GPU Programming

Some slides borrowed from David Kirk and Wen-Mei Hwu, and from Ruetsch and Oster



Terminology

Graphics Processing Unit (GPU)

— special processors (accelerators) designed to speed up graphics
applications

General-purpose GPUs (GPGPU)

— GPUs that have been massaged so that they can be used for both
graphics and general-purpose applications

— we will just refer to them as GPU'’s
Compute Unified Device Architecture (CUDA)
— NVIDIA programming model for their GPU’s
Open Computing Language (OpenCL)

— One attempt to define standard for programming heterogeneous
processors: multicores + GPUs + other accelerators

Kernel
— a function/loop that is executed on GPU

— a program will usually consist of a sequence of kernels interspersed
with code that is executed on the host device (CPU)



Key features of GPUs

Lots of threads

— (eg) NVIDIA Fermi streaming processor has

e 512 cores
e 24,576 threads

— lightweight threads: managed by hardware, start-
up cost is small
SIMT execution
— groups of threads (warp) operate in SIMD
— Siamese twins: 32 threads joined at hip
— threads in warp are co-scheduled for execution
— compare: vector instruction

Latency-tolerant architecture

— processor time-slices between warps to mask
memory and synchronization latencies

— similar: time-sharing, dataflow
— contrast: latency-avoidance architectures (caches)
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Exposed Memory Hierarchy

Global memory:

Read/written by host
Read/written by all GPU threads

Used to transfer data back and forth
between host and GPU

Relatively slow: 400-800 cycles

Constant memory:

Read/written by host
Read by GPU threads

Used to transfer read-only information

Shared memory:

Read/written by groups of threads called

thread blocks or just blocks
Like a software managed L1 cache
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Faster than global memory:1-4 cycles

Registers:

Read/written by thread
Private to each thread

In principle, global memory + registers are enough.
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Shared-memory: intermediate level of memory hierarchy




Note on hierarchical thread organization

e Even on multicore processors

— threads are organized physically in a
hierarchy

— storage is associated with multiple
levels of this hierarchy

* (eg) threads in same chip can share L2
or L3 cache

e Difference
— data is automatically moved by

hardwarg from one cache to another 4-Way Opteron
— S0 association between threads and Architecture
cache does not have to be exposed 0.4

to programming model
* Exposed memory hierarchy of GPU

— data movement must be
orchestrated by programmer

— S0 association between threads and
storage is exposed to programming
model




Hierarchical Organization of Threads

Hierarchy reflects both SIMT and exposed memory hierarchy

Programming model implication

Grid Grid has global memory.
Blocks in grid are usually independent.
/N Block has id, per-block shared memory.
..... Block Block Block Detail: block id can be 1D,2D,3D.

CUDA: blockldx.x, blockldx.y,blockld.z
CUDA: sync_threads for synchronizing all
threads in block.

..... Warp Warp Warp Not reflected in programming model.
Performance: thread/memory divergence

Thread has id, registers, PC,
thread-private local memory.

Detail: thread id can be 1D,2D,3D.

CUDA: threadldx.x,threadldx.y,threadldx.z

..... Thread Thread Thread -




CUDA C/C++ BASICS



What is CUDA?

e CUDA Architecture

— Expose GPU parallelism for general-purpose computing
— Retain performance

e CUDA C/C++
— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming

— Straightforward APls to manage devices, memory etc.

* This session introduces CUDA C/C++



CONCEPTS .
-
=
-
=

__syncthreads()

HELLO WORLD!




Heterogeneous Computing

* Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

Host Device
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Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil _ld(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadidx.x + RADIUS;

I/ Read input elements into shared memory
templlindex] = infgindex];
if (threadidx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
templlindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

11 Synchronize (ensure all the data is available)
__syncthreads();

Il Apply the stencil

int result = 0;

for (int oﬂssl = -RADIUS ; offset <= RADIUS ; offset++)
esult += templlindex + offset];

I Store the resuit
outfgindex] = result;

void fill_ints(int *x, int n) {

fil_n(x, n, 1);
}
int main(void) {
int *in, *out; I host copies of a, b, ¢
int *d_in, *d_out; I device copies of a, b, ¢

int size = (N + 2*RADIUS) * sizeof(int);

I Alloc space for host copies and setup values
in = (int “)malloc(size); fillints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
I Alloc space for device copies

cudaMalloc((void *)&d_in, size);

cudaMalloc((void *)&d_out, size);

/I Copy to device

in, in, size, ToDevice);
_out, out, size, ToDevice);

I/ Launch stencil_1d() kemel on GPU
stencil_1d<<<N/BLOCK_SIZE BLOCK_SIZE>>>(d_in + RADIUS
d_out + RADIUS);

Il Copy result back to host
d_out, size, DeviceToHost);

i Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

parallel fn

- serial code

parallel code
- serial code
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Simple Processing Flow

PCI Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory
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Simple Processing Flow

PCI Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance
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Simple Processing Flow

PCI Bus >

/
AL

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

3. Copy results from GPU memory to
CPU memory

L2

DRAM
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Hello World!

main ( ) {
printf ("Hello World!'\n");
0;
Output:
$ nvcc hello world.cu
Standard C that runs on the $ ./a.out
host Hello World!

$

NVIDIA compiler (nvcc) can be
used to compile programs with
no device code



CUDA Function Declarations

Executed on Only callable
the: from the:
_device_ float DeviceFunc() device device
_global_void KernelFunc() device host
_host_ float HostFunc() host host

e Executed on host, callable from device: not supported

« global defines a kernel function, must return void

« _device_and _host_can be used together

16




CUDA Variable Type Qualifiers

Variable declaration Memory | Scope Lifetime
__device local _ intLocalVar; local thread thread
__device shared _ intSharedVar; shared block block
__device__ int GlobalVar; global grid application
_ device__ constant__ int ConstantVar; constant grid application
e _ device__isoptional when used with __local _, _ shared_, or
__constant__

 Automatic variables without any qualifier reside in a register

— Except arrays that reside in local memory

— Thread-local memory and spilled automatic variables is
allocated in global memory

17




Hello World! with Device Code

mykernel ( ) {

main ( ) {
mykernel<<<1l,1>>>() ;
printf ("Hello World!'\n");
0;
}

= Two new syntactic elements...



Hello World! with Device Code

void mykernel (void) ({

}

 CUDA C/C++ keyword indicates a “function” that
— Runs on the device
— |s called from host code

e nvcc separates source code into host and device
components

— Device functions (e.g., mykerne1 () ) processed by NVIDIA compiler

— Host functions (e.g., main()) processed by standard host compiler
* gcc,cl.exe



Hello World! with Device Code

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host
code to device code

— Also called a “kernel launch”

— We’ll return to the parameters (1,1) in a moment

* That’s all that is required to execute a function
on the GPU!



Hello World! with Device Code

mykernel ( ) {

Output:

main ( ) {
mykernel<<<1l,1>>>() ; $ nvee hello.cu
printf ("Hello World'\n"); § a.out

0; Hello World!
} S

 mykernel () does nothing,
somewhat anticlimactic!



Parallel Programming in CUDA C/C++

But wait... GPU computing is about
massive parallelism!

We need a more interesting example...

We’ll start by adding two integers and
build up to vector addition



Addition on the Device

* Asimple kernel to add two integers

add ( *a, *b, *c) |
*c = *a + *b;

e As before is a CUDA C/C++ keyword
meaning

_ add() Will execute on the device
_ add() Will be called from the host



Addition on the Device

* Note that we use pointers for the variables
add ( , ' ) |

}

. add() runs on the device, so s, » and - must
point to device memory

 We need to allocate memory on the GPU



Memory Management

* Host and device memory are separate entities

pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code
pointers point to CPU memory

May be passed to/from device code
May not be dereferenced in device code

* Simple CUDA API for handling device memory
— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalentsmalloc (), free (), memcpy ()



Addition on the Device: a244 ()

* Returning to our add() kernel

add ( *a, *b, *c) {

*c = *a + *b;

e Let’s take a look at main()...



Addition on the Device: nain ()

int main(void) {

int a, b, c¢; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c
int size = sizeof (int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc ((void **)&d c, size);

// Setup input values

a=2;
b =17;
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Addition on the Device: nain ()

// Copy inputs to device
cudaMemcpy (d _a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<<1,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
cudaFree (d a); cudaFree(d b); cudaFree(d c);

return O;



Heterogeneous Computing

-
-
=

__syncthreads()

RUNNING IN
PARALLEL
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Moving to Parallel

 GPU computing is about massive parallelism

— So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< 1, 1 >>>();

* |nstead of executing add () once, execute N
times in parallel



Vector Addition on the Device

With add () running in parallel we can do vector addition

Terminology: each parallel invocation of aqqa () is referred to
as a

— The set of blocks is referred to as a
— Each invocation can refer to its block index using

add ( *a, *b, *c) |
cl 1 = al 1 + b[ 1;
}
By using to index into the array, each block handles

a different index



Vector Addition on the Device

__global void add(int *a, int *b, int *c) {
cl ] = al 1 + b[ 1;
}

* On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

c[0] = a[0] + b[O0]; c[1l] = a[l] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];
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Vector Addition on the Device: 244 ()

e Returning to our parallelized adaa() kernel

add ( *a, *b, *c) |
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

e Let’s take a look at main()...



Vector Addition on the Device: nain ()

int main (void) {
int // host copies of a, b, c
int *d a, *d b, *d ¢; // device copies of a, b, c

int size = sizeof (int) ;

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
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Vector Addition on the Device: nain ()

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU with N blocks
add<<<i,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;



Heterogeneous Computing

_____._...
-
.

__syncthreads()

INTRODUCING
THREADS
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CUDA Threads

Terminology: a block can be split into parallel

Let’s change add () to use parallel threads instead of
parallel blocks

add ( *a, *b, *c) {
cl ] = al 1 + b[ 1;
}

We use instead of

Need to make one change in mainy)...



Vector Addition Using Threads: main ()

#define N 512

main (void) {

*a, 6 *b, *c; // host copies of a, b, c
*d a, *d b, *d c; // device copies of a, b, c
size = N * ( ) ;

// Alloc space for device copies of a, b, c

cudaMalloc ( ( **)&d a, size);
cudaMalloc ( ( **)&d b, size);
cudaMalloc ( ( **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc (size) ;
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Vector Addition Using Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice)

// Launch add() kernel on GPU with N
add<<< >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d _c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;



Heterogeneous Computing

-

__syncthreads()

COMBINING THREADS
AND BLOCKS
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Combining Blocks and Threads

We've seen parallel vector addition using:
— Many blocks with one thread each
— One block with many threads

Let’s adapt vector addition to use both blocks and
threads

Why? We’ll come to that...

First let’s discuss data indexing...



Indexing Arrays with Blocks and
Threads

* No longer as simple as using and

— Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x

01/2|3/4/5|6/7/0/1/2/3/4|5|6|7

\ A J
Y Y

blockIdx.x = 2 blockIdx.x = 3

e With M threads/block a unique index for each thread
is given by:

index

threadIdx.x + blockIdx.x * M;



Indexing Arrays: Example

 Which thread will operate on the red

element?
[O 1821314151617 9101112131415161718192022232425262728293031]
threadIdx.x = 5
012346701234567
C y,
'
blockIdx.x = 2
index = threadlIdx.x + blockIdx.x * M;

21;

5

+

2

*8;
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Vector Addition with Blocks and
Threads

e Use the built-in variable piockpim.x for threads per
block

index = threadldx.x + blockIdx.x *

* Combined version of add () to use parallel
threads and parallel blocks

add ( *a, *b, *c) |
index = threadlIdx.x + blockIdx.x *
c[index] = a[index] + b[index];

}

 What changes need to be made in main()?



Addition with Blocks and Threads: main ()

main (void) {

*a, *b, *c; // host copies of a, b, c
*d a, *d b, *d c; // device copies of a, b, c
size = N * ( )

// Alloc space for device copies of a, b, c

cudaMalloc ( ( **)&d a, size);
cudaMalloc ( ( **)&d b, size);
cudaMalloc ( ( **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size);
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Addition with Blocks and Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice)

// Launch add() kernel on GPU
add<<< , >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;



Handling Arbitrary Vector Sizes

* Typical problems are not friendly multiples of

* Avoid accessing beyond the end of the arrays:

add ( *a, *b, *c, n) {
index = threadldx.x + blockIdx.x *
if (index < n)

c[index] = a[index] + b[index];

 Update the kernel launch:

add<<< , M>>>(d a, d b, d ¢, N);



Why Bother with Threads?

 Threads seem unnecessary
— They add a level of complexity
— What do we gain?

* Unlike parallel blocks, threads have mechanisms
to:

— Communicate
— Synchronize

* To look closer, we need a new example...



Heterogeneous Computing

_____._...
-

__syncthreads()

COOPERATING
THREADS
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1D Stencil

e Consider applying a 1D stencil to a 1D array of
elements

— Each output element is the sum of input elements within a
radius

* If radius is 3, then each output element is the sum of
7 input elements:

radius radius



Implementing Within a Block

* Each thread processes one output element
— blockDim.x elements per block

* |Input elements are read several times
— With radius 3, each input element is read seven times

© NVIDIA 2013



Sharing Data Between Threads

Terminology: within a block, threads share data via

Extremely fast on-chip memory, user-managed

Declare using , allocated per block

Data is not visible to threads in other blocks



Implementing With Shared Memory

 Cache data in shared memory

— Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory

— Compute blockDim.x output elements
— Write blockDim.x output elements to global memory

— Each block needs a halo of radius elements at each boundary

wWuwuddddddudddddddduulu
%r_} %K—J
halo on left " halo on right

Dddd DI IDDDIII
_ /

hd
blockDim.x output elements
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Stencil Kernel

__global  void stencil 1d(int *in, int *out) ({
int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] =
in[gindex + BLOCK_ SIZE];
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Stencil Kernel

result = 0;
for ( offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result

out[gindex] = result;



Data Race!

= The stencil example will not work...

= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex]; FEEEEIEIIYTIEYIEYEE e
if (threadIdx.x < RADIUS) {

temp[lindex — RADIUS = in[gindex — RADIUS];

temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
}

int result = 0;

result += temp[lindex + 1]; FEEEEEYYYIEENIEEEY | e



~ syncthreads()

* Synchronizes all threads within a block
— Used to prevent RAW / WAR / WAW hazards

e All threads must reach the barrier

— In conditional code, the condition must be
uniform across the block



Stencil Kernel

stencil 1d( *in, *out)
temp [BLOCK SIZE + 2 * RADIUS];
gindex = threadlIdx.x + blockIdx.x * blockDim.x;
threadIdx.x + radius;

lindex

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

()



Stencil Kernel

result = 0;
for ( offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

out[gindex] = result;



GPU Atomic Integer Operations

 Atomic operations on integers in global and
shared memory:

— Associative operations on signed/unsigned ints
e add, sub, min, may, ...
* and, or, xor

* increment, decrement

— Exchange, compare and swap

60



Heterogeneous Computing

-
-
=
-

__syncthreads()

MANAGING THE
DEVICE
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Coordinating Host & Device

* Kernel launches are
— Control returns to the CPU immediately

 CPU needs to synchronize before consuming the
results

cudaMemcpy () Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync () Asynchronous, does not block the CPU

cudaDeviceSynchro Blocks the CPU until all preceding CUDA calls have
nize () completed



Reporting Errors

e All CUDA API calls return an error code ( )
— Error in the API call itself
OR

— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:

cudaError t (void)
* Get a string to describe the error:
char * (cudaError t)

printf ("%$s\n", cudaGetErrorString(cudaGetLastError()))



Device Management

* Application can query and select GPUs

(int *count)
(int device)
(int *device)
(cudaDeviceProp *prop, int device)

* Multiple threads can share a device

* Asingle thread can manage multiple devices
(i) to select current device
(..) for peer-to-peer copies



Introduction to CUDA C/C++

e What have we learned?
— Write and launch CUDA C/C++ kernels

* _global , blocklIdx.x, threadIdx.x, <<<>>>

— Manage GPU memory

* cudaMalloc (), cudaMemcpy (), cudaFree()

— Manage communication and synchronization

* shared , = syncthreads()

 cudaMemcpy () VS. cudaMemcpyAsync (),
cudaDeviceSynchronize ()



Compute Capability

e The of a device describes its architecture, e.g.
— Number of registers
— Sizes of memories

— Features & capabilities

Compute Selected Features Tesla models
Capability (see CUDA C Programming Guide for complete list)
1.0 Fundamental CUDA support 870
1.3 Double precision, improved memory accesses, 10-series
atomics
2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, 20-series
P2P,
concurrent kernels/copies, function pointers,
recursion

* The following presentations concentrate on Fermi devices
— Compute Capability >= 2.0



IDs and Dimensions

Device

— A kernel is launched as a
grid of blocks of threads

e blockIdx and
threadIdx are 3D

 We showed only one
dimension (x)

e Built-in variables:

— threadIdx
— blockIdx
— blockDim
— gridDim
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Summary of C extensions

Declspecs
— global, device, shared, local, ~—device__float filter[NJ;
constant __global __ void convolve (float *image) {
Keywords __shared__ float region[M];
— threadldx, blockldx
— gridDim, blockDim region[threadldx] = imageli];
Intrinsics  syncthreads()
— __syncthreads
] imagelj] = result;
Runtime API }
— Memory, symbol, execution
management // Allocate GPU memory

void *myimage = cudaMalloc(bytes)

Function launch
// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

68
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