CS 377P:
Programming for Performance




Administration

e |nstructor:

— Keshav Pingali (Professor, CS, ECE & Oden)
e 4,126 Peter O’'Donnell Building (POB)
e Email:

e TA:

— Taeklim Kim (PhD student, CS)
e Email:


mailto:pingali@cs.utexas.edu
mailto:tlkim@cs.utexas.edu

Prerequisites

Basic computer architecture course

— (e.g.) PC, ALU, cache, memory, instruction-level
parallelism (ILP)

Basic calculus and linear algebra

— differential equations and matrix operations

Software maturity
— assignments will be in C/C++ on Linux computers
— ability to write medium-sized programs (< 1000 lines)

Self-motivation

— willingness to experiment with systems



Coursework

* 6 programming projects

— These will be more or less evenly spaced
through the semester

e One mid-semester exam
— Date: TBA

e Final exam
— Monday, May 4 2026, 1:00 pm-3:00 pm



Text-book for course

No official book for course

This book is a useful reference.

"Parallel programming in C with MPI and
OpenMP", Michael Quinn, McGraw-Hill
Publishers. ISBN 0-07-282256-2

Lots of material on the web



What this course is not about

e This is not a clever hacks course

— We are interested in general scientific principles for
performance programming, not in squeezing out every
last cycle for somebody’s favorite program

e This is not a tools/libraries course

— We will use several tools and libraries like MPI but for
us, they are a means to an end and not end in
themselves.



What this course IS about

Architects invent many hardware features for
boosting program performance

Usually, software can benefit from these features
only if it is carefully written to exploit them

Agenda in CS 377P:

— Understand performance-critical architectural features
in modern computers

— Develop general principles and techniques that can
guide us in writing programs to exploit these features

— Use state-of-the-art tools to put these into practice
Two major concerns:

— Exploiting parallelism

— Exploiting locality



Why worry about performance?

e Until ~2005

— Most programmers did not worry about performance
e Programs ran faster on each new generation of computer

e |f you didn’t like the performance, you could wait and buy a new
computer

— Small number of single-processor performance programmers
e Caches: exploit locality
e \ectorization

— Even smaller number of parallel programmers
e HPC centers: worried about parallelism and locality
e Since then

— Programs do not run any faster on new hardware unless they
exploit parallelism

e \What drove this dramatic change?



Moore’s Law

e \What Moore said [1965]:

— Number of transistors on a chip
double every new generation of
technology (~1.5 years)

— Empirical observation: how many
transistors can be placed on IC _ ) |
wafer economically Gordon Moore (Intel)

e \What people think Moore said:

— Processor frequency doubles
every 1.5 years
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) |

Moore’s law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress = such as processing speed or the price of electronie products = are
stromgly linked to Moore's law.
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Microprocessor t

rend data

40 Years of Microprocessor Trend Data
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What were all those transistors used for?

On-chip caches

Pipelined instruction
execution

— Instruction-level parallelism
(ILP)

Many functional units

— VLIW or superscalar to keep
functional units busy

Vector units
— (e.g.) Intel’s AVX 512

Wider on-chip data-paths

— 8bit 2 16 bit 2 32 bit 2
64 bit
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Caches: typical latency numbers

L1 Cache Reference

1 ns ‘.
Branch Mispredict
G
5 ns
L2 Cache Reference
G
7 ns
Mutex Lock/Unlock
G
25 ns
Main Memory Reference
G
100 n
System Call
D

500 ns

Software must exploit locality to make effective use of caches

From: 14



https://martinkalema.github.io/latency-numbers/

Vector Instructions

for (I=0; i<n; i++) Z[i] = X[i] + Y[i];

L Scalar mode O Vector (SIMD) mode
— one instruction produces one — one instruction can produce multiple
result results
— E.g. vaddss, (vaddsd) — E.g. vaddps, (vaddpd)
< 8 doubles for AVX-512 >
4
X ﬁ %9 I %5 x4 X3 X2 x1 0
4
v (7 =1 - o
4

Note: AVX was introduced in 2011
Before that, MMX and SSE.
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Software challenges for
performance programmers before 2005

e Exploiting instruction-level parallelism

— (e.g.) loop unrolling to create long basic blocks
(see later)

e Exploiting vector parallelism

— (e.g.) vectorization of innermost loops
e Exploiting memory hierarchy

— exploit spatial and temporal locality

— code and data transformations for enhancing
spatial and temporal locality

— (e.g.) blocking of loops

16



Getting performance is hard

e Amdahl’s Law

— Simple observation that shows that unless most
program operations can be optimized, the benefits of
performance optimization are limited

— Unoptimized portions of program become bottleneck

e Analogy: suppose | go from Austin to Houston at
60 mph, and return “infinitely” fast. What is my
average speed?

— Answer: 120 mph, not infinity

17



Amdahl’s Law (details)

e |n general, program will have both optimized and
unoptimized portions
— Suppose program has N operations
* r*N operations in optimized portion
e (1-r)*N operations in unoptimized portion
e Assume
— Unoptimized portion requires one time unit per operation

— Optimized portion can be executed infinitely fast so it takes zero
time to execute.

e Speed-up:
Original execution time = N = 1
Optimized execution time (1-r)*N (1-r)

e Evenifr=0.99, speed-up is only 100.

Unless most of your program is performance-optimized, you won’t
see much benefit. 18




SINCE 2005
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Fundamental change since ~2005

e Moore’s Law still holds

— We get more transistors in each new
technology generation

e However

1. Architects have run out of ideas for how to
use these transistors to speed up single-
thread performance

2. Processor clock speed have stalled at roughly
1-3 GHz

20



(1) Using the additional transistors: old
ideas have run out of steam

e More cache

— More cache buys performance until working set of program fits
in cache

e Deeper pipeline

— Deeper pipeline buys frequency at expense of increased branch
mis-prediction penalty

— Deeper pipelines => higher clock frequency => more power
e Add more functional units/vector units

— Diminishing returns for adding more units
e Wider data paths

— Increases bandwidth between functional unitsin a
core but we now have comprehensive 64-bit designs

21



2) Processor clock speed increase has stalled
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One use of transistors: go multicore

Use transistors to build
multiple cores without
increasing clock frequency

— does not require micro-
architectural
breakthroughs

— non-linear scaling of
power density with
frequency will not be a
problem

40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp
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Intel Skylake chip
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Clusters and data-centers

e 8,368 nodes
* Intel 8280 Cascade Lake processors with 56 cores/socket

25



Software challenges post-2005

e Exploiting parallelism: keep the cores busy
— Node-level and thread-level parallelism
— Load-balancing

e Exploiting memory hierarchy
— Spatial and temporal locality

— Avoid sharing data with other cores as far as
possible

e New kinds of bugs:

— race conditions, deadlocks

26



Parallel programming

e Shared-memory programming

Architecture: processor has some number of cores (e.g., Intel Skylake has
up to 18 cores depending on the model)

Application program is decomposed into a number of threads, which run
on these cores

Threads communicate by reading and writing memory locations
We will study pThreads and OpenMP for shared-memory programming

e Distributed-memory programming

Architecture: network of machines (Stampede II: 4,200 KNL hosts)

Application program and data structures are partitioned into processes,
which run on machines

Processes communicate by sending and receiving messages since they
have no memory locations in common

We will study MPI for distributed-memory programming

27



Major Lecture Topics

Applications

— Parallelism and locality in important algorithms
Locality

— Memory hierarchy, code and data transformations
Vector parallelism

— Vectorizing compilers

Shared-memory parallelism

— Multicore architectures, pThreads, OpenMP, TBB
Distributed-memory parallelism

— Clusters, MPI

GPUs

— CUDA

28
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