
CS 377P Spring 2026

Assignment 3

Due: 11 PM, March 4th, 2026

February 19, 2026

No late submissions will be accepted for this assignment.

1. (Finite-differences, 10 points)

In lecture, we considered the ode du
dt = −3u(t) + 2 with initial condition

u(0) = 1. Using the forward-Euler discretization scheme, we came up with
the following recurrence equation:

uf (0) = 1

uf (nh+ h) = (1− 3h)uf (nh) + 2h

where uf (nh) is the approximation for u at t = nh. In this problem, you
will study the behavior of the approximate solution for different values of
h.

(a) Consider the following values of h : 1/6, 1/3, 1/2, 2/3, 1. On a single
graph, plot the points for each value of h, using a different color for
each h, in the interval 0 ≤ t ≤ 1.

(b) At what value of h does the approximate solution start to oscillate
instead of decreasing monotonically?

(c) At what value of h does the approximate solution become unstable
and blow up?

(d) Explain these results analytically using the difference equation. Hint:
look at the values of (1− 3h).

2. (Iterative solution of linear systems, 5 points) Consider the linear system

4x+ 2y = 6
x− 5y = −4

(a) (2 points) Write down the recurrence relation that corresponds to
solving this system using the Jacobi method, starting with the initial
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approximation (x1 = 0, y1 = 0). Use the first equation to refine the
approximation for x and the second equation to refine the approx-
imation for y. Express this recurrence as a computation involving
matrices and vectors.

(b) (1 points) Compute the first 10 approximations (xi, yi) and plot a
3D plot (x, y, i) in which the z-axis is the iteration number i. Give
an intuitive explanation of this 3D plot. You do not need to turn in
any code but turn in your plot and explanation.

(c) (2 points) Repeat these two parts for the Gauss-Seidel method. You
can find a description of the Gauss-Seidel method online.

3. (ODE’s, 15 points) Consider the second-order differential equation

d2y
dx2 = −y

with initial conditions y(0) = 0, y′(0) = 1. The exact solution of this
equation is y = sin(x).

(a) (3 points) What is the difference equation if we use the forward-Euler
method to discretize derivatives? Assume the step size is h.

(b) (2 points) Discretize the initial conditions to find expressions for the
first two terms in the solution to the difference equation.

(c) (5 points) Calculate the solutions to the difference equation in the
interval x = [0, 2π] for h = 0.01, 0.1, 1.0, 2.0. Graph each solution
together with the exact solution, using a separate graph for each
value of h. What trends do you see in your plots? No need to turn
in code for the calculations.

(d) (5 points) Repeat these steps with the backward-Euler discretization.
For this part, you need to discretize the initial condition y′(0) = 1
by considering the value of y(−h) (i.e., one time-step before 0).
Using the backward-Euler formula for the first derivative, we get
yb(0)−yb(−h)

h = 1, so yb(−h) = yb(0) − h = −h since yb(0) = 0 from
the other boundary condition. Use the values of yb(−h) and yb(0) to
”turn the crank” and compute the remaining values of yb(nh).

4. (PDE’s, 20 points) Consider the 2D heat conduction problem discussed in
lecture in which we solved the heat equation for given boundary conditions,
using a grid that had 4 interior points (see Slide 23). Repeat this exercise
using a grid obtained by dividing the x and y ranges into 6 equal sized
intervals, rather than 3 intervals as in the lecture example. You should
have 25 interior points so you will have to construct a 25x25 matrix A, and
solve a linear system Ax = b to find the solution. You may want to write
a program to construct this matrix. Use a linear solver from MATLAB,
Octave or any other program of your choice.

What to turn in: What are the temperature values at the 4 original grid
points when you use this finer grid?
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5. (PDE’s, 40 points) In this problem, we consider a membrane in the unit
square that is clamped along its edges. At t = 0, the membrane is pulled
into some initial shape given by the initial conditions, and then released.
Intuitively, we would expect the membrane to keep vibrating as shown in
Figure 1. The problem is to solve a pde to find the shape of the membrane
over time. Here are the details:

� The independent variables (x, y) are in the unit square [0,1]x[0,1].

� u(x, y, t) is the displacement at position (x, y) at time t. u is the
dependent variable, and its value tells you how far a given point
(x, y) has moved from the (x, y) plane at time t. Figure 1 illustrates
this for t = 0 and t = 500.

� Wave equation: δ2u
δt2 = δ2u

δx2 + δ2u
δy2

� u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0 (clamped boundary
conditions, see Figure 1)

� u(x, y, 0) = 4 ∗x2 ∗ y(1−x)(1− y) (initial condition, see Figure 1(a))

� u′(x, y, 0) = 0 (initial condition, membrane is at rest at t=0)

� Use centered differences to discretize both space and time.

� Spatial discretization step ∆x, ∆y = 0.01

� Time discretization step = ∆t = 0.0025

� Number of time steps = 500

Figure 1 shows the function u(x, y, t) at t = 0 (initial condition) and at
t = 500. Use the second diagram to check your answer.

Figure 1: Vibrating membrane at t = 0 and at t = 500

Conceptually, you are filling in a series of arrays of size (100x100) that
has one such array for each time step.

What to turn in:
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(a) The difference equation obtained by discretizing the pde.

(b) A short paragraph on how you discretized the initial conditions. Note
that because you are using centered differences, you will have to
compute the values of u(x, y,−1) using the boundary condition for
u′ just like you did in Problem 3(d) for the backward-Euler method.
Here you would use the centered difference approximation to the first
derivative to compute the values of u(x, y,−1), from which you can
turn the crank and compute the remaining values of u.

(c) Plot a graph similar to the ones in Figure 1 for t = 200.

(d) Plot a graph of u(0.5, 0.5, t for 0 ≤ t ≤ 500. Intuitively, this shows
you the displacement of the point (0.5, 0.5) in the membrane over
time.

(e) Your code for computing the solution.

6. (Short answers, 10 points) Explain the following terms in a few sentences
each.

(a) (2 points) What is a commutative function? Associative function?
Give an example of a function that is commutative but not asso-
ciative. Give an example of a function that is associative but not
commutative.

(b) (2 points) What is the difference between a problem and an algo-
rithm? Is SSSP a problem or algorithm? If it is a problem, name
two algorithms for solving the SSSP problem and write down the
asymptotic complexity of each algorithm. What algorithm would
you use in a parallel implementation? For the last question, justify
your answer briefly.

(c) (2 points) Explain briefly why the average diameter of a very large
power-law graph with billions of vertices may be as small as 5-10.
Who was Stanley Milgram and how is he connected to power-law
graphs and social networks?

(d) (2 points) In implementing the Barnes-Hut algorithm, we usually
rebuild the spatial decomposition tree from scratch rather than in-
crementally updating it between time steps. Explain why, using the
phrase ”Amdahl’s Law” in your answer.

(e) (2 points) How do direct methods for solving linear systems work?
Name two direct methods. Why are direct methods not used very
often for solving sparse linear systems?
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