Parallel Programming with OpenMP

OpenMP (Open Multi-Processing) is a popular shared-memory programming model
Supported by popular production C (also Fortran) compilers: Clang, GNU Gcc, IBM
xlc, Intel icc

These slides borrow heavily from Tim Mattson’s excellent OpenMP tutorial available
at www.openmp.org, and from Jeffrey Jones (OSU CSE 5441)

thread Private

thread | Private

/ Shared Address \

Space

thread Private

thread Private

thread Private

Souree: Tim Mattson

http://www.openmp.org/

What is OpenMP?

* Adirective based parallel programming model

— OpenMP program is essentially a sequential program
augmented with compiler directives to specify parallelism

— Eases conversion of existing sequential programs

* Main concepts:

— Parallel regions: where parallel execution occurs via multiple
concurrently executing threads

— Each thread has its own program counter and executes one
Instruction at a time, similar to sequential program execution

— Shared and private data: shared variables are the means of
communicating data between threads

— Synchronization: Fundamental means of coordinating execution
of concurrent threads

— Mechanism for automated work distribution across threads

/barrier
2 ~a
| | | | | |

master thregg -

S b L
i 1 ¥
¢ L] ¢ -
¢ % P -
b
¢ Y

n,
h — —n
1 r L
%

o e threaos T
threads J '
. . threads
parallel region parallel region parallel region

| 1 1
N L—
forks

https://computing.linl.gov/tutorials/openMP/images/fork_join2.gif

OpenMP Core Syntax

* Most of the constructs in OpenMP are compiler directives:

— #pragma omp construct [clause [clause]...]

Example

— #pragma omp parallel num_threads(4)

* Function prototypes and types in the file: #include
<omp.h>

* Most OpenMP constructs apply to a “structured block”

* Structured block: a block of one or more statements
surrounded by “{ }”, with one point of entry at the top and
one point of exit at the bottom.

Hello World in OpenMP

#include <omp.h>
void main()

{

#pragma omp parallel
{
int ID = O;
printf(“ hello(%d) ", ID);
printf(* world(%d) \n”, ID);
}

}

* An OpenMP program starts with one “master” thread executing
“main” as a sequential program

* “#pragma omp parallel” indicates beginning of a parallel region
— Parallel threads are created and join the master thread
— All threads execute the code within the parallel region
— At the end of parallel region, only master thread executes
— Implicit “barrier” synchronization; all threads must arrive before master
proceeds onwards

Hello World in OpenMP
#include <omp.h>
void main() Sample Output:
{
#pragma omp parallel hello(1) hello(0) world(1)
{
iInt ID = omp_get_thread num(); W0r|d(0)
printf(* hello(%d) *, 1D); hello (3) hello(2) world(3)
printf(“ world(%d) \n”", ID);
} world(2)
}

Each thread has a unique integer “id”; master thread has “id” O,
and other threads have “id" 1, 2, ...

OpenMP runtime function omp_get thread num() returns a
thread’s unique “id”.

The function omp_get _num_threads() returns the total number of
executing threads

The function omp_set num_threads(x) asks for “x” threads to
execute in the next parallel region (must be set outside region)

Work Distribution in Loops

* Basic mechanism: threads can perform disjoint work division
using their thread ids and knowledge of total # threads

double A[1000];

#pragma omp parallel

{

}

omp_set_num_threads(4);

Block distribution of work

/

Cyclic work distribution

intt_id = omp_get_thread_num();

for(inti=t id;i< 1000%i += omp_get_num_threads())
{

\ Ali]= foo(i); double A[1000]:

omp_set_num_threads(4);
#pragma omp parallel
{
intt id =omp_get thread _num();
int b_size = 1000 / omp/get_num_threads();
for (inti=t id *b_size;i < (t_id+1) * b_size; i ++)
{
Ali]= foo(i);
}
}

Specifying Number of Threads

* Desired number of threads can be specified in many ways
— Setting environmental variable OMP_NUM_THREADS
— Runtime OpenMP function omp_set _num_threads(4)

— Clause in #pragma for parallel region

double A[1000];

#pragma omp parallel num_threads(4)
{
intt _id = omp_get_thread _num();
for (inti=t_id; i <1000;i+=omp_get num_threads())
{
Ali] = foo(i);
}
}

implicit barrier

{

each thread will
execute the code
within the block

}

OpenMP Data Environment

* Global variables (declared outside the scope of a parallel
region) are shared among threads unless explicitly made
private

* Automatic variables declared within parallel region scope are
private

* Stack variables declared in functions called from within a
parallel region are private

#pragma omp parallel private(x)
* each thread receives its own uninitialized variable x
* the variable x falls out-of-scope after the parallel region
* a global variable with the same name is unaffected @oand

later)

#pragma omp parallel firstprivate(x)
* X must be a global-scope variable
* each thread receives a bhy-value copy of x
* the local x’s fall out-of-scope after the parallel region
* the base global variable with the same name is

AN o S R |

Example: Numerical Integration

Mathematically:
1

40 _ 4 = 1
J. (1+x2)

0

Which can be approximated by:

n

Z F(xi) AX = T

i=0

o
X
+
F

=

S
<
]|

—

X
(19

where each rectangle has width
Ax and height F(xi) at the middle
of interval 1.

https://software.intel.com/sites/default/files/m/d/4/1/d/8/1252a.gif

Sequential pi Program

Int num_steps = 100000;
double step;

void main ()

{

IntI;

double Xx, pi, sum = 0.0;

step = 1.0/(double) num_steps;
for (i = 0; 1 < num_steps; I++)
{
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*X);
}
pi = step * sum;
!

SPMD Programming

Single Program Multiple Data
— Each thread runs same program

— Selection of data, or branching conditions, based on
thread id

In OpenMP implementation:

* perform work division in parallel loops
* query thread id and num_threads

* partition work among threads

Parallel Accumulation: Avoiding Race Conditions

sum = sum + 4.0/(1.0+x*x);

load_register1l, @sum
set_register 2, 4.0
set_register 3, 1.0
load_register4, @x

multiply 5,4,4
add 4, 3,5
divide 3,2,4
add 2,1,3
store 2, @sum

* High-level C statement translates into a sequence of low-
level instructions

— Accumulation into shared variable sum is not atomic:
contributions can be lost if multiple threads execute the
statements concurrently

— Must use suitable synchronization to avoid race conditions

Parallel pi Program

#include <omp.h>

int num_steps = 100000;

double step;

#define NUM_THREADS 2

void main ()
{
int 1, nthreads;

double pi = 0.0, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set num_threads(NUM_THREADYS);

#pragma omp parallel

{
int i, id,nt;
double x:

id = omp_get_thread_num();
nt = omp_get_num_threads();

if (id == 0) nthreads = nt;

sum[id] =0.0;
for (i=1id; i <num_steps; i
{

x = (1+0.5)*step;

sum(id] += 4.0/(1.0+x*x);
}

} <- implicit barrier

for(1=0; i< nthreads; i++)

}

{

pi += sum(i] * step;

}

+=nt
A partition method

Avoiding False Sharing in Cache
sum[id] += 4.0/(1.0+x*x);

sum[id] = sum[id] + 4.0/(1.0+x*X);

* Array sum[] is a shared array, with each thread accessing exactly on
element

* Cache line holding multiple elements of sum will be locally cached by each
processor in its private L1 cache

* When a thread writes into into element in sum, the entire cache line
becomes “dirty” and causes invalidation of that line in all other processor’s
caches

* Cache thrashing due to this “false sharing” causes performance degradation

Block vs. Cyclic Work Distribution

double A[1000];

omp_set_num_threads(4);
#pragma omp parallel
{
intt_id = omp_get_thread_num();
for (inti =t id; i <1000; i +=omp_get num_threads())

{ .
sumfid] += 4.0/(1.0+x*X); double A[1000F;
} } omp_set_num_threads(4);
#pragma omp parallel
{

intt id =omp_get thread _num();
int b_size = 1000 / omp_get_num_threads();
for (inti=(t id-1) *b_size; i<t _id * b_size; i ++)

{

}
}

sum[id] += 4.0/(1.0+x*x);

* Block/cyclic work distribution will not impact performance here

* But if statement in loop were like: “A[i] += BJi]*C]i]", block distribution would be
preferable

Synchronization: Critical Sections

float res;

#pragma omp parallel
{
float B;

int i, id, nthrds;

id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for(i=id; i <MAX; i+= nthrds)
{

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}

* Only one thread can enter critical section at a time; others
are held at entry to critical section

* Prevents any race conditions in updating “res”

Synchronization: Atomic

float res;
#pragma omp parallel

{
float B:

int 1, id, nthrds;

id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for(i=id; i <MAX; i+= nthrds)
{

B = big_job(i);

#pragma omp atomic

res += B;

}
}

* Atomic: very efficient critical section for simple accumulation
operations (x binop= expr; or x++, x--, etc.)

* Used hardware atomic instructions for implementation; much
lower overhead than using critical section

Parallel pi: No False Sharing

int num_steps = 100000;
double step;
#define NUM_THREADS 2

void main ()
{
int 1, nthreads;

double pi = 0.0;

step = 1.0/(double) num_steps;

omp_set num_threads(NUM_THREADYS);

#pragma omp parallel

{
int I, id,nthrds;

double’ x, st

id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;

sum = 0.0;
for (i =1id; i < num_steps; i += nthrds)
{

x = (i+0.5)*step;

no array, no false sharing -> EENIIEE 4_0/(1_O+x*x);

}

}

#pragma omp atomic

{

pi += sum * step;

} A each thread adds its partial
} sum one thread at a time

Loop worksharing constructs
A motivating example

Sequential code for(i=0;i<N;i++) {a[i] = a[i] + b[i];}
#pragma omp parallel
{
Int 1d, 1, Nthrds, istart, iend;
OpenMP parallel id = omp get thread num():
region Nthrds = omp_get num_threads();

Istart = 1d * N / Nthrds;

lend = (id+1) * N / Nthrds;

If (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

OpenMP parallel
region and a
worksharing for
construct

#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++) {a[i] = a[i] + b[i];}

OpenMP Combined Work-Sharing Construct

#pragma omp parallel #pragma omp parallel for
{ for(i=0; i < MAX; i++)
#pragma omp for {
for(i=0; i < MAX; i++) B = big_job(i);
{ - #pragma omp critical
B = big_job(i); consume (B, res);
#pragma omp critical }
consume (B, res);
}
}

* Often a parallel region has a single work-shared loop

* Combined construct for such cases: just add the work-
sharing “for” clause to the parallel region pragma

Loop worksharing constructs:
The schedule clause

* The schedule clause affects how loop iterations are mapped onto threads
— schedule(static [,chunk])

— Deal-out blocks of iterations of size “chunk” to each thread.
— schedule(dynamic|,chunk])

— Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

Least work at

Schedule Clause When To Use runtime :
scheduling done
STATIC Pre-determined and at compile-time
predictable by the
programmer
DYNAMIC Unpredictable, highly Most work at
variable work per runtime :
iteration complex
scheduling logic

used at run-time

loop work-sharing constructs:
The schedule clause

Schedule Clause

When To Use

STATIC

Pre-determined and
predictable by the
programmer

DYNAMIC

Unpredictable, highly
variable work per
iteration

Least work at
runtime :

scheduling done
at compile-time

GUIDED

Special case of dynamic
to reduce scheduling
overhead

Most work at
runtime :
complex
scheduling logic
used at run-time

AUTO

When the runtime can
“learn” from previous
executions of the same
loop

OpenMP Reductions

double avg = 0.0;

double A[SIZE];

#pragma omp parallel for
for (int 1= 0; 1< SIZE; I++;)

{
avg += All];

}
avg = avg / SIZE;

* Reductions commonly occur in codes (as in pi example)

* OpenMP provides special support via “reduction” clause
— OpenMP compiler automatically creates local variables for each thread, and
divides work to form partial reductions, and code to combine the partial
reductions

— Predefined set of associative operators can be used with reduction clause,
e.g., +, *, -, min, max

OpenMP Reductions

double avg = 0.0;
double A[SIZE];
#pragma omp parallel for reduction(+ : avg)

for (inti=0; 1< SIZE; i++;)
{
avg += A[il;

}
avg = avg / SIZE;

* Reductions clause specifies an operator and a list of
reduction variables (must be shared variables)

— OpenMP compiler creates a local copy for each reduction
variable, initialized to operator’s identity (e.g., O for +; 1 for *)

— After work-shared loop completes, contents of local variables
are combined with the “entry” value of the shared variable

— Final result is placed in shared variable

Parallel pi

. Using Reduction

int num_steps = 100000;
double step;

manage number of threads 1[I

void main ()

{
int i
double X, pi, sum = 0.0;

step = 1.0/(double) num_steps;

manage number of threads [

parallelize, and reduce into sum 0
for (i=0; | < num_steps; i++)
{

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

int num_steps = 100000;
double step;
#define NUM_THREADS 2

void main ()
{
int i;

double X, pi, sum = 0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+ :
sum)
for (1=0;i<num_steps; i++)
{
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}

pi += sum * step;

OpenMP: Reduction operands/initial-values

« Many different associative operands can be used with reduction:
» |nitial values are the ones that make sense mathematically.

Operator

Initial value

Largest pos. number

Most neg. number

C/C++ only

Operator

Initial value

~0

0
0
1
0

Fortran Only
Operator | Initial value
.AND. true.
.OR. false.
.NEQV. false.
JEOR. 0
JOR. 0
JAND. All bits on
EQV. true.

46

Synchronization: Barrier

#pragma omp parallel private(id)

{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for
for(i=0;I<N;i++)

{

}
of parallel region
#pragma omp for nowait
for(i=0;i<N;i++)

{

Cli]=big_calc3(i,A);

Bli]=big_calc2(C, i);
no barrier! 0 }

nowait cancels barrier creation A[ld] — blg_CaIC4(Id),
}

Synchronization: Master and Single

#pragma omp parallel

do_many_things()

#pragma omp master

{
tes thi i .
e reset_boundaries();

do_many_other_things();

} #pragma omp parallel

multiple threads of control [

do_many_things();

#pragma omp single

a single thread is chosen 1[I {
to execute this region

reset_boundaries();

implicit barrier [}

multiple threads of control [dO_many_Other_thiﬂgS();

}

Synchronization: Locks

omp_lock t Ick;
omp_init_lock(&lck);

#pragma omp parallel

multiple threads of control [do_many_things();
omp_set_lock(&lck);

{code requiring mutual exclusion}
omp_unset_lock(&Ick);

{

| mukiie treads of conrol I

do_many_other_things ();
}

omp_destroy lock(&lck);
Alternate way to critical sections of achieving mutual
exclusion

More flexible than critical sections (can use multiple locks)

More error-prone — for example, deadlock if a thread does
not unset a lock after acquiring it

OpenMP Sections

#pragma omp parallel

{

multiple threads of control O #pragma omp sections
each section assigned to a

different thread {]
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();

} by default:
extra threads are idled

Work-sharing for functional parallelism; complementary to
“*omp for” for loops

OpenMP memory model

e OpenMP supports a shared memory model
e All threads share an address space, but it can get complicated:

Shared memory

e Multiple copies of data may be present in memory, various levels of cache, or in
registers

64

OpenMP and relaxed consistency

« OpenMP supports a relaxed-consistency
shared memory model

— Threads can maintain a temporary view of shared memory
that is not consistent with that of other threads

— These temporary views are made consistent only at certain
points in the program

— The operation that enforces consistency is called the flush operation

65

Flush operation

A flush is a sequence point at which a thread is guaranteed
to see a consistent view of memory

— All previous read/writes by this thread have completed and are visible
to other threads

— No subsequent read/writes by this thread have occurred

* A flush operation is analogous to a fence in other shared
memory APIs

66

Flush and synchronization

A flush operation is implied by OpenMP synchronizations, e.g.,
— at entry/exit of parallel regions
— at implicit and explicit barriers
— at entry/exit of critical regions

(but not at entry to worksharing regions)

This means if you are mixing reads and writes of a variable across multiple
threads, you cannot assume the reading threads see the results of the writes
unless:

» the writing threads follow the writes with a construct that implies a flush.
» the reading threads precede the reads with a construct that implies a flush.

This is a rare event ... or putting this another way, you should avoid writing
code that depends on ordering reads/writes around flushes.

67

The OpenMP Common Core: Most OpenMP programs only use these 19 items

OpenMP pragma, function, or clause

Concepts

#pragma omp parallel

Parallel region, teams of threads, structured block, interleaved
execution across threads

iInt omp_get _thread _num()
iInt omp_get_num_threads()

Create threads with a parallel region and split up the work using
the number of threads and thread ID

double omp_get wtime()

Speedup and Amdahl's law.
False Sharing and other performance issues

setenv OMP_NUM_THREADS N

Internal control variables. Setting the default number of threads
with an environment variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions. Revisit interleaved

execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies

reduction(op:list)

Reductions of values across a team of threads

schedule(dynamic [,chunk])
schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list)

Data environment

nowait

Disabling implied barriers on workshare constructs, the high cost of
barriers, and the flush concept (but not the flush directive)

#pragma omp single

Workshare with a single thread

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.
89

Books about OpenMP

PORTABLE SHARED EMDRY PARAI.[EI. PROGRAMMING

e - ey — R
_ , e .
- A - 2 i '-_r__ - 9 -
P -'ﬁ' ﬂ""" - : 3""" — B s T
X e ot = - T g, e -
-.n.,.- oL . - - . - —— -
= — . -

F"!r_ -__‘_ P

BARBARA CHAPMAN,

GABRIELE JOST,
AND RUUD VAN DER PAS

« A book about OpenMP by a
team of authors at the forefront
of OpenMP’s evolution.

A
vy

PATTERNS
FOR PARALLEL
PROC 1{\\1 MIN G

i monv a unnon :
: nul.v A snnnus
ngu rs unsnnm.l. ,

//f/ 5 :. : /1 _ .
SOFTWARE PATTERNS SERIES

o A book about how to “think
parallel” with examples in
OpenMP, MPI and java

	Parallel Programming with OpenMP
	What is OpenMP?
	Slide 3
	OpenMP Core Syntax
	Hello World in OpenMP
	Hello World in OpenMP
	Work Distribution in Loops
	Specifying Number of Threads
	OpenMP Data Environment
	Example: Numerical Integration
	Sequential pi Program
	SPMD Programming
	Parallel Accumulation: Avoiding Race Conditions
	Parallel pi Program
	Avoiding False Sharing in Cache
	Block vs. Cyclic Work Distribution
	Synchronization: Critical Sections
	Synchronization: Atomic
	Parallel pi: No False Sharing
	OpenMP Loop Work-Sharing
	OpenMP Combined Work-Sharing Construct
	OpenMP Reductions
	OpenMP Reductions
	Parallel pi: Using Reduction
	Synchronization: Barrier
	Synchronization: Master and Single
	Synchronization: Locks
	OpenMP Sections
	Controlling Work Distribution: Schedule Clause

