
GPU Programming

Some slides borrowed from David Kirk and Wen-Mei Hwu, and from Ruetsch and Oster

Terminology

• Graphics Processing Unit (GPU)
– special processors (accelerators) designed to speed up graphics

applications

• General-purpose GPUs (GPGPU)
– GPUs that have been massaged so that they can be used for both

graphics and general-purpose applications
– we will just refer to them as GPU’s

• Compute Unified Device Architecture (CUDA)
– NVIDIA programming model for their GPU’s

• Open Computing Language (OpenCL)
– One attempt to define standard for programming heterogeneous

processors: multicores + GPUs + other accelerators

• Kernel
– a function/loop that is executed on GPU
– a program will usually consist of a sequence of kernels interspersed

with code that is executed on the host device (CPU)

Key features of GPUs
• Lots of threads

– (eg) NVIDIA Fermi streaming processor has
• 512 cores

• 24,576 threads

– lightweight threads: managed by hardware, start-
up cost is small

• SIMT execution
– groups of threads (warp) operate in SIMD

– Siamese twins: 32 threads joined at hip

– threads in warp are co-scheduled for execution

– compare: vector instruction

• Latency-tolerant architecture
– processor time-slices between warps to mask

memory and synchronization latencies

– similar: time-sharing, dataflow

– contrast: latency-avoidance architectures (caches)

4

Exposed Memory Hierarchy

• Global memory:
– Read/written by host

– Read/written by all GPU threads

– Used to transfer data back and forth
between host and GPU

– Relatively slow: 400-800 cycles

• Constant memory:
– Read/written by host

– Read by GPU threads

– Used to transfer read-only information

• Shared memory:
– Read/written by groups of threads called

thread blocks or just blocks

– Like a software managed L1 cache

– Faster than global memory:1-4 cycles

• Registers:
– Read/written by thread

– Private to each thread

Global Memory

Block

Shared Memory

Thread

Registers

Thread

Registers

Block

Shared Memory

Thread

Registers

Thread

Registers

Host

Constant Memory

In principle, global memory + registers are enough.
Shared-memory: intermediate level of memory hierarchy

Note on hierarchical thread organization

• Even on multicore processors
– threads are organized physically in a

hierarchy
– storage is associated with multiple

levels of this hierarchy
• (eg) threads in same chip can share L2

or L3 cache

• Difference
– data is automatically moved by

hardware from one cache to another
– so association between threads and

cache does not have to be exposed
to programming model

• Exposed memory hierarchy of GPU
– data movement must be

orchestrated by programmer
– so association between threads and

storage is exposed to programming
model

Block has id, per-block shared memory.
Detail: block id can be 1D,2D,3D.
CUDA: blockIdx.x, blockIdx.y,blockId.z
CUDA: sync_threads for synchronizing all
threads in block.

Thread has id, registers, PC,
thread-private local memory.
Detail: thread id can be 1D,2D,3D.
CUDA: threadIdx.x,threadIdx.y,threadIdx.z

6

Hierarchical Organization of Threads

Grid

Block Block Block …..…..

Warp Warp Warp

ThreadThread Thread

….. …..

….. …..

Grid has global memory.
Blocks in grid are usually independent.

Programming model implication

Not reflected in programming model.
Performance: thread/memory divergence

Hierarchy reflects both SIMT and exposed memory hierarchy

CUDA C/C++ BASICS

NVIDIA Corporation

© NVIDIA 2013

What is CUDA?

• CUDA Architecture
– Expose GPU parallelism for general-purpose computing
– Retain performance

• CUDA C/C++
– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous

programming
– Straightforward APIs to manage devices, memory etc.

• This session introduces CUDA C/C++

© NVIDIA 2013

HELLO WORLD!

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

void fill_ints(int *x, int n) {

 fill_n(x, n, 1);

}

int main(void) {

 int *in, *out; // host copies of a, b, c

 int *d_in, *d_out; // device copies of a, b, c

 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values

 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies

 cudaMalloc((void **)&d_in, size);

 cudaMalloc((void **)&d_out, size);

 // Copy to device

 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

 // Copy result back to host

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(in); free(out);

 cudaFree(d_in); cudaFree(d_out);

 return 0;

}

serial code

parallel code

serial code

parallel fn

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

PCI Bus

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

© NVIDIA 2013

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

3. Copy results from GPU memory to

CPU memory

© NVIDIA 2013

PCI Bus

Hello World!

int main(void) {

 printf("Hello World!\n");

 return 0;

}

Standard C that runs on the

host

NVIDIA compiler (nvcc) can be

used to compile programs with

no device code

Output:

$ nvcc hello_world.cu

$./a.out

Hello World!

$

© NVIDIA 2013

16

CUDA Function Declarations

hosthost_host_ float HostFunc()

hostdevice_global_ void KernelFunc()

devicedevice_device_ float DeviceFunc()

Only callable
from the:

Executed on
the:

• Executed on host, callable from device: not supported

• _global_ defines a kernel function, must return void

• _device_ and _host_ can be used together

17

CUDA Variable Type Qualifiers

• __device__ is optional when used with __local__, __shared__, or
__constant__

• Automatic variables without any qualifier reside in a register

– Except arrays that reside in local memory

– Thread-local memory and spilled automatic variables is
allocated in global memory

Variable declaration Memory Scope Lifetime

__device__ __local__ int LocalVar; local thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

Hello World! with Device Code

__global__ void mykernel(void) {

 }

 int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

 }

▪ Two new syntactic elements…

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void) {

 }

• CUDA C/C++ keyword __global__ indicates a “function” that
– Runs on the device
– Is called from host code

• nvcc separates source code into host and device
components
– Device functions (e.g., mykernel()) processed by NVIDIA compiler
– Host functions (e.g., main()) processed by standard host compiler

• gcc, cl.exe

© NVIDIA 2013

Hello World! with Device Code

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host
code to device code

– Also called a “kernel launch”

– We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function
on the GPU!

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void){

 }

 int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

 }

• mykernel() does nothing,

somewhat anticlimactic!

Output:

$ nvcc hello.cu

$ a.out

Hello World!

$

© NVIDIA 2013

Parallel Programming in CUDA C/C++

• But wait… GPU computing is about

massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and

build up to vector addition

a b c

© NVIDIA 2013

Addition on the Device

• A simple kernel to add two integers

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

• As before __global__ is a CUDA C/C++ keyword
meaning
– add() will execute on the device

– add() will be called from the host

© NVIDIA 2013

Addition on the Device

• Note that we use pointers for the variables

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

• add() runs on the device, so a, b and c must
point to device memory

• We need to allocate memory on the GPU

© NVIDIA 2013

Memory Management

• Host and device memory are separate entities
– Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

– Host pointers point to CPU memory
May be passed to/from device code

May not be dereferenced in device code

• Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()

– Similar to the C equivalents malloc(), free(), memcpy()

© NVIDIA 2013

Addition on the Device: add()

• Returning to our add() kernel

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

• Let’s take a look at main()…

© NVIDIA 2013

Addition on the Device: main()

int main(void) {

 int a, b, c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = sizeof(int);

 // Allocate space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Setup input values

 a = 2;

 b = 7;

© NVIDIA 2013

Addition on the Device: main()

 // Copy inputs to device

 cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<1,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

© NVIDIA 2013

RUNNING IN

PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Moving to Parallel

• GPU computing is about massive parallelism

– So how do we run code in parallel on the device?

 add<<< 1, 1 >>>();

 add<<< N, 1 >>>();

• Instead of executing add() once, execute N
times in parallel

© NVIDIA 2013

Vector Addition on the Device

• With add() running in parallel we can do vector addition

• Terminology: each parallel invocation of add() is referred to
as a block
– The set of blocks is referred to as a grid

– Each invocation can refer to its block index using blockIdx.x

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

• By using blockIdx.x to index into the array, each block handles
a different index

© NVIDIA 2013

Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

• On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

© NVIDIA 2013

Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

• Let’s take a look at main()…

© NVIDIA 2013

Vector Addition on the Device: main()
#define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

© NVIDIA 2013

Vector Addition on the Device: main()

// Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks

 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

© NVIDIA 2013

INTRODUCING

THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

CUDA Threads

• Terminology: a block can be split into parallel threads

• Let’s change add() to use parallel threads instead of
parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

© NVIDIA 2013

Vector Addition Using Threads: main()
#define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

© NVIDIA 2013

Vector Addition Using Threads: main()
// Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads

 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

© NVIDIA 2013

COMBINING THREADS

AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Combining Blocks and Threads

• We’ve seen parallel vector addition using:
– Many blocks with one thread each
– One block with many threads

• Let’s adapt vector addition to use both blocks and
threads

• Why? We’ll come to that…

• First let’s discuss data indexing…

© NVIDIA 2013

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and
Threads

• With M threads/block a unique index for each thread
is given by:

 int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and threadIdx.x

– Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

© NVIDIA 2013

Indexing Arrays: Example

• Which thread will operate on the red
element?

int index = threadIdx.x + blockIdx.x * M;

 = 5 + 2 * 8;

 = 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

© NVIDIA 2013

Vector Addition with Blocks and
Threads

• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per
block

 int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel
threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 c[index] = a[index] + b[index];

}

© NVIDIA 2013

Addition with Blocks and Threads: main()
#define N (2048*2048)

 #define THREADS_PER_BLOCK 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

© NVIDIA 2013

Addition with Blocks and Threads: main()

// Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

© NVIDIA 2013

Handling Arbitrary Vector Sizes

• Update the kernel launch:
 add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly multiples of
blockDim.x

• Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 if (index < n)

 c[index] = a[index] + b[index];

}

© NVIDIA 2013

Why Bother with Threads?

• Threads seem unnecessary
– They add a level of complexity
– What do we gain?

• Unlike parallel blocks, threads have mechanisms
to:
– Communicate
– Synchronize

• To look closer, we need a new example…

© NVIDIA 2013

COOPERATING

THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

1D Stencil

• Consider applying a 1D stencil to a 1D array of
elements

– Each output element is the sum of input elements within a
radius

• If radius is 3, then each output element is the sum of
7 input elements:

© NVIDIA 2013

radius radius

Implementing Within a Block

• Each thread processes one output element

– blockDim.x elements per block

• Input elements are read several times

– With radius 3, each input element is read seven times

© NVIDIA 2013

Sharing Data Between Threads

• Terminology: within a block, threads share data via
shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

© NVIDIA 2013

Implementing With Shared Memory

• Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory

– Compute blockDim.x output elements

– Write blockDim.x output elements to global memory

– Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

© NVIDIA 2013

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] =

 in[gindex + BLOCK_SIZE];

 }

© NVIDIA 2013

Stencil Kernel

// Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

Stencil Kernel

© NVIDIA 2013

Data Race!

© NVIDIA 2013

▪ The stencil example will not work…

▪ Suppose thread 15 reads the halo before thread 0 has fetched it…

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex – RADIUS = in[gindex – RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 int result = 0;

 result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

__syncthreads()

• void __syncthreads();

• Synchronizes all threads within a block

– Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier

– In conditional code, the condition must be
uniform across the block

© NVIDIA 2013

Stencil Kernel
__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex – RADIUS] = in[gindex – RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

© NVIDIA 2013

Stencil Kernel

// Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

© NVIDIA 2013

60

GPU Atomic Integer Operations

• Atomic operations on integers in global and
shared memory:

– Associative operations on signed/unsigned ints

• add, sub, min, max, ...

• and, or, xor

• increment, decrement

– Exchange, compare and swap

MANAGING THE

DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Coordinating Host & Device

• Kernel launches are asynchronous

– Control returns to the CPU immediately

• CPU needs to synchronize before consuming the
results
cudaMemcpy() Blocks the CPU until the copy is complete

Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchro

nize()

Blocks the CPU until all preceding CUDA calls have
completed

© NVIDIA 2013

Reporting Errors

• All CUDA API calls return an error code (cudaError_t)
– Error in the API call itself

 OR

– Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:
 cudaError_t cudaGetLastError(void)

• Get a string to describe the error:
 char *cudaGetErrorString(cudaError_t)

 printf("%s\n", cudaGetErrorString(cudaGetLastError()));

© NVIDIA 2013

Device Management

• Application can query and select GPUs
 cudaGetDeviceCount(int *count)

 cudaSetDevice(int device)

 cudaGetDevice(int *device)

 cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices
 cudaSetDevice(i) to select current device

 cudaMemcpy(…) for peer-to-peer copies

© NVIDIA 2013

Introduction to CUDA C/C++

• What have we learned?

– Write and launch CUDA C/C++ kernels

• __global__, blockIdx.x, threadIdx.x, <<<>>>

– Manage GPU memory

• cudaMalloc(), cudaMemcpy(), cudaFree()

– Manage communication and synchronization

• __shared__, __syncthreads()

• cudaMemcpy() vs. cudaMemcpyAsync(),
cudaDeviceSynchronize()

© NVIDIA 2013

Compute Capability

• The compute capability of a device describes its architecture, e.g.

– Number of registers

– Sizes of memories

– Features & capabilities

• The following presentations concentrate on Fermi devices
– Compute Capability >= 2.0

Compute
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses,
atomics

10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC,
P2P,
concurrent kernels/copies, function pointers,
recursion

20-series

© NVIDIA 2013

IDs and Dimensions

– A kernel is launched as a
grid of blocks of threads
• blockIdx and
threadIdx are 3D

• We showed only one
dimension (x)

• Built-in variables:
– threadIdx

– blockIdx

– blockDim

– gridDim

Device

Grid 1
Bloc

k

(0,0,

0)

Bloc

k

(1,0,

0)

Bloc

k

(2,0,

0)

Bloc

k

(1,1,

0)

Bloc

k

(2,1,

0)

Bloc

k

(0,1,

0)

Block (1,1,0)

Thre

ad

(0,0,

0)

Thre

ad

(1,0,

0)

Thre

ad

(2,0,

0)

Thre

ad

(3,0,

0)

Thre

ad

(4,0,

0)

Thre

ad

(0,1,

0)

Thre

ad

(1,1,

0)

Thre

ad

(2,1,

0)

Thre

ad

(3,1,

0)

Thre

ad

(4,1,

0)

Thre

ad

(0,2,

0)

Thre

ad

(1,2,

0)

Thre

ad

(2,2,

0)

Thre

ad

(3,2,

0)

Thre

ad

(4,2,

0)
© NVIDIA 2013

68

Summary of C extensions

• Declspecs
– global, device, shared, local,

constant

• Keywords
– threadIdx, blockIdx

– gridDim, blockDim

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol, execution

management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

	Title
	Slide 1: GPU Programming
	Slide 2: Terminology
	Slide 3: Key features of GPUs
	Slide 4: Exposed Memory Hierarchy
	Slide 5: Note on hierarchical thread organization
	Slide 6: Hierarchical Organization of Threads
	Slide 7: CUDA C/C++ BASICS

	Intro
	Slide 8: What is CUDA?

	Basics (hello world)
	Slide 9
	Slide 10: Heterogeneous Computing
	Slide 11: Heterogeneous Computing
	Slide 12: Simple Processing Flow
	Slide 13: Simple Processing Flow
	Slide 14: Simple Processing Flow
	Slide 15: Hello World!
	Slide 16: CUDA Function Declarations
	Slide 17: CUDA Variable Type Qualifiers
	Slide 18: Hello World! with Device Code
	Slide 19: Hello World! with Device Code
	Slide 20: Hello World! with Device Code
	Slide 21: Hello World! with Device Code
	Slide 22: Parallel Programming in CUDA C/C++
	Slide 23: Addition on the Device
	Slide 24: Addition on the Device
	Slide 25: Memory Management
	Slide 26: Addition on the Device: add()
	Slide 27: Addition on the Device: main()
	Slide 28: Addition on the Device: main()

	Blocks (vector add)
	Slide 29
	Slide 30: Moving to Parallel
	Slide 31: Vector Addition on the Device
	Slide 32: Vector Addition on the Device
	Slide 33: Vector Addition on the Device: add()
	Slide 34: Vector Addition on the Device: main()
	Slide 35: Vector Addition on the Device: main()

	Threads (vector add)
	Slide 36
	Slide 37: CUDA Threads
	Slide 38: Vector Addition Using Threads: main()
	Slide 39: Vector Addition Using Threads: main()

	Combining blocks & threads (vector add)
	Slide 40
	Slide 41: Combining Blocks and Threads
	Slide 42: Indexing Arrays with Blocks and Threads
	Slide 43: Indexing Arrays: Example
	Slide 44: Vector Addition with Blocks and Threads
	Slide 45: Addition with Blocks and Threads: main()
	Slide 46: Addition with Blocks and Threads: main()
	Slide 47: Handling Arbitrary Vector Sizes
	Slide 48: Why Bother with Threads?

	Cooperation (stencil)
	Slide 49
	Slide 50: 1D Stencil
	Slide 51: Implementing Within a Block
	Slide 52: Sharing Data Between Threads
	Slide 53: Implementing With Shared Memory
	Slide 54
	Slide 55: Stencil Kernel
	Slide 56: Data Race!
	Slide 57: __syncthreads()
	Slide 58: Stencil Kernel
	Slide 59: Stencil Kernel

	Device management
	Slide 60: GPU Atomic Integer Operations
	Slide 61
	Slide 62: Coordinating Host & Device
	Slide 63: Reporting Errors
	Slide 64: Device Management

	End
	Slide 65: Introduction to CUDA C/C++
	Slide 66: Compute Capability
	Slide 67: IDs and Dimensions
	Slide 68: Summary of C extensions

