
Parallel-prefix computation

Properties of functions

• f: DxD→ D
– Function takes two arguments from set D
– Returns element of D
– Example: +,*: x→

– Not an example: division (why?)
• Commutative function: f(x,y) = f(y,x)

– Examples: +, * (even in floating-point arithmetic)
– Not commutative: matrix multiplication

• Associative function: f(x,f(y,z)) = f(f(x,y),z))
– Intuitively, we can parenthesize the operands any way
– Examples: +, * on real numbers, matrix multiplication
– Not associative: floating-point +, *

• Reduction operation: both commutative and associative
– Example: +, * on real numbers

Map and Reduce

• map f <x1,x2,…,xn> = <f(x1),f(x2),…,f(xn)>

– Types
• f: D→R

• <x1,…xn>: array<D>

• <f(x1),…,f(xn)>: array<R>

• reduce f <x1,x2,…,xn> = f(x1,f(x2,…f(xn-1,xn)))

– Types
• f: DxD→D

• <x1,…xn>: array<D>

• Output: D

– Usually, f is commutative and associative

Outline

• Prefix-sum problem

– Scan computation: generalization in which addition is
replaced by an associative operation like *, min, max,
and, or etc.

• Parallel prefix computation

– Divide and conquer algorithms that expose
parallelism that is not obvious from get-go

• Applications of parallel prefix computation

– Many seemingly sequential problems can be
parallelized

fromleft

Parallelization: two threads

2 4 6 8 1 5 9 8

2 4 6 8 1 5 9 8

2 6 12 20 21 26 35 43

• Step 1: each thread computes sum of left/right half of array in

parallel without updating array

• Step 2:

• fromleft values

• fromleft = 0 for Thread 1

• fromleft = sum from Thread 1 for Thread 2

• compute prefix-sum for left and right sub-arrays, using fromleft

values to initialize the prefix-sum computations

Thread 1 Thread 2

Thread 2

fromleft = 20

Step 1

Step 2
Thread 1

fromleft = 0

sum sum (discard)

Alternative strategy

2 4 6 8 1 5 9 8

2 6 12 20 1 6 15 23

2 6 12 20 21 26 35 43

• Step 1: threads compute prefix-sum for left and right halves of

array in parallel using some algorithm (say sequential algorithm)

• Step 2: add final element from first half to elements of second half

• Divide work between threads

• Block partitioning so no ping-ponging of cache lines

• We will go with the first strategy since it is easier to generalize to

more threads

Thread 1 Thread 2

Thread 2
fromleft

Step 1

Step 2 Thread 1

Serial or recursive scan

In the limit

• Assume large array, unbounded # of processors

• Up-sweep:

– Divide input array into segments of length 2

– Collect from-left values from each segment into
another array like in previous slide

– This array will be large too so perform previous two
steps recursively on this array as well

– Recursion stops when from-left array is size 1

• Down-sweep:

– Update from-left arrays successively

Quicksort

Best / expected case work
O(1)
O(n)

1. Pick a pivot element
2. Partition all the data into:

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Easy: Do the two recursive calls in parallel

• Work: unchanged. Total: O(n log n)

• Span: now T(n) = O(n) + 1T(n/2) = O(n)

	Slide 1: Parallel-prefix computation
	Slide 2: Properties of functions
	Slide 3: Map and Reduce
	Slide 4: Outline
	Slide 5
	Slide 6: Parallelization: two threads
	Slide 7: Alternative strategy
	Slide 8
	Slide 9: In the limit
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Quicksort
	Slide 20
	Slide 21
	Slide 22
	Slide 23

