
1

CS 377P:
Programming for Performance

1

Administration

• Instructor:
– Keshav Pingali (Professor, CS, ECE & Oden)

• 4.126 Peter O’Donnell Building (POB)
• Email: pingali@cs.utexas.edu

• TA: Dani Wang
– (Graduate student, CS)

• Email: daniw@utexas.edu

2

Prerequisites

• Basic computer architecture course
– (e.g.) PC, ALU, cache, memory, instruction-level

parallelism (ILP)

• Basic calculus and linear algebra
– differential equations and matrix operations

• Software maturity
– assignments will be in C/C++ on Linux computers
– ability to write medium-sized programs (~1000 lines)

• Self-motivation
– willingness to experiment with systems

3

Coursework

• 6-7 programming projects
– These will be more or less evenly spaced

through the semester
– Some projects will require the use of Intel

performance analysis tools
• One mid-semester exam

– Date: TBA
– Final exam

4

1 2

3 4

2

Text-book for course

No official book for course

This book is a useful reference.
"Parallel programming in C with MPI and

OpenMP", Michael Quinn, McGraw-Hill
Publishers. ISBN 0-07-282256-2

Lots of material on the web
5

What this course is not about

• This is not a clever hacks course
– We are interested in general scientific principles for

performance programming, not in squeezing out every
last cycle for somebody’s favorite program

• This is not a tools/libraries course
– We will use several tools (Intel Vtune, Advisor) and

libraries (MPI) but for us, they are a means to an end
and not end in themselves.

6

What this course IS about

• Architects invent many hardware features for
boosting program performance

• Usually, software can benefit from these features
only if it is carefully written to exploit them

• Our agenda in CS 377P:
– Understand key performance-critical architectural

features in modern computers
– Develop general principles and techniques that can

guide us in writing programs to exploit these features
– Use state-of-the-art tools to put these into practice

• Two major concerns:
– Exploiting parallelism
– Exploiting locality

7

Why worry about performance?

• Until ~2005
– Most programmers did not worry about performance

• Programs ran faster on each new generation of computer
• If you didn’t like the performance, you waited and then bought

a new computer
– Small number of performance programmers

• Caches: exploit locality
• Vectorization

– Even smaller number of parallel programmers
• HPC centers: worried about parallelism and locality

• Since then
– Programs do not run any faster on new hardware

unless they exploit parallelism
• What drove this evolution?

8

5 6

7 8

3

Moore’s Law

• What Moore said [1965]:
– Number of transistors on a chip

double every new generation of
technology (~1.5 years)

• What people think Moore said:
– Processor frequency doubles

every 1.5 years Gordon Moore (Intel)

9 10

Microprocessor trend data

11
Before 2005 After 2005

BEFORE 2005

12

9 10

11 12

4

What were all those transistors used for?

• On-chip caches
• Pipelined instruction

execution
– Instruction-level parallelism

(ILP)

• Many functional units
– VLIW or superscalar to keep

functional units busy

• Vector units
– (e.g.) Intel’s AVX 512

• Wider on-chip data-paths
– 8bit 16 bit 32 bit

64 bit
Intel Pentium floorplan

13

Caches: typical latency numbers
(today)

L1 cache reference/hit 1.5 ns 4 cycles
Floating-point add/mult/FMA operation 1.5 ns 4 cycles

L2 cache reference/hit 5 ns 12 ~ 17 cycles

L3 cache hit 16-40 ns 40-300 cycles

256MB main memory reference 75-120 ns TinyMemBench on "Broadwell" E5-
2690v4

Read 1MB sequentially from disk 5,000,000 ns 5,000 us 5 ms ~200MB/sec hard disk (seek
time would be additional latency)
Random Disk Access (seek+rotation) 10,000,000 ns 10,000 us 10 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

From: Latency numbers every HPC programmer should know

Locality is important.

14

 Scalar mode
– one instruction produces one

result
– E.g. vaddss, (vaddsd)

 Vector (SIMD) mode
– one instruction can produce multiple

results
– E.g. vaddps, (vaddpd)

+

X

Y

X + Y

+

X

Y

X + Y

= =
x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

8 doubles for AVX-512

for (I=0; i<n; i++) Z[i] = X[i] + Y[i];

Vector instructions

Note: AVX was introduced in 2011
Before that, MMX and SSE.

15

Software challenges for
performance programmers before 2005

• Exploiting instruction-level parallelism
– (e.g.) loop unrolling to create long basic blocks

• Exploiting vector parallelism
– (e.g.) vectorization of innermost loops

• Exploiting memory hierarchy
– exploit spatial and temporal locality
– code and data transformations for enhancing

spatial and temporal locality
– (e.g.) blocking of loops

16

13 14

15 16

5

Getting performance is hard

• Amdahl’s Law
– Simple observation that shows that unless most

program operations can be optimized, the benefits of
performance optimization are limited

– Unoptimized portions of program become bottleneck

• Analogy: suppose I go from Austin to Houston at
60 mph, and return “infinitely” fast. What is my
average speed?
– Answer: 120 mph, not infinity

17

Amdahl’s Law (details)

• In general, program will have both optimized and
unoptimized portions

– Suppose program has N operations
• r*N operations in optimized portion
• (1-r)*N operations in unoptimized portion

• Assume
– Unoptimized portion requires one time unit per operation
– Optimized portion can be executed infinitely fast so it takes zero

time to execute.
• Speed-up:

Original execution time = N = 1
Optimized execution time (1-r)*N (1-r)

• Even if r = 0.99, speed-up is only 100.

Unless most of your program is performance-optimized, you won’t
see much benefit. 18

SINCE 2005

19

Fundamental change since ~2005

• Moore’s Law still holds
– We get more transistors in each new

technology generation
• However

1. Architects have run out of ideas for how to
use these transistors to speed up single-
thread performance

2. Processor clock speed have stalled at roughly
1-3 GHz

20

17 18

19 20

6

(1) Using the additional transistors: old
ideas have run out of steam

• More cache
– More cache buys performance until working set of program fits

in cache

• Deeper pipeline
– Deeper pipeline buys frequency at expense of increased branch

mis-prediction penalty
– Deeper pipelines => higher clock frequency => more power

• Add more functional units/vector units
– Diminishing returns for adding more units

• Wider data paths
– Increases bandwidth between functional units in a

core but we now have comprehensive 64-bit designs

21

(2) Processor clock speed increase has stalled

• Old picture:
– Processor clock

frequency
doubled every 1.5
years

• New picture:
– Power problems

limit further
increases in clock
frequency

Frequency

St
at

ic
 C

ur
re

nt

Embedded
Parts

Very High Leakage
and Power Fast, High

Power

Fast, Low
Power

1.0 1.5

15

0

Static current rises non-linearly
as processors approach max frequency

4004
8008
8080

8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
sit

y (
W

/c
m

2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel

22

One use of transistors: go multicore

• Use transistors to build
multiple cores without
increasing clock frequency
– does not require micro-

architectural
breakthroughs

– non-linear scaling of
power density with
frequency will not be a
problem

23

Intel Skylake chip

Chip

Block diagram of each core24

21 22

23 24

7

Clusters and data-centers

• 4,200 Intel Knights Landing nodes, each with 68 cores
• 1,736 Intel Xeon Skylake nodes, each with 48 cores
• 100 Gb/sec Intel Omni-Path network with a fat tree

topology employing six core switches

TACC Stampede 2 cluster

25

Software challenges post-2005

• Exploiting parallelism: keep the cores busy
– Node-level and thread-level parallelism
– Load-balancing

• Exploiting memory hierarchy
– Spatial and temporal locality
– Avoid sharing data with other cores as far as

possible

• New kinds of bugs:
– race conditions, deadlocks

26

Parallel programming

• Shared-memory programming
– Architecture: processor has some number of cores (e.g., Intel Skylake has

up to 18 cores depending on the model)
– Application program is decomposed into a number of threads, which run

on these cores
– Threads communicate by reading and writing memory locations
– We will study pThreads and OpenMP for shared-memory programming

• Distributed-memory programming
– Architecture: network of machines (Stampede II: 4,200 KNL hosts)
– Application program and data structures are partitioned into processes,

which run on machines
– Processes communicate by sending and receiving messages since they

have no memory locations in common
– We will study MPI for distributed-memory programming

27

Major Lecture Topics

• Applications
– Parallelism and locality in important algorithms

• Locality
– Memory hierarchy, code and data transformations

• Vector parallelism
– Vectorizing compilers

• Shared-memory parallelism
– Multicore architectures, pThreads, OpenMP, TBB

• Distributed-memory parallelism
– Clusters, MPI

• GPUs
– CUDA

28

25 26

27 28

