Parallel-prefix computation

Properties of functions

f:DxD —> D
— Function takes two arguments from set D
— Returns element of D
— Example: +,*: RxR > R
— Not an example: division (why?)
Commutative function: f(x,y) = f(y,x)
— Examples: +, * (even in floating-point arithmetic)
— Not commutative: matrix multiplication
Associative function: f(x,f(y,z)) = f(f(x,y),z))
— Intuitively, we can parenthesize the operands any way
— Examples: +, * on real numbers, matrix multiplication
— Not associative: floating-point +, *
Reduction operation: both commutative and associative
— Example: +, * on real numbers

Map and Reduce

e mapf <xXyX,,..., x> = <f(x,),f(x,),...,f(x.)>
— Types
e f: DR
® <Xq,..X,>: array<D>
o <f(x,),...,f(x,)>: array<R>
o reduce f <xy,X,,....x > = f(x;,f(x,,...F(x,.1,%.)))
— Types
e f: DxD—D
® <Xq,..X,>:array<D>
e Qutput: D
— Usually, T is commutative and associative

Outline

e Prefix-sum problem

— Scan computation: generalization in which addition is
replaced by an associative operation like *, min, max,
and, or etc.

e Parallel prefix computation

— Divide and conquer algorithms that expose
parallelism that is not obvious from get-go

e Applications of parallel prefix computation

— Many seemingly sequential problems can be
parallelized

The prefix-sum problem

val prefix_sum : int array -> int array

input 16 10

fromle/ﬁ\l

output 10 26 36

The simple sequential algorithm: accumulate the sum from left to right

— Sequential algorithm: Work: O(n), Span: O(n)
— Goal: a parallel algorithm with Work: O(n), Span: O(log n)

Paral\e\ization: two threads

Step 1 Thread 1 sum: Thread 2 sum (discard)
2 4 6.8 1 5 9] 3
fromleft = fromleft =20

-n

« Step 1: each thread computes sum of left/right half of array in
parallel without updating array
« Step 2:
« fromleft values
« fromleft =0 for Thread 1
« fromleft = sum from Thread 1 for Thread 2
« compute prefix-sum for left and right sub-arrays, using fromleft
values to initialize the prefix-sum computations

Alternative strategy

2 | 4 | 6 8 | 1 | 5] 9 | 8

Step 1 Thread 1 Thread 2
II
fromleft
Step 2 Thread 1| Thread 2

2 | 6 | 12| 20 | 21 | 26 | 35 | 43

« Step 1: threads compute prefix-sum for left and right halves of
array in parallel using some algorithm (say sequential algorithm)
- Step 2: add final element from first half to elements of second half
« Divide work between threads
« Block partitioning so no ping-ponging of cache lines
« We will go with the first strategy since it is easier to generalize to
more threads

Generalize to t (=4) threads

|] | |
| 1 | |
Scan Block 0 ! Scan Block 1 ! ScanBlock2 | ScanBlock3 |
| |] |
1 1 1 1

...................... ; " Up-sweep

Store Block Sum to Auxiliary Array

. : Serial or recursive scan

Scan Block Sums

Add Scanned Block Sum i to Al Down-sweep

Values of Scanned Block i + 1

] — — = ———

40

In the limit

e Assume large array, unbounded # of processors
e Up-sweep:
— Divide input array into segments of length 2

— Collect from-left values from each segment into
another array like in previous slide

— This array will be large too so perform previous two
steps recursively on this array as well

— Recursion stops when from-left array is size 1
e Down-sweep:
— Update from-left arrays successively

Example

input

output

range 0,8
sum 76
fromleft
range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 56 r 6,7 r 7,8
S 6 s 4 s 16 s 10 s 16 s 14 || 2 s 8
f f f f f f f f
6 4 16 10 16 14 2 8

Example

input

output

7

range 0,4
sum 36
fromleft O

/

~

range
sum

0,8
76

fromleft 0

AN

range 4,8
sum 40
fromleft 36

/

T~

range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft O fromleft 10 fromleft 36 fromleft 66
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 56 r 6,7 r 7,8
S B S 4 s 16 s 10 s 16 s 14 s 2 s 8
f 0O 6 f 10 f 26 f 36 f 52 f 66 f 68

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

[The algorithm, pass 1

1. Up: Build a binary tree where
— Root has sum of the range [x, V)

— Ifanode hassumof[lo,hi)and hi>1lo,
* Left child has sum of [lo,middle)
* Right child has sum of [middle,b hi)

« Aleafhassumof[i,i+1), i.e.,, input[i]

This is an easy parallel divide-and-conquer algorithm: “combine”
results by actually building a binary tree with all the range-sums

— Tree built bottom-up in parallel

Analysis: O(n) work, O(1log n) span

The algorithm, pass 2

2. Down: Pass down a value fromLeft
— Rootgiven a fromLeft of 0

— Node takes its fromLeft value and
* Passes its left child the same fromLeft
* Passesits right child its fromLef t plus its left child’s sum
— asstoredinpartl
— At the leaf for array position i,
. output[i]=fromLeft+input[i]

This is an easy parallel divide-and-conquer algorithm: traverse the
tree built in step 1 and produce no result

— Leaves assignh to output

— Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(1og n) span

Sequential cut-off

For performance, we need a sequential cut-off:

* Up:

just a sum, have leaf node hold the sum of a range

* Down:
output. (lo) = fromLeft + input. (lo);
for i=lo+1l up to hi-1 do
output. (1) = output. (i-1) + input. (1)

Parallel prefix, generalized

Just as map and reduce are the simplest examples of a common
pattern, prefix-sum illustrates a pattern that arises in many, many
problems

* Minimum, maximum of all elements to the left of i

* |sthere an element to the left of i satisfying some property?

* Count of elements to the left of i satisfying some property
— This last one is perfect for an efficient parallel filter ...
— Perfect for building on top of the “parallel prefix trick”

[Filter

Given an array input, produce an array output containing only
elements such that (£ elt) is true

Example: letfx=x>10

filter £ <17, 4, o6, 8, 11, 5, 13, 19, 0, 24>
== <17, 11, 13, 19, 24>

Parallelizable?
— Finding elements for the output is easy
— But getting them in the right place seems hard

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>
bits <, 0, 0,0, 1, 0, 1, 1, 0, 1>

2. Parallel-prefix sum on the bit-vector
bitsum <1, 1, 1, 1, 2,2, 3, 4, 4, 5>

3. Parallel map to produce the output
output <17, 11, 13, 19, 24>

Quicksort review

Recall quicksort was sequential, in-place, expected time O(n 1og n)

Best / expected case work

1. Pick a pivot element 0O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

How should we parallelize this?

Quicksort

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

Easy: Do the two recursive calls in parallel
 Work: unchanged. Total: O(n 1og n)
* Span: now T(n) =0(n) + 1T(n/2) = O(n)

Doing better

We get a O(1og n) speed-up with an infinite number of
processors. That is a bit underwhelming

— Sort 102 elements 30 times faster

(Some) Google searches suggest quicksort cannot do better
because the partition cannot be parallelized

— The Internet has been known to be wrong ©
— But we need auxiliary storage (no longer in place)
— In practice, constant factors may make it not worth it

Already have everything we need to parallelize the partition...

Parallel partition (not in place)

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

This is just two filters!
— We know a parallel filter is O(n) work, O(Log n) span
— Parallel filter elements less than pivot into left side of aux array
— Parallel filter elements greater than pivot into right size of aux array
— Put pivot between them and recursively sort

— With a little more cleverness, can do both filters at once but no effect
on asymptotic complexity

With O(1og n) span for partition, the total best-case and expected-
case span for quicksort is

T(n) = O(Log n)+1T(n/2) = O(Log? n)

Example

Step 1: pick pivot as median of three

Steps 2a and 2c (combinable): filter less than, then filter
greater than into a second array

Step 3: Two recursive sorts in parallel
— Can copy back into original array (like in mergesort)

More Algorithms

To add multi precision numbers.

To evaluate polynomials

To solve recurrences.

To implement radix sort

To delete marked elements from an array
To dynamically allocate processors

To perform lexical analysis. For example, to parse a program
into tokens.

To search for regular expressions. For example, to implement
the UNIX grep program.

To implement some tree operations. For example, to find the
depth of every vertex in a tree

To label components in two dimensional images.
See Guy Blelloch “Prefix Sums and Their Applications”

	Slide 1: Parallel-prefix computation
	Slide 2: Properties of functions
	Slide 3: Map and Reduce
	Slide 4: Outline
	Slide 5
	Slide 6: Parallelization: two threads
	Slide 7: Alternative strategy
	Slide 8
	Slide 9: In the limit
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Quicksort
	Slide 20
	Slide 21
	Slide 22
	Slide 23

