CS 377P:
Programming for Performance

Administration

e |nstructor:

— Keshav Pingali (Professor, CS, ECE & Oden)
¢ 4,126 Peter O’Donnell Building (POB)
e Email:

e TA: Dani Wang
— (Graduate student, CS)
¢ Email: daniw@utexas.edu

Prerequisites

e Basic computer architecture course

— (e.g.) PC, ALU, cache, memory, instruction-level
parallelism (ILP)

e Basic calculus and linear algebra

— differential equations and matrix operations
¢ Software maturity

— assignments will be in C/C++ on Linux computers

— ability to write medium-sized programs (~1000 lines)
e Self-motivation

— willingness to experiment with systems

Coursework

e 6-7 programming projects
— These will be more or less evenly spaced
through the semester

— Some projects will require the use of Intel
performance analysis tools

e One mid-semester exam
— Date: TBA
— Final exam

Text-book for course

No official book for course

This book is a useful reference.

"Parallel programming in C with MPI and
OpenMP", Michael Quinn, McGraw-Hill
Publishers. ISBN 0-07-282256-2

Lots of material on the web

What this course is not about

e This is not a clever hacks course

— We are interested in general scientific principles for
performance programming, not in squeezing out every
last cycle for somebody’s favorite program

e This is not a tools/libraries course

— We will use several tools (Intel Vtune, Advisor) and
libraries (MPI) but for us, they are a means to an end
and not end in themselves.

What this course IS about

e Architects invent many hardware features for
boosting program performance

e Usually, software can benefit from these features
only if it is carefully written to exploit them

e Quragendain CS 377P:

— Understand key performance-critical architectural
features in modern computers

— Develop general principles and techniques that can
guide us in writing programs to exploit these features

— Use state-of-the-art tools to put these into practice
Two major concerns:

— Exploiting parallelism

— Exploiting locality

Why worry about performance?

e Until ~2005

— Most programmers did not worry about performance
* Programs ran faster on each new generation of computer

¢ If you didn’t like the performance, you waited and then bought
anew computer

— Small number of performance programmers
* Caches: exploit locality
* Vectorization

— Even smaller number of parallel programmers
¢ HPC centers: worried about parallelism and locality

¢ Since then
— Programs do not run any faster on new hardware
unless they exploit parallelism

e What drove this evolution?

, Moore’s Law - The number of transistors on integrated circuit chips (1971-2016) W
Moore's law describes the empirical regularity that the nun tran nin d circuits doubles opproximately every two yea
Moore’s Law o ;

¢ What Moore said [1965]:
— Number of transistors on a chip
double every new generation of
technology (~1.5 years)

000,000

5,000,000 - 3
e What people think Moore said: " oo - il
— Processor frequency doubles =l .
00,000 .
every 1.5 years 50000 . + .
L Sk B gkt
b vy 95
WA,

Year of ntroduction

9 10
9 10
Microprocessor trend data
40 Years of Microprocessor Trem{ Data
107 T T T T r
b - | (thousands)
105 b ‘s fass - | Single-Thread
“ﬁ:“‘ -t Performance M
ot A PR .| o 10 BEFORE 2005
an g abs v‘ el oy Frequency (MHz)
w0 b P :.G;&! ' i
- "-I i "‘lﬁ Typical Power
10° | . R 154 Al - (Watts)
a wd %,"‘y [il 34 24
1L - PSS T et | Number of
10 L . g i : i Logical Cores
A < v Tvv vy At
10° rg Toe boere m smen muee s .
i h L 1
1970 1980 1990 2000 2010 2020
Year
yoar Moroutz. F, Lusonte). Shacham. K. Custun, L. Harmmong, and C. Baten
New plt and caea callectod for 2010-2015 by K. Aiow
Before 2005 After 2005 b

11 12

What were all those transistors used for?

e On-chip caches
e Pipelined instruction

execution TS
— Instruction-level parallelism - 2 [PECODE
(ILP) w

COMPLEX
INSTRUCTION

e Many functional units i

— VLIW or superscalar to keep

SUPERSCALAR

functional units busy INTEGER
. EXECUTION
e Vector units —— uNITS

PIPELINED

— (e.g.) Intel’'s AVX 512 F FLOATING

e Wider on-chip data-paths ==
— 8bit > 16 bit > 32 bit >

64 bit
Intel Pentium floorplan

Caches: typical latency numbers

(today)

L1 cache reference/hit 1.5ns 4 cycles
Floating-point add/mult/FMA operation 1.5ns 4 cycles
L2 cache reference/hit 5 ns 12~ 17 cycles
L3 cache hit 16-40 ns 40-300 cycles

256MB main memory reference 75-120 ns

2690v4

TinyMemBench on "Broadwell" E5-

Read 1MB sequentially from disk 5,000,000 ns 5,000 us
time would be additional latency)
Random Disk Access (seek+rotation) 10,000,000 ns 10,000 us 10 ms

5ms ~200MB/sec hard disk (seek

Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms
Locality is important.

From: Latency numbers every HPC programmer should know

13 14
‘ . Software challenges for
Vector instructions performance programmers before 2005
for (I=0; i<n; i++) Z[i] = X[i] + Y[il; * Exploiting instruction-level parallelism
Q scalar mode Q Vector (SIMD) mode — (e.g.) loop unrolling to create long basic blocks
- one instruction produces one = one instruction can produce multiple - .
o oty prockes melte * Exploiting vector parallelism
- E.g. vaddss, (vaddsd) — E.g. vaddps, (vaddpd)
— sdoblesforasy —— — (e.g.) vectorization of innermost loops
’ ¢ Exploiting memory hierarchy
v — exploit spatial and temporal locality
— code and data transformations for enhancing
v B spatial and temporal locality
— (e.g.) blocking of loops
Note: AVX was introduced in 2011 15 16
Before that, MMX and SSE.
15 16

Getting performance is hard

* Amdahl’s Law

— Simple observation that shows that unless most
program operations can be optimized, the benefits of
performance optimization are limited

— Unoptimized portions of program become bottleneck
e Analogy: suppose | go from Austin to Houston at

60 mph, and return “infinitely” fast. What is my

average speed?

— Answer: 120 mph, not infinity

Amdahl’s Law (details)

¢ |n general, program will have both optimized and
unoptimized portions
— Suppose program has N operations
* r*N operations in optimized portion
e (1-r)*N operations in unoptimized portion
e Assume
— Unoptimized portion requires one time unit per operation

— Optimized portion can be executed infinitely fast so it takes zero
time to execute.

e Speed-up:
Original execution time = N = 1
Optimized execution time (1-r)*N (1-r)

e Evenifr=0.99, speed-up is only 100.

Unless most of your program is performance-optimized, you won’t

v see much benefit. 8
17 18
Fundamental change since ~2005
e Moore’s Law still holds
— We get more transistors in each new
SINCE 2005 technology generation
e However
1. Architects have run out of ideas for how to
use these transistors to speed up single-
thread performance
2. Processor clock speed have stalled at roughly
1-3 GHz
19 20
19 20

(1) Using the additional transistors: old
ideas have run out of steam

e More cache

More cache buys performance until working set of program fits
in cache

e Deeper pipeline
— Deeper pipeline buys frequency at expense of increased branch
mis-prediction penalty
Deeper pipelines => higher clock frequency => more power
e Add more functional units/vector units
— Diminishing returns for adding more units
e Wider data paths
— Increases bandwidth between functional units in a

(2) Processor clock speed increase has stalled

&
E
§
=
2
i
e
@
a
@
3
5
2

=
(=]
(=]
(=]

Nuclear
Reactor

Hot Plate

—

=
(=]
(=]

—_

Pentium®

Source: Patrick
Gelsinger, Intel®

1990 2000 2010
core but we now have comprehensive 64-bit designs Year
21
21 22
One use of transistors: go multicore Intel Skylake chip
Front End
40 Years of Micropracessor Trend Data :
7 i
e Use transistors to build " &
multiple cores without 100 1
increasing clock frequency 10° | 4 gz”?"’?;"T:""::da
— does not require micro- 1¢* | H (SpecINT %10)
architectural W] Frequency (MHz)
breakthroughs 2l i (Tm‘c';]w Power
— non-linear scaling of ; Number of
power density with il s T 7 Logical Gores
frequency will notbea 10" Fg * ;‘ . T . '
problem 1970 1980 1990 2000 2010 2020
Year
" S e &
Mamory Subsystem
23

Block diagram of each core?

23

24

Clusters and data-centers

TACC Stampede 2 cluster

e 4,200 Intel Knights Landing nodes, each with 68 cores
¢ 1,736 Intel Xeon Skylake nodes, each with 48 cores

e 100 Gb/sec Intel Omni-Path network with a fat tree
topology employing six core switches

25

Software challenges post-2005

e Exploiting parallelism: keep the cores busy
— Node-level and thread-level parallelism
— Load-balancing

¢ Exploiting memory hierarchy
— Spatial and temporal locality

— Avoid sharing data with other cores as far as
possible

e New kinds of bugs:

— race conditions, deadlocks

25

26

Parallel programming

e Shared-memory programming

— Architecture: processor has some number of cores (e.g., Intel Skylake has
up to 18 cores depending on the model)

— Application program is decomposed into a number of threads, which run
on these cores

— Threads communicate by reading and writing memory locations
— We will study pThreads and OpenMP for shared-memory programming

¢ Distributed-memory programming
— Architecture: network of machines (Stampede II: 4,200 KNL hosts)

— Application program and data structures are partitioned into processes,
which run on machines

— Processes communicate by sending and receiving messages since they
have no memory locations in common

— We will study MPI for distributed-memory programming

27

Major Lecture Topics

Applications

— Parallelism and locality in important algorithms
Locality

— Memory hierarchy, code and data transformations
Vector parallelism

— Vectorizing compilers

Shared-memory parallelism

— Multicore architectures, pThreads, OpenMP, TBB
Distributed-memory parallelism

— Clusters, MPI
GPUs

— CUDA

27

28

