GPU Programming

Some slides borrowed from David Kirk and Wen-Mei Hwu, and from Ruetsch and Oster

Terminology

Graphics Processing Unit (GPU)

— special processors (accelerators) designed to speed up graphics
applications

General-purpose GPUs (GPGPU)

— GPUs that have been massaged so that they can be used for both
graphics and general-purpose applications

— we will just refer to them as GPU'’s
Compute Unified Device Architecture (CUDA)
— NVIDIA programming model for their GPU’s
Open Computing Language (OpenCL)

— One attempt to define standard for programming heterogeneous
processors: multicores + GPUs + other accelerators

Kernel
— a function/loop that is executed on GPU

— a program will usually consist of a sequence of kernels interspersed
with code that is executed on the host device (CPU)

Key features of GPUs

Lots of threads

— (eg) NVIDIA Fermi streaming processor has

e 512 cores
e 24,576 threads

— lightweight threads: managed by hardware, start-
up cost is small
SIMT execution
— groups of threads (warp) operate in SIMD
— Siamese twins: 32 threads joined at hip
— threads in warp are co-scheduled for execution
— compare: vector instruction

Latency-tolerant architecture

— processor time-slices between warps to mask
memory and synchronization latencies

— similar: time-sharing, dataflow
— contrast: latency-avoidance architectures (caches)

Prewer i eshare Resorts ~

Exposed Memory Hierarchy

Global memory:

Read/written by host
Read/written by all GPU threads

Used to transfer data back and forth
between host and GPU

Relatively slow: 400-800 cycles

Constant memory:

Read/written by host
Read by GPU threads

Used to transfer read-only information

Shared memory:

Read/written by groups of threads called

thread blocks or just blocks
Like a software managed L1 cache

Block

=

Block

= o

Thread

Thread

Thread

Thread

4

4

4

4

Host

+“—>

Faster than global memory:1-4 cycles

Registers:

Read/written by thread
Private to each thread

In principle, global memory + registers are enough.

-~

Shared-memory: intermediate level of memory hierarchy

Note on hierarchical thread organization

e Even on multicore processors

— threads are organized physically in a
hierarchy

— storage is associated with multiple
levels of this hierarchy

* (eg) threads in same chip can share L2
or L3 cache

e Difference
— data is automatically moved by

hardwarg from one cache to another 4-Way Opteron
— S0 association between threads and Architecture
cache does not have to be exposed 0.4

to programming model
* Exposed memory hierarchy of GPU

— data movement must be
orchestrated by programmer

— S0 association between threads and
storage is exposed to programming
model

Hierarchical Organization of Threads

Hierarchy reflects both SIMT and exposed memory hierarchy

Programming model implication

Grid Grid has global memory.
Blocks in grid are usually independent.
/N Block has id, per-block shared memory.
..... Block Block Block Detail: block id can be 1D,2D,3D.

CUDA: blockldx.x, blockldx.y,blockld.z
CUDA: sync_threads for synchronizing all
threads in block.

..... Warp Warp Warp Not reflected in programming model.
Performance: thread/memory divergence

Thread has id, registers, PC,
thread-private local memory.

Detail: thread id can be 1D,2D,3D.

CUDA: threadldx.x,threadldx.y,threadldx.z

..... Thread Thread Thread -

CUDA C/C++ BASICS

What is CUDA?

e CUDA Architecture

— Expose GPU parallelism for general-purpose computing
— Retain performance

e CUDA C/C++
— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming

— Straightforward APls to manage devices, memory etc.

* This session introduces CUDA C/C++

CONCEPTS .
-
=
-
=

__syncthreads()

HELLO WORLD!

Heterogeneous Computing

* Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil _ld(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadidx.x + RADIUS;

I/ Read input elements into shared memory
templlindex] = infgindex];
if (threadidx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
templlindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

11 Synchronize (ensure all the data is available)
__syncthreads();

Il Apply the stencil

int result = 0;

for (int oﬂssl = -RADIUS ; offset <= RADIUS ; offset++)
esult += templlindex + offset];

I Store the resuit
outfgindex] = result;

void fill_ints(int *x, int n) {

fil_n(x, n, 1);
}
int main(void) {
int *in, *out; I host copies of a, b, ¢
int *d_in, *d_out; I device copies of a, b, ¢

int size = (N + 2*RADIUS) * sizeof(int);

I Alloc space for host copies and setup values
in = (int “)malloc(size); fillints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
I Alloc space for device copies

cudaMalloc((void *)&d_in, size);

cudaMalloc((void *)&d_out, size);

/I Copy to device

in, in, size, ToDevice);
_out, out, size, ToDevice);

I/ Launch stencil_1d() kemel on GPU
stencil_1d<<<N/BLOCK_SIZE BLOCK_SIZE>>>(d_in + RADIUS
d_out + RADIUS);

Il Copy result back to host
d_out, size, DeviceToHost);

i Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

parallel fn

- serial code

parallel code
- serial code

© NVIDIA 2013

Simple Processing Flow

PCI Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

© NVIDIA 2013

Simple Processing Flow

PCI Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

© NVIDIA 2013

Simple Processing Flow

PCI Bus >

/
AL

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

3. Copy results from GPU memory to
CPU memory

L2

DRAM

© NVIDIA 2013

Hello World!

main () {
printf ("Hello World!'\n");
0;
Output:
$ nvcc hello world.cu
Standard C that runs on the $./a.out
host Hello World!

$

NVIDIA compiler (nvcc) can be
used to compile programs with
no device code

CUDA Function Declarations

Executed on Only callable
the: from the:
device float DeviceFunc() device device
_global_void KernelFunc() device host
host float HostFunc() host host

e Executed on host, callable from device: not supported

« global defines a kernel function, must return void

« _device_and _host_can be used together

16

CUDA Variable Type Qualifiers

Variable declaration Memory | Scope Lifetime
__device local _ intLocalVar; local thread thread
__device shared _ intSharedVar; shared block block
__device__ int GlobalVar; global grid application
_ device__ constant__ int ConstantVar; constant grid application
e _ device__isoptional when used with __local _, _ shared_, or
__constant__

 Automatic variables without any qualifier reside in a register

— Except arrays that reside in local memory

— Thread-local memory and spilled automatic variables is
allocated in global memory

17

Hello World! with Device Code

mykernel () {

main () {
mykernel<<<1l,1>>>() ;
printf ("Hello World!'\n");
0;
}

= Two new syntactic elements...

Hello World! with Device Code

void mykernel (void) ({

}

 CUDA C/C++ keyword indicates a “function” that
— Runs on the device
— |s called from host code

e nvcc separates source code into host and device
components

— Device functions (e.g., mykerne1 ()) processed by NVIDIA compiler

— Host functions (e.g., main()) processed by standard host compiler
* gcc,cl.exe

Hello World! with Device Code

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host
code to device code

— Also called a “kernel launch”

— We’ll return to the parameters (1,1) in a moment

* That’s all that is required to execute a function
on the GPU!

Hello World! with Device Code

mykernel () {

Output:

main () {
mykernel<<<1l,1>>>() ; $ nvee hello.cu
printf ("Hello World'\n"); § a.out

0; Hello World!
} S

 mykernel () does nothing,
somewhat anticlimactic!

Parallel Programming in CUDA C/C++

But wait... GPU computing is about
massive parallelism!

We need a more interesting example...

We’ll start by adding two integers and
build up to vector addition

Addition on the Device

* Asimple kernel to add two integers

add (*a, *b, *c) |
*c = *a + *b;

e As before is a CUDA C/C++ keyword
meaning

_ add() Will execute on the device
_ add() Will be called from the host

Addition on the Device

* Note that we use pointers for the variables
add (, ') |

}

. add() runs on the device, so s, » and - must
point to device memory

 We need to allocate memory on the GPU

Memory Management

* Host and device memory are separate entities

pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code
pointers point to CPU memory

May be passed to/from device code
May not be dereferenced in device code

* Simple CUDA API for handling device memory
— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalentsmalloc (), free (), memcpy ()

Addition on the Device: a244 ()

* Returning to our add() kernel

add (*a, *b, *c) {

*c = *a + *b;

e Let’s take a look at main()...

Addition on the Device: nain ()

int main(void) {

int a, b, c¢; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c
int size = sizeof (int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc ((void **)&d c, size);

// Setup input values

a=2;
b =17;

© NVIDIA 2013

Addition on the Device: nain ()

// Copy inputs to device
cudaMemcpy (d _a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<<1,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
cudaFree (d a); cudaFree(d b); cudaFree(d c);

return O;

Heterogeneous Computing

-
-
=

__syncthreads()

RUNNING IN
PARALLEL

© NVIDIA 2013

Moving to Parallel

 GPU computing is about massive parallelism

— So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< 1, 1 >>>();

* |nstead of executing add () once, execute N
times in parallel

Vector Addition on the Device

With add () running in parallel we can do vector addition

Terminology: each parallel invocation of aqqa () is referred to
as a

— The set of blocks is referred to as a
— Each invocation can refer to its block index using

add (*a, *b, *c) |
cl 1 = al 1 + b[1;
}
By using to index into the array, each block handles

a different index

Vector Addition on the Device

__global void add(int *a, int *b, int *c) {
cl] = al 1 + b[1;
}

* On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

c[0] = a[0] + b[O0]; c[1l] = a[l] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

© NVIDIA 2013

Vector Addition on the Device: 244 ()

e Returning to our parallelized adaa() kernel

add (*a, *b, *c) |
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

e Let’s take a look at main()...

Vector Addition on the Device: nain ()

int main (void) {
int // host copies of a, b, c
int *d a, *d b, *d ¢; // device copies of a, b, c

int size = sizeof (int) ;

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values

© NVIDIA 2013

Vector Addition on the Device: nain ()

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU with N blocks
add<<<i,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

Heterogeneous Computing

_____._...
-
.

__syncthreads()

INTRODUCING
THREADS

© NVIDIA 2013

CUDA Threads

Terminology: a block can be split into parallel

Let’s change add () to use parallel threads instead of
parallel blocks

add (*a, *b, *c) {
cl] = al 1 + b[1;
}

We use instead of

Need to make one change in mainy)...

Vector Addition Using Threads: main ()

#define N 512

main (void) {

*a, 6 *b, *c; // host copies of a, b, c
*d a, *d b, *d c; // device copies of a, b, c
size = N * () ;

// Alloc space for device copies of a, b, c

cudaMalloc ((**)&d a, size);
cudaMalloc ((**)&d b, size);
cudaMalloc ((**)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc (size) ;

© NVIDIA 2013

Vector Addition Using Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice)

// Launch add() kernel on GPU with N
add<<< >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d _c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

Heterogeneous Computing

-

__syncthreads()

COMBINING THREADS
AND BLOCKS

© NVIDIA 2013

Combining Blocks and Threads

We've seen parallel vector addition using:
— Many blocks with one thread each
— One block with many threads

Let’s adapt vector addition to use both blocks and
threads

Why? We’ll come to that...

First let’s discuss data indexing...

Indexing Arrays with Blocks and
Threads

* No longer as simple as using and

— Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x

01/2|3/4/5|6/7/0/1/2/3/4|5|6|7

\ A J
Y Y

blockIdx.x = 2 blockIdx.x = 3

e With M threads/block a unique index for each thread
is given by:

index

threadIdx.x + blockIdx.x * M;

Indexing Arrays: Example

 Which thread will operate on the red

element?
[O 1821314151617 9101112131415161718192022232425262728293031]
threadIdx.x = 5
012346701234567
C y,
'
blockIdx.x = 2
index = threadlIdx.x + blockIdx.x * M;

21;

5

+

2

*8;

© NVIDIA 2013

Vector Addition with Blocks and
Threads

e Use the built-in variable piockpim.x for threads per
block

index = threadldx.x + blockIdx.x *

* Combined version of add () to use parallel
threads and parallel blocks

add (*a, *b, *c) |
index = threadlIdx.x + blockIdx.x *
c[index] = a[index] + b[index];

}

 What changes need to be made in main()?

Addition with Blocks and Threads: main ()

main (void) {

*a, *b, *c; // host copies of a, b, c
*d a, *d b, *d c; // device copies of a, b, c
size = N * ()

// Alloc space for device copies of a, b, c

cudaMalloc ((**)&d a, size);
cudaMalloc ((**)&d b, size);
cudaMalloc ((**)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size);

© NVIDIA 2013

Addition with Blocks and Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice)

// Launch add() kernel on GPU
add<<< , >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

Handling Arbitrary Vector Sizes

* Typical problems are not friendly multiples of

* Avoid accessing beyond the end of the arrays:

add (*a, *b, *c, n) {
index = threadldx.x + blockIdx.x *
if (index < n)

c[index] = a[index] + b[index];

 Update the kernel launch:

add<<< , M>>>(d a, d b, d ¢, N);

Why Bother with Threads?

 Threads seem unnecessary
— They add a level of complexity
— What do we gain?

* Unlike parallel blocks, threads have mechanisms
to:

— Communicate
— Synchronize

* To look closer, we need a new example...

Heterogeneous Computing

_____._...
-

__syncthreads()

COOPERATING
THREADS

© NVIDIA 2013

1D Stencil

e Consider applying a 1D stencil to a 1D array of
elements

— Each output element is the sum of input elements within a
radius

* If radius is 3, then each output element is the sum of
7 input elements:

radius radius

Implementing Within a Block

* Each thread processes one output element
— blockDim.x elements per block

* |Input elements are read several times
— With radius 3, each input element is read seven times

© NVIDIA 2013

Sharing Data Between Threads

Terminology: within a block, threads share data via

Extremely fast on-chip memory, user-managed

Declare using , allocated per block

Data is not visible to threads in other blocks

Implementing With Shared Memory

 Cache data in shared memory

— Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory

— Compute blockDim.x output elements
— Write blockDim.x output elements to global memory

— Each block needs a halo of radius elements at each boundary

wWuwuddddddudddddddduulu
%r_} %K—J
halo on left " halo on right

Dddd DI IDDDIII
_ /

hd
blockDim.x output elements

© NVIDIA 2013

Stencil Kernel

__global void stencil 1d(int *in, int *out) ({
int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] =
in[gindex + BLOCK_ SIZE];

© NVIDIA 2013

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result

out[gindex] = result;

Data Race!

= The stencil example will not work...

= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex]; FEEEEIEIIYTIEYIEYEE e
if (threadIdx.x < RADIUS) {

temp[lindex — RADIUS = in[gindex — RADIUS];

temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
}

int result = 0;

result += temp[lindex + 1]; FEEEEEYYYIEENIEEEY | e

~ syncthreads()

* Synchronizes all threads within a block
— Used to prevent RAW / WAR / WAW hazards

e All threads must reach the barrier

— In conditional code, the condition must be
uniform across the block

Stencil Kernel

stencil 1d(*in, *out)
temp [BLOCK SIZE + 2 * RADIUS];
gindex = threadlIdx.x + blockIdx.x * blockDim.x;
threadIdx.x + radius;

lindex

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

()

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

out[gindex] = result;

GPU Atomic Integer Operations

 Atomic operations on integers in global and
shared memory:

— Associative operations on signed/unsigned ints
e add, sub, min, may, ...
* and, or, xor

* increment, decrement

— Exchange, compare and swap

60

Heterogeneous Computing

-
-
=
-

__syncthreads()

MANAGING THE
DEVICE

© NVIDIA 2013

Coordinating Host & Device

* Kernel launches are
— Control returns to the CPU immediately

 CPU needs to synchronize before consuming the
results

cudaMemcpy () Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync () Asynchronous, does not block the CPU

cudaDeviceSynchro Blocks the CPU until all preceding CUDA calls have
nize () completed

Reporting Errors

e All CUDA API calls return an error code ()
— Error in the API call itself
OR

— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:

cudaError t (void)
* Get a string to describe the error:
char * (cudaError t)

printf ("%$s\n", cudaGetErrorString(cudaGetLastError()))

Device Management

* Application can query and select GPUs

(int *count)
(int device)
(int *device)
(cudaDeviceProp *prop, int device)

* Multiple threads can share a device

* Asingle thread can manage multiple devices
(i) to select current device
(..) for peer-to-peer copies

Introduction to CUDA C/C++

e What have we learned?
— Write and launch CUDA C/C++ kernels

* _global , blocklIdx.x, threadIdx.x, <<<>>>

— Manage GPU memory

* cudaMalloc (), cudaMemcpy (), cudaFree()

— Manage communication and synchronization

* shared , = syncthreads()

 cudaMemcpy () VS. cudaMemcpyAsync (),
cudaDeviceSynchronize ()

Compute Capability

e The of a device describes its architecture, e.g.
— Number of registers
— Sizes of memories

— Features & capabilities

Compute Selected Features Tesla models
Capability (see CUDA C Programming Guide for complete list)
1.0 Fundamental CUDA support 870
1.3 Double precision, improved memory accesses, 10-series
atomics
2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, 20-series
P2P,
concurrent kernels/copies, function pointers,
recursion

* The following presentations concentrate on Fermi devices
— Compute Capability >= 2.0

IDs and Dimensions

Device

— A kernel is launched as a
grid of blocks of threads

e blockIdx and
threadIdx are 3D

 We showed only one
dimension (x)

e Built-in variables:

— threadIdx
— blockIdx
— blockDim
— gridDim

© NVIDIA 2013

Summary of C extensions

Declspecs
— global, device, shared, local, ~—device__float filter[NJ;
constant __global __ void convolve (float *image) {
Keywords __shared__ float region[M];
— threadldx, blockldx
— gridDim, blockDim region[threadldx] = imageli];
Intrinsics syncthreads()
— __syncthreads
] imagelj] = result;
Runtime API }
— Memory, symbol, execution
management // Allocate GPU memory

void *myimage = cudaMalloc(bytes)

Function launch
// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

68

	Title
	Slide 1: GPU Programming
	Slide 2: Terminology
	Slide 3: Key features of GPUs
	Slide 4: Exposed Memory Hierarchy
	Slide 5: Note on hierarchical thread organization
	Slide 6: Hierarchical Organization of Threads
	Slide 7: CUDA C/C++ BASICS

	Intro
	Slide 8: What is CUDA?

	Basics (hello world)
	Slide 9
	Slide 10: Heterogeneous Computing
	Slide 11: Heterogeneous Computing
	Slide 12: Simple Processing Flow
	Slide 13: Simple Processing Flow
	Slide 14: Simple Processing Flow
	Slide 15: Hello World!
	Slide 16: CUDA Function Declarations
	Slide 17: CUDA Variable Type Qualifiers
	Slide 18: Hello World! with Device Code
	Slide 19: Hello World! with Device Code
	Slide 20: Hello World! with Device Code
	Slide 21: Hello World! with Device Code
	Slide 22: Parallel Programming in CUDA C/C++
	Slide 23: Addition on the Device
	Slide 24: Addition on the Device
	Slide 25: Memory Management
	Slide 26: Addition on the Device: add()
	Slide 27: Addition on the Device: main()
	Slide 28: Addition on the Device: main()

	Blocks (vector add)
	Slide 29
	Slide 30: Moving to Parallel
	Slide 31: Vector Addition on the Device
	Slide 32: Vector Addition on the Device
	Slide 33: Vector Addition on the Device: add()
	Slide 34: Vector Addition on the Device: main()
	Slide 35: Vector Addition on the Device: main()

	Threads (vector add)
	Slide 36
	Slide 37: CUDA Threads
	Slide 38: Vector Addition Using Threads: main()
	Slide 39: Vector Addition Using Threads: main()

	Combining blocks & threads (vector add)
	Slide 40
	Slide 41: Combining Blocks and Threads
	Slide 42: Indexing Arrays with Blocks and Threads
	Slide 43: Indexing Arrays: Example
	Slide 44: Vector Addition with Blocks and Threads
	Slide 45: Addition with Blocks and Threads: main()
	Slide 46: Addition with Blocks and Threads: main()
	Slide 47: Handling Arbitrary Vector Sizes
	Slide 48: Why Bother with Threads?

	Cooperation (stencil)
	Slide 49
	Slide 50: 1D Stencil
	Slide 51: Implementing Within a Block
	Slide 52: Sharing Data Between Threads
	Slide 53: Implementing With Shared Memory
	Slide 54
	Slide 55: Stencil Kernel
	Slide 56: Data Race!
	Slide 57: __syncthreads()
	Slide 58: Stencil Kernel
	Slide 59: Stencil Kernel

	Device management
	Slide 60: GPU Atomic Integer Operations
	Slide 61
	Slide 62: Coordinating Host & Device
	Slide 63: Reporting Errors
	Slide 64: Device Management

	End
	Slide 65: Introduction to CUDA C/C++
	Slide 66: Compute Capability
	Slide 67: IDs and Dimensions
	Slide 68: Summary of C extensions

