
CS 377P:
Programming for Performance

1

Administration

• Instructor:
– Keshav Pingali (Professor, CS, ECE & Oden)

• 4.126 Peter O’Donnell Building (POB)
• Email: pingali@cs.utexas.edu

• TA:
– Taeklim Kim (PhD student, CS)

• Email: tlkim@cs.utexas.edu

2

mailto:pingali@cs.utexas.edu
mailto:tlkim@cs.utexas.edu

Prerequisites

• Basic computer architecture course
– (e.g.) PC, ALU, cache, memory, instruction-level

parallelism (ILP)

• Basic calculus and linear algebra
– differential equations and matrix operations

• Software maturity
– assignments will be in C/C++ on Linux computers
– ability to write medium-sized programs (< 1000 lines)

• Self-motivation
– willingness to experiment with systems

3

Coursework

• 6 programming projects
– These will be more or less evenly spaced

through the semester

• One mid-semester exam
– Date: TBA

• Final exam
– Monday, May 4 2026, 1:00 pm-3:00 pm

4

Text-book for course

No official book for course

This book is a useful reference.
"Parallel programming in C with MPI and

OpenMP", Michael Quinn, McGraw-Hill
Publishers. ISBN 0-07-282256-2

Lots of material on the web
5

What this course is not about

• This is not a clever hacks course
– We are interested in general scientific principles for

performance programming, not in squeezing out every
last cycle for somebody’s favorite program

• This is not a tools/libraries course
– We will use several tools and libraries like MPI but for

us, they are a means to an end and not end in
themselves.

6

What this course IS about

• Architects invent many hardware features for
boosting program performance

• Usually, software can benefit from these features
only if it is carefully written to exploit them

• Agenda in CS 377P:
– Understand performance-critical architectural features

in modern computers
– Develop general principles and techniques that can

guide us in writing programs to exploit these features
– Use state-of-the-art tools to put these into practice

• Two major concerns:
– Exploiting parallelism
– Exploiting locality

7

Why worry about performance?

• Until ~2005
– Most programmers did not worry about performance

• Programs ran faster on each new generation of computer
• If you didn’t like the performance, you could wait and buy a new

computer
– Small number of single-processor performance programmers

• Caches: exploit locality
• Vectorization

– Even smaller number of parallel programmers
• HPC centers: worried about parallelism and locality

• Since then
– Programs do not run any faster on new hardware unless they

exploit parallelism
• What drove this dramatic change?

8

Moore’s Law

• What Moore said [1965]:
– Number of transistors on a chip

double every new generation of
technology (~1.5 years)

– Empirical observation: how many
transistors can be placed on IC
wafer economically

• What people think Moore said:
– Processor frequency doubles

every 1.5 years

Gordon Moore (Intel)

9

10

Microprocessor trend data

11
Before 2005 After 2005

BEFORE 2005

12

What were all those transistors used for?

• On-chip caches
• Pipelined instruction

execution
– Instruction-level parallelism

(ILP)

• Many functional units
– VLIW or superscalar to keep

functional units busy

• Vector units
– (e.g.) Intel’s AVX 512

• Wider on-chip data-paths
– 8bit  16 bit  32 bit 

64 bit
Intel Pentium floorplan

13

Caches: typical latency numbers

From: Latency numbers every HPC programmer should know

Software must exploit locality to make effective use of caches

14

https://martinkalema.github.io/latency-numbers/

 Scalar mode
– one instruction produces one

result
– E.g. vaddss, (vaddsd)

 Vector (SIMD) mode
– one instruction can produce multiple

results
– E.g. vaddps, (vaddpd)

+

X

Y

X + Y

+

X

Y

X + Y

= =
x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

8 doubles for AVX-512

for (I=0; i<n; i++) Z[i] = X[i] + Y[i];

Vector instructions

Note: AVX was introduced in 2011
Before that, MMX and SSE.

15

Software challenges for
performance programmers before 2005

• Exploiting instruction-level parallelism
– (e.g.) loop unrolling to create long basic blocks

(see later)

• Exploiting vector parallelism
– (e.g.) vectorization of innermost loops

• Exploiting memory hierarchy
– exploit spatial and temporal locality
– code and data transformations for enhancing

spatial and temporal locality
– (e.g.) blocking of loops 16

Getting performance is hard

• Amdahl’s Law
– Simple observation that shows that unless most

program operations can be optimized, the benefits of
performance optimization are limited

– Unoptimized portions of program become bottleneck

• Analogy: suppose I go from Austin to Houston at
60 mph, and return “infinitely” fast. What is my
average speed?
– Answer: 120 mph, not infinity

17

Amdahl’s Law (details)

• In general, program will have both optimized and
unoptimized portions
– Suppose program has N operations

• r*N operations in optimized portion
• (1-r)*N operations in unoptimized portion

• Assume
– Unoptimized portion requires one time unit per operation
– Optimized portion can be executed infinitely fast so it takes zero

time to execute.
• Speed-up:

 Original execution time = N = 1
 Optimized execution time (1-r)*N (1-r)

• Even if r = 0.99, speed-up is only 100.

Unless most of your program is performance-optimized, you won’t
see much benefit. 18

SINCE 2005

19

Fundamental change since ~2005

• Moore’s Law still holds
– We get more transistors in each new

technology generation
• However

1. Architects have run out of ideas for how to
use these transistors to speed up single-
thread performance

2. Processor clock speed have stalled at roughly
1-3 GHz

20

(1) Using the additional transistors: old
ideas have run out of steam

• More cache
– More cache buys performance until working set of program fits

in cache

• Deeper pipeline
– Deeper pipeline buys frequency at expense of increased branch

mis-prediction penalty
– Deeper pipelines => higher clock frequency => more power

• Add more functional units/vector units
– Diminishing returns for adding more units

• Wider data paths
– Increases bandwidth between functional units in a

core but we now have comprehensive 64-bit designs

21

(2) Processor clock speed increase has stalled

• Old picture:
– Processor clock

frequency
doubled every 1.5
years

• New picture:
– Power problems

limit further
increases in clock
frequency

Frequency

St
at

ic
 C

ur
re

nt
Embedded

Parts

Very High Leakage
and Power Fast, H

Power

Fast, Low
Power

1.0 1.5

15

0

Static current rises non-linearly
as processors approach max frequency

4004
8008
8080

8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
sit

y
(W

/c
m

2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel

22

One use of transistors: go multicore

• Use transistors to build
multiple cores without
increasing clock frequency
– does not require micro-

architectural
breakthroughs

– non-linear scaling of
power density with
frequency will not be a
problem

23

Intel Skylake chip

Chip

Block diagram of each core24

Clusters and data-centers

• 8,368 nodes
• Intel 8280 Cascade Lake processors with 56 cores/socket

TACC Frontera cluster

25

Software challenges post-2005

• Exploiting parallelism: keep the cores busy
– Node-level and thread-level parallelism
– Load-balancing

• Exploiting memory hierarchy
– Spatial and temporal locality
– Avoid sharing data with other cores as far as

possible

• New kinds of bugs:
– race conditions, deadlocks

26

Parallel programming

• Shared-memory programming
– Architecture: processor has some number of cores (e.g., Intel Skylake has

up to 18 cores depending on the model)
– Application program is decomposed into a number of threads, which run

on these cores
– Threads communicate by reading and writing memory locations
– We will study pThreads and OpenMP for shared-memory programming

• Distributed-memory programming
– Architecture: network of machines (Stampede II: 4,200 KNL hosts)
– Application program and data structures are partitioned into processes,

which run on machines
– Processes communicate by sending and receiving messages since they

have no memory locations in common
– We will study MPI for distributed-memory programming

27

Major Lecture Topics

• Applications
– Parallelism and locality in important algorithms

• Locality
– Memory hierarchy, code and data transformations

• Vector parallelism
– Vectorizing compilers

• Shared-memory parallelism
– Multicore architectures, pThreads, OpenMP, TBB

• Distributed-memory parallelism
– Clusters, MPI

• GPUs
– CUDA

28

	CS 377P:�Programming for Performance
	Administration
	Prerequisites
	Coursework
	Text-book for course
	What this course is not about
	What this course IS about
	Why worry about performance?
	Moore’s Law
	Slide Number 10
	Microprocessor trend data
	Before 2005
	What were all those transistors used for?
	Caches: typical latency numbers
	Vector instructions
	Software challenges for �performance programmers before 2005
	Getting performance is hard
	Amdahl’s Law (details)
	Since 2005
	Fundamental change since ~2005
	(1) Using the additional transistors: old ideas have run out of steam
	 (2) Processor clock speed increase has stalled
	One use of transistors: go multicore
	Intel Skylake chip
	Clusters and data-centers
	Software challenges post-2005
	Parallel programming
	Major Lecture Topics

