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Terminology

• Graphics Processing Unit (GPU)
– special processors  (accelerators) designed to speed up graphics 

applications

• General-purpose GPUs (GPGPU)
– GPUs that have been massaged so that they can be used for both 

graphics and general-purpose applications
– we will just refer to them as GPU’s

• Compute Unified Device Architecture (CUDA)
– NVIDIA programming model for their GPU’s

• Open Computing Language (OpenCL)
– One attempt to define standard for programming heterogeneous 

processors: multicores + GPUs + other accelerators

• Kernel
– a function/loop that is executed on GPU
– a program will usually consist of a sequence of kernels interspersed 

with code that is executed on the host device (CPU)



Key features of GPUs
• Lots of threads

– (eg) NVIDIA Fermi streaming processor has
• 512 cores

• 24,576 threads

– lightweight threads: managed by hardware, start-
up cost is small

• SIMT execution
– groups of threads (warp) operate in SIMD 

– Siamese twins: 32 threads joined at hip

– threads in warp are co-scheduled for execution 

– compare: vector instruction

• Latency-tolerant architecture
– processor time-slices between warps to mask 

memory and synchronization latencies

– similar: time-sharing, dataflow

– contrast: latency-avoidance architectures (caches)
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Exposed Memory Hierarchy

• Global memory:
– Read/written by host 

– Read/written by all GPU threads

– Used to transfer data back and forth 
between host and GPU

– Relatively slow: 400-800 cycles

• Constant memory:
– Read/written by host

– Read by GPU threads

– Used to transfer read-only information

• Shared memory:
– Read/written by groups of threads called 

thread blocks or just blocks

– Like a software managed L1 cache

– Faster than global memory:1-4 cycles

• Registers:
– Read/written by thread

– Private to each thread

Global Memory

Block

Shared Memory

Thread 

Registers

Thread

Registers

Block

Shared Memory

Thread 

Registers

Thread 

Registers

Host

Constant Memory

In principle, global memory + registers are enough.
Shared-memory: intermediate level of memory hierarchy



Note on hierarchical thread organization

• Even on multicore processors
– threads are organized physically in a 

hierarchy
– storage is associated with multiple 

levels of this hierarchy
• (eg) threads in same chip can share L2 

or L3 cache

• Difference
– data is automatically moved by 

hardware from one cache to another 
– so association between threads and 

cache does not have to be exposed 
to programming model

• Exposed memory hierarchy of GPU
– data movement must be 

orchestrated by programmer
– so association between threads and 

storage is exposed to programming 
model



Block has id, per-block shared memory.
Detail: block id can be 1D,2D,3D.
CUDA: blockIdx.x, blockIdx.y,blockId.z
CUDA: sync_threads for synchronizing all 
threads in block.

Thread has id, registers, PC, 
thread-private local memory.
Detail: thread id can be 1D,2D,3D.
CUDA: threadIdx.x,threadIdx.y,threadIdx.z
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Hierarchical Organization of Threads

Grid

Block Block Block …..…..

Warp Warp Warp

ThreadThread Thread

….. …..

….. …..

Grid has global memory.
Blocks in grid are usually  independent.

Programming model implication

Not reflected in programming model.
Performance: thread/memory divergence

Hierarchy reflects both SIMT and exposed memory hierarchy
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What is CUDA?

• CUDA Architecture
– Expose GPU parallelism for general-purpose computing
– Retain performance

• CUDA C/C++
– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous 

programming
– Straightforward APIs to manage devices, memory etc.

• This session introduces CUDA C/C++
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Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device
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Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N          1024

#define RADIUS     3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

  temp[lindex - RADIUS] = in[gindex - RADIUS];

  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

  result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

void fill_ints(int *x, int n) {

 fill_n(x, n, 1);

}

int main(void) {

 int *in, *out;              // host copies of a, b, c

 int *d_in, *d_out;          // device copies of a, b, c

 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values

 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 

 // Alloc space for device copies

 cudaMalloc((void **)&d_in,  size);

 cudaMalloc((void **)&d_out, size);

 // Copy to device

 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 

d_out + RADIUS);

 // Copy result back to host

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(in); free(out);

 cudaFree(d_in); cudaFree(d_out);

 return 0;

}

serial code

parallel code

serial code

parallel fn
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

© NVIDIA 2013
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

3. Copy results from GPU memory to 

CPU memory
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Hello World!

int main(void) {

 printf("Hello World!\n");

 return 0;

}

Standard C that runs on the 

host

NVIDIA compiler (nvcc) can be 

used to compile programs with 

no device code

Output:

$ nvcc hello_world.cu

$ ./a.out

Hello World!

$

© NVIDIA 2013
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CUDA Function Declarations

hosthost_host_  float HostFunc()

hostdevice_global_ void  KernelFunc()

devicedevice_device_ float DeviceFunc()

Only callable 
from the:

Executed on 
the:

• Executed on host, callable from device: not supported

• _global_ defines a kernel function, must return void

•  _device_ and _host_ can be used together
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CUDA Variable Type Qualifiers

•  __device__ is optional when used with __local__,  __shared__, or 
__constant__

• Automatic variables without any qualifier reside in a register

– Except arrays that reside in local memory

– Thread-local memory  and spilled automatic variables is 
allocated in global memory

Variable declaration Memory Scope Lifetime

__device__ __local__    int LocalVar; local thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application



Hello World! with Device Code

__global__ void mykernel(void) {

 }

 int main(void) {

  mykernel<<<1,1>>>();

  printf("Hello World!\n");

  return 0;

 }

▪ Two new syntactic elements…
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Hello World! with Device Code

__global__ void mykernel(void) {

 }

• CUDA C/C++ keyword __global__ indicates a “function” that
– Runs on the device
– Is called from host code

• nvcc separates source code into host and device 
components
– Device functions (e.g., mykernel()) processed by NVIDIA compiler
– Host functions (e.g., main()) processed by standard host compiler

• gcc, cl.exe
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Hello World! with Device Code

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host 
code to device code

– Also called a “kernel launch”

– We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function 
on the GPU!
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Hello World! with Device Code

__global__ void mykernel(void){

 }

 int main(void) {

  mykernel<<<1,1>>>();

  printf("Hello World!\n");

  return 0;

 }

• mykernel() does nothing, 

somewhat anticlimactic!

Output:

$ nvcc hello.cu

$ a.out

Hello World!

$
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Parallel Programming in CUDA C/C++

• But wait… GPU computing is about 

massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and 

build up to vector addition

a b c

© NVIDIA 2013



Addition on the Device

• A simple kernel to add two integers

 __global__ void add(int *a, int *b, int *c) {

  *c = *a + *b;

 }

• As before __global__ is a CUDA C/C++ keyword 
meaning
– add() will execute on the device

– add() will be called from the host
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Addition on the Device

• Note that we use pointers for the variables

 __global__ void add(int *a, int *b, int *c) {

  *c = *a + *b;

 }

• add() runs on the device, so a, b and c must 
point to device memory

• We need to allocate memory on the GPU

© NVIDIA 2013



Memory Management

• Host and device memory are separate entities
– Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

– Host pointers point to CPU memory
May be passed to/from device code

May not be dereferenced in device code

• Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()

– Similar to the C equivalents malloc(), free(), memcpy()
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Addition on the Device: add()

• Returning to our add() kernel

 __global__ void add(int *a, int *b, int *c) {

  *c = *a + *b;

 }

• Let’s take a look at main()…

© NVIDIA 2013



Addition on the Device: main()

int main(void) {

  int a, b, c;             // host copies of a, b, c

  int *d_a, *d_b, *d_c;      // device copies of a, b, c

  int size = sizeof(int);

  

  // Allocate space for device copies of a, b, c

  cudaMalloc((void **)&d_a, size);

  cudaMalloc((void **)&d_b, size);

  cudaMalloc((void **)&d_c, size);

  // Setup input values

  a = 2;

  b = 7;
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Addition on the Device: main()

 // Copy inputs to device

  cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

  cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

  // Launch add() kernel on GPU

  add<<<1,1>>>(d_a, d_b, d_c);

  // Copy result back to host

  cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

  // Cleanup

  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

  return 0;

 }

© NVIDIA 2013
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Moving to Parallel

• GPU computing is about massive parallelism

– So how do we run code in parallel on the device?

  add<<< 1, 1 >>>();

  add<<< N, 1 >>>();

• Instead of executing add() once, execute N 
times in parallel
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Vector Addition on the Device

• With add() running in parallel we can do vector addition

• Terminology: each parallel invocation of add() is referred to 
as a block
– The set of blocks is referred to as a grid

– Each invocation can refer to its block index using blockIdx.x

 __global__ void add(int *a, int *b, int *c) {

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

• By using blockIdx.x to index into the array, each block handles 
a different index
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Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

• On the device, each block can execute in parallel:

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3
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Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

 __global__ void add(int *a, int *b, int *c) {

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

• Let’s take a look at main()…
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Vector Addition on the Device: main()
#define N 512

    int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

  

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);
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Vector Addition on the Device: main()

// Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N blocks

        add<<<N,1>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }
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CUDA Threads

• Terminology: a block can be split into parallel threads

• Let’s change add() to use parallel threads instead of 
parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}
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Vector Addition Using Threads: main()
#define N 512

    int main(void) {

        int *a, *b, *c;  // host copies of a, b, c

        int *d_a, *d_b, *d_c;  // device copies of a, b, c

        int size = N * sizeof(int);

  

        // Alloc space for device copies of a, b, c

        cudaMalloc((void **)&d_a, size);

        cudaMalloc((void **)&d_b, size);

        cudaMalloc((void **)&d_c, size);

        

        // Alloc space for host copies of a, b, c and setup input values

        a = (int *)malloc(size); random_ints(a, N);

        b = (int *)malloc(size); random_ints(b, N);

        c = (int *)malloc(size);
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Vector Addition Using Threads: main()
// Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N threads

        add<<<1,N>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }
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Combining Blocks and Threads

• We’ve seen parallel vector addition using:
– Many blocks with one thread each
– One block with many threads

• Let’s adapt vector addition to use both blocks and 
threads

• Why? We’ll come to that…

• First let’s discuss data indexing…
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0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and 
Threads

• With M threads/block a unique index for each thread 
is given by:

 int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and threadIdx.x

– Consider indexing an array with one element per thread (8 
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
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Indexing Arrays: Example

• Which thread will operate on the red 
element?

int index = threadIdx.x + blockIdx.x * M;

           =      5      +     2      * 8;

           = 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8
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Vector Addition with Blocks and 
Threads

• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per 
block

 int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel 
threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {

    int index = threadIdx.x + blockIdx.x * blockDim.x;

    c[index] = a[index] + b[index];

}
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Addition with Blocks and Threads: main()
#define N (2048*2048)

    #define THREADS_PER_BLOCK 512

    int main(void) {

        int *a, *b, *c;  // host copies of a, b, c

        int *d_a, *d_b, *d_c;  // device copies of a, b, c

        int size = N * sizeof(int);

 

        // Alloc space for device copies of a, b, c

        cudaMalloc((void **)&d_a, size);

        cudaMalloc((void **)&d_b, size);

        cudaMalloc((void **)&d_c, size);

        // Alloc space for host copies of a, b, c and setup input values

        a = (int *)malloc(size); random_ints(a, N);

        b = (int *)malloc(size); random_ints(b, N);

        c = (int *)malloc(size);
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Addition with Blocks and Threads: main()

// Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU

        add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }
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Handling Arbitrary Vector Sizes

• Update the kernel launch:
 add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly multiples of 
blockDim.x

• Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

    int index = threadIdx.x + blockIdx.x * blockDim.x;

    if (index < n)

        c[index] = a[index] + b[index];

}
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Why Bother with Threads?

• Threads seem unnecessary
– They add a level of complexity
– What do we gain?

• Unlike parallel blocks, threads have mechanisms 
to:
– Communicate
– Synchronize

• To look closer, we need a new example…
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1D Stencil

• Consider applying a 1D stencil to a 1D array of 
elements

– Each output element is the sum of input elements within a 
radius

• If radius is 3, then each output element is the sum of 
7 input elements:

© NVIDIA 2013
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Implementing Within a Block

• Each thread processes one output element

– blockDim.x elements per block

• Input elements are read several times

– With radius 3, each input element is read seven times
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Sharing Data Between Threads

• Terminology: within a block, threads share data via 
shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks
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Implementing With Shared Memory

• Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global 
memory to shared memory

– Compute blockDim.x output elements

– Write blockDim.x output elements to global memory

– Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right
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__global__ void stencil_1d(int *in, int *out) {

  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

  int gindex = threadIdx.x + blockIdx.x * blockDim.x;

  int lindex = threadIdx.x + RADIUS;

  // Read input elements into shared memory

  temp[lindex] = in[gindex];

  if (threadIdx.x < RADIUS) {

    temp[lindex - RADIUS] = in[gindex - RADIUS];

    temp[lindex + BLOCK_SIZE] = 

      in[gindex + BLOCK_SIZE];

  }

© NVIDIA 2013
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// Apply the stencil

  int result = 0;

  for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

    result += temp[lindex + offset];

  // Store the result

  out[gindex] = result;

}

Stencil Kernel
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Data Race!

© NVIDIA 2013

▪ The stencil example will not work…

▪ Suppose thread 15 reads the halo before thread 0 has fetched it…

  temp[lindex] = in[gindex];

  if (threadIdx.x < RADIUS) {

    temp[lindex – RADIUS = in[gindex – RADIUS];

    temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

  }

  

  int result = 0;

  result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS



__syncthreads()

• void __syncthreads();

• Synchronizes all threads within a block

– Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier

– In conditional code, the condition must be 
uniform across the block
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Stencil Kernel
__global__ void stencil_1d(int *in, int *out) {

    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

    int gindex = threadIdx.x + blockIdx.x * blockDim.x;

    int lindex = threadIdx.x + radius;

    // Read input elements into shared memory

    temp[lindex] = in[gindex];

    if (threadIdx.x < RADIUS) {

        temp[lindex – RADIUS] = in[gindex – RADIUS];

        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

    }

    // Synchronize (ensure all the data is available)

    __syncthreads();

© NVIDIA 2013



Stencil Kernel

// Apply the stencil

    int result = 0;

    for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

        result += temp[lindex + offset];

    // Store the result

    out[gindex] = result;

}

© NVIDIA 2013
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GPU Atomic Integer Operations

• Atomic operations on integers in global and 
shared memory:

– Associative operations on signed/unsigned ints

• add, sub, min, max, ...

• and, or, xor

• increment, decrement

– Exchange, compare and swap



MANAGING THE 

DEVICE

Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013



Coordinating Host & Device

• Kernel launches are asynchronous

– Control returns to the CPU immediately

• CPU needs to synchronize before consuming the 
results
cudaMemcpy() Blocks the CPU until the copy is complete

Copy begins when all preceding CUDA calls have 
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchro

nize()

Blocks the CPU until all preceding CUDA calls have 
completed
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Reporting Errors

• All CUDA API calls return an error code (cudaError_t)
– Error in the API call itself

 OR

– Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:
 cudaError_t cudaGetLastError(void)

• Get a string to describe the error:
 char *cudaGetErrorString(cudaError_t)

 printf("%s\n", cudaGetErrorString(cudaGetLastError()));

© NVIDIA 2013



Device Management

• Application can query and select GPUs
 cudaGetDeviceCount(int *count)

 cudaSetDevice(int device)

 cudaGetDevice(int *device)

 cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices
 cudaSetDevice(i) to select current device

 cudaMemcpy(…) for peer-to-peer copies
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Introduction to CUDA C/C++

• What have we learned?

– Write and launch CUDA C/C++ kernels

• __global__,  blockIdx.x,  threadIdx.x,  <<<>>>

– Manage GPU memory

• cudaMalloc(),  cudaMemcpy(),  cudaFree()

– Manage communication and synchronization

• __shared__,  __syncthreads()

• cudaMemcpy() vs. cudaMemcpyAsync(),  
cudaDeviceSynchronize()
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Compute Capability

• The compute capability of a device describes its architecture, e.g.

– Number of registers

– Sizes of memories

– Features & capabilities

• The following presentations concentrate on Fermi devices
– Compute Capability >= 2.0

Compute 
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses, 
atomics

10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, 
P2P,
concurrent kernels/copies, function pointers, 
recursion

20-series
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IDs and Dimensions

– A kernel is launched as a 
grid of blocks of threads
• blockIdx and 
threadIdx are 3D

• We showed only one 
dimension (x)

• Built-in variables:
– threadIdx

– blockIdx

– blockDim

– gridDim
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Summary of C extensions

• Declspecs
– global, device, shared, local, 

constant

• Keywords
– threadIdx, blockIdx

– gridDim, blockDim

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol, execution 

management

• Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

  __shared__ float region[M];
  ... 

  region[threadIdx] = image[i]; 

  __syncthreads()  
  ... 

  image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);
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