
1

Introduction to
x86 ISA and Compilers

High-level Structure of Compiler
High-level source code

Compiler

Assembly language program

Machine language program

Assembler

Java, C++, FORTRAN,….

Sequence of 1’s and 0’s

Symbolic m/c language

There may be different assembly languages for the same ISA.
Example: AT&T (used by gcc) and Intel (used by icc) formats for x86 ISA.

x-86 instruction set

• x-86 ISA is very complex
– CISC instruction set
– Evolved over time:

• 16 bit  32 bit  64 bit
• MMX vector instructions

– Assembly format: AT&T format and Intel format
• We will focus on x86-32 bit ISA since it is easier

to understand
• Once you figure this out, x86-64 bit ISA is not

hard

CS 412/413 Spring 2008 Introduction to Compilers 3

Useful website
• https://godbolt.org/

CS 412/413 Spring 2008 Introduction to Compilers 4

https://godbolt.org/

5

X86-32 Quick Overview

• Registers:
– General purpose 32bit: eax, ebx, ecx, edx, esi, edi

• Also 16-bit: ax, bx, etc., and 8-bit: al, ah, bl, bh, etc.
– Special registers:

• esp: stack pointer
• ebp: frame base pointer

Note on register names

• AX/EAX/RAX: accumulator
• BX/EBX/RBX: base
• CX/ECX/RCX: counter
• DX/EDX/RDX: data/general
• SI/ESI/RSI: "source index" for string operations.
• DI/EDI/RDI: "destination index" for string operations.
• SP/ESP/RSP: stack pointer for top address of the stack.
• BP/EBP/RBP: stack base pointer for holding the address of the current

stack frame.
• IP/EIP/RIP: instruction pointer. Holds the current instruction address.

Registers are general-purpose: can be used for anything
programmer wants

Historically, the registers were intended to be used as shown
below, hence their odd names:

http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Stack_frame

CS 412/413 Spring 2008 Introduction to Compilers 7

Memory Layout

Code

Locals,
parameters

Static area

Stack

Object fields,
arrays

Globals,
Static data

Heap

low

high

Byte
addressable

8

x86 Quick Overview

• Instructions:
– Arithmetic: add, sub, inc, mod, idiv, imul, etc.
– Logic: and, or, not, xor
– Comparison: cmp, test
– Control flow: jmp, jcc, jecz
– Function calls: call, ret
– Data movement: mov (many variants)
– Stack manipulations: push, pop
– Other: lea

Instruction set

• x86 instruction set: two-address instruction set
– Op a, b

• a,b specify the two operands
• result of operation is stored in b

– warning: AT&T and Intel formats are different: see last slide
– we will assume AT&T format in slides

• a,b: registers or memory address
• at most one operand can be in memory
• memory addresses can be specified as offset from ebp (or other

registers)
– pushl 8(%ebp)
– more generally, address can be specified as disp(base,offset,scale)

– Examples:
• addl $3, %eax //add constant 3 to register eax
• movl %eax, %ebx //move contents of register eax to register ebx
• movl 8(%ebp), %eax //move contents at memory address (8 + contents(ebp))

//to register eax
• movl %eax, 8(%ebx,%ecx,4) //effective address is 8 + contents(%ebx) + 4*contents(%ecx)

Little-endian

Storing value 0x0A0B0C0D in memory

x86 is “little-endian”

x86 instruction set can address bytes and supports data of different sizes,
so you have to be aware of the representation of data.

How are 32-bit quantities stored in memory?

Condition code register

• Condition code register
– Bits in this register are set implicitly when instructions are executed
– (eg) ZF bit is the zero flag and is set if the result of the operation is

zero
– (eg) SF bit is the sign flag and is set if the result of the operation is

negative
– ….

• Branch instructions can test one or more flags and branch
conditionally on the outcome
– (eg) je/jz is “jump if equal”: jumps if ZF is set
– (eg) jne/jnz is “jump if not equal”
– Many other conditional branch operations

gcc/icc stack frame

- arguments are pushed right to left
f(arg1,arg2,…,argN)

- registers are saved by caller and callee
gcc convention
– caller save: eax,ecx,edx
– callee save: ebp,ebx,esi,edi

- ebp (FBR) is one of callee save registers
- eax is used to return a value from function
- on x64, registers are used to pass arguments

Caller save registers

ESP

EBP

CS 412/413 Spring 2008 Introduction to Compilers 13

Accessing Stack Variables

• To access stack variables:
use offsets from ebp

• Example:
8(%ebp) = parameter 1
12(%ebp) = parameter 2
-4(%ebp) =local 1

Param n

Param 1
Return address

Previous fp

…

Local 1

Local n
…

ebp

…

esp

ebp+8

ebp-4

ebp+…

CS 412/413 Spring 2008 Introduction to Compilers 14

Accessing Stack Variables
• Translate accesses to variables:

– For parameters, compute offset from %ebp using:
• Parameter number
• Sizes of other parameters

– For local variables, look at data layout and assign offsets from frame
pointer to each local

• Example:
– a: local, offset-4
– p: parameter, offset+16, q: parameter, offset+8
– Assignment a = p + q becomes equivalent to:

-4(%ebp) = 16(%ebp) + 8(%ebp)
– How to write this in assembly?

CS 412/413 Spring 2008 Introduction to Compilers 15

Arithmetic
• How to translate: p+q ?

– Assume p and q are locals or parameters
– Determine offsets for p and q
– Perform the arithmetic operation

• Problem: the ADD instruction in x86 cannot take both operands from
memory; notation for possible operands:

– mem32: register or memory 32 bit (similar for r/m8, r/m16)
– reg32: register 32 bit (similar for reg8, reg16)
– imm32: immediate 32 bit (similar for imm8, imm16)
– At most one operand can be mem !

• Translation requires using an extra register
– Place p into a register (e.g. %ecx): mov 16(%ebp), %ecx
– Perform addition of q and %ecx: add 8(%ebp), %ecx

CS 412/413 Spring 2008 Introduction to Compilers 16

Data Movement
• Translate a = p+q:

– Load memory location (p) into register (%ecx) using a move instr.
– Perform the addition
– Store result from register into memory location (a):

mov 16(%ebp), %ecx (load)
add 8(%ebp), %ecx (arithmetic)
mov %ecx, -8(%ebp) (store)

• Move instructions cannot have two memory operands
Therefore, copy instructions must be translated using an extra register:

a = p ⇒ mov 16(%ebp), %ecx
mov %ecx, -8(%ebp)

• However, loading constants doesn’t require extra registers:
a = 12 ⇒ mov $12, -8(%ebp)

Exercise: write assembly for example

//save register esi
//x  esi
//esi + 3  esi
//eax now has return value
//restore esi

// save ebp
//ebp points to current frame

//pop local variables
//restore ebp

caller-save registers

ESP

EBP

CS 412/413 Spring 2008 Introduction to Compilers 18

Accessing Global Variables
• Global (static) variables and constants not stack allocated
• Have fixed addresses throughout the execution of the program

– Compile-time known addresses (relative to the base address where program
is loaded)

– Hence, can directly refer to these addresses using symbolic names in the
generated assembly code

• Example: string constants

str: .string “Hello world!“

– The string will be allocated in the static area of the program
– Here, “str” is a label representing the address of the string
– Can use $str as a constant in other instructions:

push $str

CS 412/413 Spring 2008 Introduction to Compilers 19

Control-Flow
• Label instructions

– Simply translated as labels in the assembly code
– E.g., label2: mov $2, %ebx

• Unconditional jumps:
– Use jump instruction, with a label argument
– E.g., jmp label2

• Conditional jumps:
– Translate conditional jumps using test/cmp instructions:
– E.g., tjump b L  cmp %ecx, $0

jnz L
where %ecx hold the value of b, and we assume booleans are represented as
0=false, 1=true

• Array accesses in language with dynamic array size
– access a[i] requires:

• Compute address of element: a + i * size
• Access memory at that address

– Can use indexed memory accesses to compute addresses
– Example: assume size of array elements is 4 bytes, and local variables a, i

(offsets –4, -8)

a[i] = 1 mov –4(%ebp), %ebx (load a)
mov –8(%ebp), %ecx (load i)
mov $1, (%ebx,%ecx,4) (store into the heap)

CS 412/413 Spring 2008 Introduction to Compilers 20

Data structures: 1-D arrays

a[1]a[0] ………………..

ebp
a
i

• Multi-dimensional arrays
– Elements of array are stored sequentially in memory in some order

• Two important orders
– Row-major order: elements of each row are contiguous in memory and

rows are stored one after another starting from the first row (all
languages other than FORTRAN)

– Column-major order: similar to row-major but columns are stored
contiguously, not rows (FORTRAN)

• Array allocated on heap (using malloc or new)
– Pointer to array (address of A[0,0]) is stored on stack

CS 412/413 Spring 2008Introduction to Compilers21

Data structures: multi-dimensional arrays (I)

• Address arithmetic:
– Assume array A: MxN of ints/floats/whatever (assume each element requires “size” bytes)
– Array allocated on heap in row major order
– Starting address of A is stored at -4(%ebp) for example
– What is address of A[i,j]?

• Address(A[r,c]) = -4(%ebp) + (r*N+c)*size

CS 412/413 Spring 2008Introduction to Compilers22

Data structures: multi-dimensional arrays (II)

A[0,1]A[0,0] ………………..

ebp
A

0
1

(M-1)
..

0 1 .. (N-1)

• Usually array elements are accessed within loops
• Optimizing compilers will optimize the address arithmetic for array access

using loop invariant removal and strength reduction (see later)
• Sequential accesses to row elements

– Register points into array
– Incremented by “size” after each access to get to the next element

CS 412/413 Spring 2008Introduction to Compilers23

Data structures: multi-dimensional arrays (III)

A[0,1]A[0,0] ………………..

ebp
A

0
1

(M-1)
..

0 1 .. (N-1)

CS 412/413 Spring 2008 Introduction to Compilers 24

Data structures: objects
• Objects can be stack- or heap-allocated
• Example: Point type

– Fields: x,y
– Methods: getx, gety

• Stack allocation:
(C++) Point p;

• Heap:
(C++)
Point *p = new Point;
(Java)
Point p = new Point();

DV
x
y

getx
gety

(stack) code pointers

DV
x
y

getx
gety

(heap) code pointers

p
(stack)

CS 412/413 Spring 2008 Introduction to Compilers 25

Run-time Checks
• Run-time checks:

– Check if array/object references are non-null
– Check if array index is within bounds

• Example: array bounds checks:
– if v holds the address of an array, insert array bounds checking code

for v before each load (…=v[i]) or store (v[i] = …)
– Assume array length is stored just before array elements:

cmp $0, -12(%ebp) (compare i to 0)
jl ArrayBoundsError (test lower bound)
mov –8(%ebp), %ecx (load v into %ecx)
mov –4(%ecx), %ecx (load array length into %ecx)
cmp –12(%ebp), %ecx (compare i to array length)
jle ArrayBoundsError (test upper bound)
. . .

CS 412/413 Spring 2008 Introduction to Compilers 26

X86 Assembly Syntax
• Two different notations for assembly syntax:

– AT&T syntax and Intel syntax
– In the examples: AT&T (gcc) syntax

• Summary of differences:

Order of operands op a, b : b is destination op a, b : a is destination

Memory addressing disp(base,offset,scale) [base + offset*scale + disp]

Size of memory
operands

instruction suffixes (b,w,l)
(e.g., movb, movw, movl)

operand prefixes
(byte ptr, word ptr, dword ptr)

Registers %eax, %ebx, etc. eax, ebx, etc.

Constants $4, $foo, etc 4, foo, etc

AT&T Intel

Tutorial
• This website has a simple example with

comments

https://eli.thegreenplace.net/2011/02/04/wher
e-the-top-of-the-stack-is-on-x86/

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

Introduction to Compilers

Optimizing compiler structure

Front-end structure

Syntax analysis is also known as parsing.

CS 412/413 Spring 2008 Introduction to Compilers 31

What Next?

• At this point we could generate assembly code

• Better:
– Optimize the program first
– Then generate code

• If optimization performed at the IR level, then they
apply to all target machines

CS 412/413 Spring 2008 Introduction to Compilers 32

Optimizations

Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis
IR Generation

if (b == 0) a = b;

Correct program
In High IR (usually trees)

IR Lowering

Errors

Program
In Low IR (closer to assembly)

Optimize

Optimize

CS 412/413 Spring 2008 Introduction to Compilers 33

When to Apply Optimizations

High IR

Low IR

Assembly

Function inlining
Function cloning
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Loop unrolling
Register allocation
Cache optimization

CS 412/413 Spring 2008 Introduction to Compilers 34

What are Optimizations?

• Optimizations = code transformations that improve
the program

• Different kinds
– space optimizations: improve (reduce) memory use
– time optimizations: improve (reduce) execution time

• Code transformations must be safe!
– They must preserve the meaning of the program

CS 412/413 Spring 2008 Introduction to Compilers 35

Why Optimize?

• Programmers don’t always write optimal code – can
recognize ways to improve code (e.g., avoid
recomputing same expression)

• High-level language may make some optimizations
inconvenient or impossible to express

a[i][j] = a[i][j] + 1;

• High-level unoptimized code may be more readable:
cleaner, modular

int square(x) { return x*x; }

CS 412/413 Spring 2008 Introduction to Compilers 36

Where to Optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade off space versus

time
• Example: loop unrolling

– Increases code space, speeds up one loop
– Frequently executed code with long loops: space/time

tradeoff is generally a win
– Infrequently executed code: may want to optimize code

space at expense of time

• Want to optimize program hot spots

CS 412/413 Spring 2008 Introduction to Compilers 37

Many Possible Optimizations

• Many ways to optimize a program
• Some of the most common optimizations:

Function Inlining
Function Cloning
Constant folding
Constant propagation
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Branch prediction/optimization
Loop unrolling

CS 412/413 Spring 2008 Introduction to Compilers 38

Constant Propagation
• If value of variable is known to be a constant, replace use of

variable with constant
• Example:

n = 10
c = 2
for (i=0; i<n; i++) { s = s + i*c; }

• Replace n, c:
for (i=0; i<10; i++) { s = s + i*2; }

• Each variable must be replaced only when it has known
constant value:
– Forward from a constant assignment
– Until next assignment of the variable

CS 412/413 Spring 2008 Introduction to Compilers 39

Constant Folding
• Evaluate an expression if operands are known at

compile time (i.e., they are constants)
• Example:

x = 1.1 * 2; ⇒ x = 2.2;

• Performed at every stage of compilation
– Constants created by translations or optimizations

int x = a[2] ⇒ t1 = 2*4
t2 = a + t1
x = *t2

CS 412/413 Spring 2008 Introduction to Compilers 40

Algebraic Simplification

• More general form of constant folding: take
advantage of usual simplification rules
a * 1 ⇒ a a * 0 ⇒ 0
a / 1 ⇒ a a + 0 ⇒ a
b || false ⇒ b b && true ⇒ b

• Repeatedly apply the above rules
(y*1+0)/1 ⇒ y*1+0 ⇒ y*1 ⇒ y

• Must be careful with floating point!

CS 412/413 Spring 2008 Introduction to Compilers 41

Copy Propagation

• After assignment x = y, replace uses of x with y
• Replace until x is assigned again

• What if there was an assignment y = z before?
– Transitively apply replacements

x = y;
if (x > 1) ⇒
s = x * f(x - 1);

x = y;
if (y > 1)
s = y * f(y - 1);

CS 412/413 Spring 2008 Introduction to Compilers 42

Common Subexpression Elimination

• If program computes same expression multiple time,
can reuse the computed value

• Example:

• Common subexpressions also occur in low-level code
in address calculations for array accesses:

a[i] = b[i] + 1;

a = b+c;
c = b+c; ⇒
d = b+c;

a = b+c;
c = a;
d = b+c;

CS 412/413 Spring 2008 Introduction to Compilers 43

Unreachable Code Elimination

• Eliminate code that is never executed
• Example:

#define debug false
s = 1;
if (debug)

print(“state = ”, s);

• Unreachable code may not be obvious in low IR (or
in high-level languages with unstructured “goto”
statements)

s = 1;⇒

CS 412/413 Spring 2008 Introduction to Compilers 44

Unreachable Code Elimination
• Unreachable code in while/if statements when:

– Loop condition is always false (loop never executed)
– Condition of an if statement is always true or always false

(only one branch executed)

if (false) S ⇒ ;

if (true) S else S’ ⇒ S
if (false) S else S’ ⇒ S’

while (false) S ⇒ ;
while (2>3) S ⇒ ;

CS 412/413 Spring 2008 Introduction to Compilers 45

Dead Code Elimination

• If effect of a statement is never observed,
eliminate the statement

x = y+1;
y = 1;
x = 2*z;

• Variable is dead if value is never used after
definition

• Eliminate assignments to dead variables
• Other optimizations may create dead code

y = 1;
x = 2*z;

⇒

CS 412/413 Spring 2008 Introduction to Compilers 46

Loop Optimizations

• Program hot spots are usually loops (exceptions:
OS kernels, compilers)

• Most execution time in most programs is spent in
loops: 90/10 is typical

• Loop optimizations are important, effective, and
numerous

CS 412/413 Spring 2008 Introduction to Compilers 47

Loop-Invariant Code Motion
• If result of a statement or expression does not

change during loop, and it has no externally-visible
side-effect (!), can hoist its computation out of the
loop

• Often useful for array element addressing
computations – invariant code not visible at source
level

• Requires analysis to identify loop-invariant
expressions

CS 412/413 Spring 2008 Introduction to Compilers 48

Code Motion Example

• Identify invariant expression:

for(i=0; i<n; i++)
a[i] = a[i] + (x*x)/(y*y);

• Hoist the expression out of the loop:

c = (x*x)/(y*y);
for(i=0; i<n; i++)

a[i] = a[i] + c;

CS 412/413 Spring 2008 Introduction to Compilers 49

Another Example

• Can also hoist statements out of loops
• Assume x not updated in the loop body:

…
while (…) {

y = x*x;
…

}
…

• … Is it safe?

…
y = x*x;
while (…) {

…
}
…

⇒

CS 412/413 Spring 2008 Introduction to Compilers 50

Strength Reduction
• Replaces expensive operations (multiplies, divides) by cheap

ones (adds, subtracts)
• Strength reduction more effective in loops and useful for

address arithmetic
• Induction variable = loop variable whose value is depends

linearly on the iteration number
• Apply strength reduction to induction variables

s = 0;
for (i = 0; i < n; i++) {

v = 4*i;
s = s + v;

}

s = 0; v = -4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}

⇒

CS 412/413 Spring 2008 Introduction to Compilers 51

Strength Reduction

• Can apply strength reduction to computation
other than induction variables:

x * 2 ⇒ x + x
i * 2c ⇒ i << c

i / 2c ⇒ i >> c

CS 412/413 Spring 2008 Introduction to Compilers 52

Induction Variable Elimination

• If there are multiple induction variables in a loop, can
eliminate the ones that are used only in the test condition

• Need to rewrite test using the other induction variables
• Usually applied after strength reduction

s = 0; v=-4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}

s = 0; v = -4;
for (; v < (4*n-4);) {

v = v+4;
s = s + v;

}

⇒

CS 412/413 Spring 2008 Introduction to Compilers 53

Loop Unrolling
• Execute loop body multiple times at each iteration

• Example:
for (i = 0; i< n; i++) { S }

• Unroll loop four times:
for (i = 0; i < n-3; i+=4) { S; S; S; S; }
for (; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeoff: program size increases

CS 412/413 Spring 2008 Introduction to Compilers 54

Function Inlining
• Replace a function call with the body of the function:

int g(int x) { return f(x)-1; }
int f(int n) { int b=1; while (n--) { b = 2*b }; return b; }

int g(int x) { int r;

int n = x;

{ int b =1; while (n--) { b = 2*b }; r = b }

return r – 1; }

• Can inline methods, but more difficult
• … how about recursive procedures?

CS 412/413 Spring 2008 Introduction to Compilers 55

Function Cloning
• Create specialized versions of functions that are called from

different call sites with different arguments

void f(int x[], int n, int m) {
for(int i=0; i<n; i++) { x[i] = x[i] + i*m; }

}

• For a call f(a, 10, 1), create a specialized version of f:

void f1(int x[]) {
for(int i=0; i<10; i++) { x[i] = x[i] + i; }

}
• For another call f(b, p, 0), create another version f2(…)

CS 412/413 Spring 2008 Introduction to Compilers 56

When to Apply Optimizations

High IR

Low IR

Assembly

Function inlining
Function cloning
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Loop unrolling
Register allocation
Cache optimization

CS 412/413 Spring 2008 Introduction to Compilers 57

Summary
• Many useful optimizations that can transform code

to make it faster

• Whole is greater than sum of parts: optimizations
should be applied together, sometimes more than
once, at different levels

	Slide Number 1
	High-level Structure of Compiler
	x-86 instruction set
	Useful website
	X86-32 Quick Overview
	Note on register names
	Memory Layout
	x86 Quick Overview
	Instruction set
	Little-endian
	Condition code register
	gcc/icc stack frame
	Accessing Stack Variables
	Accessing Stack Variables
	Arithmetic
	Data Movement
	Exercise: write assembly for example
	Accessing Global Variables
	Control-Flow
	Data structures: 1-D arrays
	Data structures: multi-dimensional arrays (I)
	Data structures: multi-dimensional arrays (II)
	Data structures: multi-dimensional arrays (III)
	Data structures: objects
	Run-time Checks
	X86 Assembly Syntax
	Tutorial
	Slide Number 28
	 Optimizing compiler structure
	Front-end structure
	What Next?
	Optimizations
	When to Apply Optimizations
	What are Optimizations?
	Why Optimize?
	Where to Optimize?
	Many Possible Optimizations
	Constant Propagation
	Constant Folding
	Algebraic Simplification
	Copy Propagation
	Common Subexpression Elimination
	Unreachable Code Elimination
	Unreachable Code Elimination
	Dead Code Elimination
	Loop Optimizations
	Loop-Invariant Code Motion
	Code Motion Example
	Another Example
	Strength Reduction
	Strength Reduction
	Induction Variable Elimination
	Loop Unrolling
	Function Inlining
	Function Cloning
	When to Apply Optimizations
	Summary

