time known 
only at runtime



Compile-time scheduling:

VLIW machines
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• Processors ➔ functional units

• Local memories ➔ registers

• Global memory ➔ memory 

• Time ➔ instruction

DAG scheduling:

• Nodes in DAG are basic block 
operations (load/store/add/mul/..)

– instruction-level parallelism

• Edges: determined by compiler

• Execution time of operation
– known except for loads

Ops

Instruction



Increasing basic block size

• Basic blocks are fairly small
– about 5 RISC operations on the average

• Many solutions for increasing scheduling 
scope
– loop unrolling

– trace scheduling: move operations past branches

– predicated execution

– ….

• DAG scheduling is used extensively in 
compilers for pipelines, superscalar and 
VLIW machines



Historical note on VLIW processors 

• Ideas originated in late 70’s-early 80’s

• Two key people:

– Bob Rau (Stanford,UIUC, TRW, 
Cydrome, HP)

– Josh Fisher (NYU,Yale, Multiflow, HP)

• Bob Rau’s contributions:

– transformations for making basic blocks 
larger:

• predication

• software pipelining

– hardware support for these techniques

• predicated execution

• rotating register files

– most of these ideas were later 
incorporated into the Intel Itanium 
processor

• Josh Fisher:

– transformations for making basic blocks 
larger:

• trace scheduling: uses key idea of 
branch probabilities

– Multiflow compiler used loop unrolling

Bob Rau

Josh Fisher



DAG scheduling for multicores
• Reality: 

– hard to build single cycle memory that can be 
accessed by large numbers of cores

• Architectural change
– decouple cores so there is no notion of a global 

step 

– each core/processor has its own PC and cache

– memory is accessed independently by each core

• New problem: 
– since cores do not operate in lock-step, how does 

a core know when it is safe to execute a node?

• Solution: software synchronization
– one solution: flag associated with each edge

– written by processor that executes source of edge

– read by processor that executes destination of 
edge

• Software synchronization increases overhead 
of parallel execution
➔ cannot afford to synchronize at the instruction 

level

➔ nodes of DAG must be coarse-grain: loop 
iterations
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P0: a 

P1: b

P2: c d

How does P2 know when 

P0 and P1 are done?



Increasing granularity:

Block Matrix Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

                 

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

Original matrix multiplication

for I = 1,N

   for J = 1,N

      for K = 1,N

         C(I,J)= C(I,J)+A(I,K)*B(K,J)

Block  (tiled) matrix multiplication

for IB = 1,N step B

   for JB = 1,N step B

      for KB = 1,N step B

         for I = IB, IB+B-1

           for J = JB, JB+B-1

             for K = KB, KB+B-1

                 C(I,J) = C(I,J)+A(I,K)*B(K,J)

parallel loops



New problem

• Difficult to get accurate execution times of 
coarse-grain nodes

– conditional inside loop iteration

– cache misses

– exceptions

– O/S processes

– ….

• Solution: runtime scheduling



Example: DAGuE 

• Dongarra et al (UTK)

• Programming model for specifying DAGs for 
parallel tiled dense linear algebra codes
– nodes: tiled computations

– DAG edges specified by programmer  (see next 
slides)

• Runtime system
– keeps track of ready nodes

– assigns ready nodes to cores

– determines if new nodes become ready when a 
node completes



DAGuE: Tiled QR (1)

27

Tiled QR (using tiles and in/out notations)



DAGuE: Tiled QR (2)

28

Dataflow Graph  for 2x2 processor grid Machine: 81 nodes, 648 cores

Tiled QR



Summary of DAG scheduling

• DAG:

– Nodes are computations

– Edges are dependences

– Nodes and edges may have associated time
• node: how long to execute

• edge: communication time

• Basic algorithm: list scheduling based on priority

• Binding time: when do you know the DAG?

– VLIW: fine-grain, so known at compile-time

– Multicore: coarse-grain, so accurate execution time of 
node is known only at runtime



Variations of dependence 

graphs



Program dependence graph

• Program dependence graphs (PDGs) (Ferrante, 
Ottenstein, Warren)
   data dependences + control dependences

• Intuition for control dependence
– statement s is control-dependent on statement p if the 

execution of p determines whether n is executed

– (eg) statements in the two branches of a conditional 
are control-dependent on the predicate

• Control dependence is a subtle concept
– formalizing the notion requires the concept of 

postdominance in control-flow graphs



Control dependence

• Intuitive idea: 

– node w is control-dependent on a node u if 

node u determines whether w is executed

• Example:

e

S1 S2

m

START

END

START

…..

if e then S1 else S2

….

END

We would say S1 and S2 are control-dependent on e



Examples (contd.)

e

S1

START

END

START

…..

while e do S1;

….

END

We would say node S1 is control-dependent on e.

It is also intuitive to say node e is control-dependent on itself:

     - execution of node e determines whether or not e is executed again.



Example (contd.)

• S1 and S3 are control-
dependent on f

• Are they control-dependent on 
e?

• Decision at e does not fully 
determine if S1 (or S3 is 
executed) since there is a later 
test that determines this

• So we will NOT say that S1 
and S3 are control-dependent 
on e
– Intuition: control-dependence 

is about “last” decision point

• However, f is control-
dependent on e, and S1 and 
S3 are transitively (iteratively) 
control-dependent on e

e

S2

m

START

END

f

S1 S3

n



Example (contd.)

• Can a node be control-

dependent on more than 

one node?

– yes, see example

– nested repeat-until loops

• n is control-dependent on 

t1 and t2 (why?)

• In general, control-

dependence relation can 

be quadratic in size of 

program

t1

t2

n



Formal definition of control 

dependence

• Formalizing these intuitions is quite tricky

• Starting around 1980, lots of proposed 
definitions

• Commonly accepted definition due to Ferrane, 
Ottenstein, Warren (1987)

• Uses idea of postdominance

• We will use a slightly modified definition due to 
Bilardi and Pingali which is easier to think about 
and work with



Postdominance relation
• Postdominance: relation on nodes (µ V£ V)

– u postdominates v if u occurs on all paths v !*  END

– postdominance is reflexive, transitive and anti-symmetric

– transitive reduction is tree-structured

– postdominator tree can be built in O(|E|+|V|) time (Buchsbaum et al)

– immediate postdominator of u: parent of u in tree
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Control dependence definition

• First cut: given a CFG G, a node w is control-
dependent on an edge (u→v) if 
– w postdominates v

– ……. w does not postdominate u

• Intuitively, 
– first condition: if control flows from u to v it is 

guaranteed that w will be executed

– second condition: but from u we can reach END 
without encountering w

– so there is a decision being made at u that 
determines whether w is executed



Control dependence definition

• Small caveat: what if w = u in 
previous definition?

– See picture: is u control-
dependent on edge u→v? 

– Intuition says yes, but 
definition on previous slides 
says “u should not 
postdominate u” and our 
definition of postdominance is 
reflexive

• Fix: given a CFG G, a node w 
is control-dependent on an 
edge (u→v) if 

– w postdominates v

– if w is not u, w does not 
postdominate u

u

v



Strict postdominance

• A node w is said to strictly postdominate a node 
u if 
– w != u 

– w postdominates u

• That is, strict postdominance is the irreflexive 
version of the dominance relation

• Control dependence: given a CFG G, a node w 
is control-dependent on an edge (u→v) if 
– w postdominates v

– w does not strictly postdominate u



Example

START

a

b

c

d e

f

g

END

START→a

f→b

c→d

c→e

a→b

a   b   c   d   e   f   g

x x x x

x x x

x

x

x



Computing control-dependence 

relation

• Nodes control 
dependent on edge 
(u→v) are nodes on 
path up the 
postdominator tree 
from v to ipdom(u), 
excluding ipdom(u)
– We will write this as 

[v,ipdom(u)) 
• half-open interval in 

tree

END

STARTg

f

d e
c

a

START→a

f→b

c→d

c→e

a→b

a   b   c   d   e   f   g

x x x x

x x x

x

x

x

b



Computing control-dependence 

relation

• Compute the postdominator tree

• Overlay each edge u→v on pdom tree and determine 
nodes in interval [v,ipdom(u))

• Time and space complexity is O(EV).

• Faster solution: in practice, we do not want the full 
relation, we only make queries
– cd(e): what are the nodes control-dependent on an edge e?

– conds(w): what are the edges that w is control-dependent on?

– cdequiv(w): what nodes have the same control-dependences as 
node w?

• It is possible to implement a simple data structure that 
takes O(E) time and space to build, and that answers 
these queries in time proportional to output of query 
(optimal) (Pingali and Bilardi 1997).



Effective abstractions

• Program abstraction is effective if you can write 

an interpreter for it

• Why is this interesting?

– reasoning about programs becomes easier if you 

have an effective abstraction

– (eg) give a formal Plotkin-style structured operational 

semantics for the abstraction, and use that to prove 

properties of execution sequences

• One problem with PDG

– not clear how to write an interpreter for PDG



Dataflow graphs:

an effective abstraction

• From functional languages community

• Functional languages:
– values and functions from values to values

– no notion of storage that can be overwritten successively with different 
values

• Dependence viewpoints:
– only flow-dependences

– no anti-dependences or output-dependences

• Dataflow graph:
– shows how values are used to compute other values

– no notion of control-flow

– control-dependence is encoded as data-dependence

– effective abstraction: interpreter can execute abstraction in parallel

• Major contributors:
– Jack Dennis (MIT): static dataflow graphs

– Arvind (MIT): dynamic dataflow graphs



Static Dataflow Graphs

Slides from Arvind

Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology



Dennis' Program Graphs
Operators connected by arcs

fork arithmetic
operators and 
predicates

True gate
(False gate)

T T            F

merge

f



Dataflow

• Execution of an operation is enabled by availability of 
the required operand values.  The completion of one 
operation makes the resulting values available to the 
elements of the program whose execution depends 
on them. 

    Dennis

• Execution of an operation must not cause side-effect 
to preserve determinacy.  The effect of an operation 
must be local.



Firing Rules: 

Functional Operators
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Firing Rules: T-Gate

T T
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The Switch Operator

T F

X

T T F
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T F
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Firing Rules: Merge
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Firing Rules: Merge cont

T          F

y

T

not ready
to fire



Some Conventions

X1 X2

T F

B

T F

X1 X2

T F T F
B





Some Conventions Cont.

X1 X2

T F T F

B

X1 X2



X1 X2
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X1 X2



Rules To Form Dataflow 

Graphs: Juxtaposition

Given

G2

. . .

. . .

G1

. . .

. . .
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. . .

. . .

G1

. . .

. . .
G



Rules To Form Dataflow 

Graphs: Iteration

Given

G1

. . .

. . .

G1

. . .

. . .
G



Example: 

The Stream Duplicator

1-to-2 SD SD

T F NOT
T



The Gate Operator

Lets X pass through only after C arrives.

What happens if we don't use the gate in the 
Stream Duplicator?

C

X

X



The Stream Halver

2-to-1 SH SH

Throws away every other token.



Translation to dataflow graphs

• fact(n) = 

   if (n==1) then 1                         

else n*fact(n-1)

==

1

1

*

dec

fact

n

T F

T F

switch

merge

fact



Determinate Graphs

Graphs whose behavior is time independent, 
i.e., the values of output tokens are uniquely 
determined by the values of input tokens.

A dataflow graph formed by repeated 
juxtaposition and iteration of deterministic 
dataflow operators results in a deterministic 
graph.



Problem with functional model

• Data structures are values

• No notion of updating elements of data 

structures

• Think about our examples:

– How would you do DMR?

– Can you do event-driven simulation without 

speculation?



Effective parallel abstractions for 

imperative languages

• Beck et al: From Control Flow to Dataflow

• Approach:
– extend dataflow model to include side-effects to 

memory

– control dependences are encoded as data-
dependences as in standard dataflow model

• Uses:
– execute imperative languages on dataflow machines 

(which were being built back in 1990)

– intermediate language for reasoning operationally 
about parallelism in imperative languages



Limitations of computation graphs

• For most irregular algorithms, we cannot generate a 
static computation graph
– dependences are a function of runtime data values

• Therefore, much of the scheduling technology developed 
for computation graphs is not useful for irregular 
algorithms

• Even if we can generate a computation graph, latencies 
of operations are often unpredictable

• Bottom-line
– useful to understand what is possible if perfect information about 

program is available

– but need heuristics like list-scheduling even in this case!



Summary

• Computation graphs
– nodes are computations

– edges are dependences

– node weights are execution times

• Static computation graphs obtained by
– studying the algorithm

– analyzing the program

• Limits on speed-ups
– critical path

– Amdahl’s law

• DAG scheduling 
– heuristic: list scheduling (many variations)

– static scheduling: VLIW code generation problem

– dynamic scheduling: DAGuE

• Static computation graphs are useful for regular algorithms, but not 
very useful for irregular algorithms



Generating computation graphs

• How do we produce computation graphs in the 
first place?

• Two approaches
– specify DAG explicitly

• like parallel programming

• easy to make mistakes

– race conditions: two nodes that write to same location but are 
not ordered by dependence

– by compiler analysis of sequential programs

• Let us study the second approach
– called dependence analysis



Putting it all together

• Write sequential program.

• Compiler produces parallel code
– generates control-flow graph

– produces computation DAG for each basic block by performing 
dependence analysis

– generates schedule for each basic block

• use list scheduling or some other heuristic

• branch at end of basic block is scheduled on all processors

• Problem:
– average basic block is fairly small (~ 5 RISC instructions)

• One solution:
– transform the program to produce bigger basic blocks



Limitations

• PRAM model abstracts away too many important details 
of real parallel machines
– synchronous model of computing does not scale to large 

numbers of processors

– global memory that can be read/written in every cycle by all 
processors is hard to implement

• DAG model of programs
– for irregular algorithms, we may not be able to generate static 

computation DAG

– even if we could generate a static computation DAG, latencies of 
some nodes may be variable on a real machine

• what is the latency of a load? 

• Given all these limitation, why study list scheduling on 
PRAM’s in so much detail?



Generating computation graphs

• How do we produce computation graphs in the 
first place?

• Two approaches
– specify DAG explicitly

• like parallel programming

• easy to make mistakes

– race conditions: two nodes that write to same location but are 
not ordered by dependence

– by compiler analysis of sequential programs

• Let us study the second approach
– called dependence analysis



Putting it all together

• Write sequential program.

• Compiler produces parallel code
– generates control-flow graph

– produces computation DAG for each basic block by performing 
dependence analysis

– generates schedule for each basic block

• use list scheduling or some other heuristic

• branch at end of basic block is scheduled on all processors

• Problem:
– average basic block is fairly small (~ 5 RISC instructions)

• One solution:
– transform the program to produce bigger basic blocks



Limitations

• PRAM model abstracts away too many important details 
of real parallel machines
– synchronous model of computing does not scale to large 

numbers of processors

– global memory that can be read/written in every cycle by all 
processors is hard to implement

• DAG model of programs
– for irregular algorithms, we may not be able to generate static 

computation DAG

– even if we could generate a static computation DAG, latencies of 
some nodes may be variable on a real machine

• what is the latency of a load? 

• Given all these limitation, why study list scheduling on 
PRAM’s in so much detail?



Algorithm and

Data structure

Dependence

Graph
Schedule Execution

Compile-time

Input known

Runtime

Post-execution

Design
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