
CS 377P:
Programming for Performance
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Administration

• Instructor: 
– Keshav Pingali (Professor, CS, ECE & Oden)

• 4.126 Peter O’Donnell Building (POB)
• Email: pingali@cs.utexas.edu

• TA: 
– Taeklim Kim (PhD student, CS)

• Email: tlkim@cs.utexas.edu
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Prerequisites

• Basic computer architecture course
– (e.g.) PC, ALU, cache, memory, instruction-level 

parallelism (ILP)

• Basic calculus and linear algebra
– differential equations and matrix operations

• Software maturity
– assignments will be in C/C++ on Linux computers
– ability to write medium-sized programs (< 1000 lines)

• Self-motivation
– willingness to experiment with systems
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Coursework

• 6 programming projects
– These will be more or less evenly spaced 

through the semester

• One mid-semester exam
– Date: TBA 

• Final exam
– Monday, May 4 2026, 1:00 pm-3:00 pm
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Text-book for course

No official book for course

This book is a useful reference.
"Parallel programming in C with MPI and 

OpenMP", Michael Quinn, McGraw-Hill 
Publishers. ISBN 0-07-282256-2 

Lots of material on the web
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What this course is not about

• This is not a clever hacks course
– We are interested in general scientific principles for 

performance programming, not in squeezing out every 
last cycle for somebody’s favorite program

• This is not a tools/libraries course
– We will use several tools and libraries like MPI but for 

us, they are a means to an end and not end in 
themselves.
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What this course IS about

• Architects invent many hardware features for 
boosting program performance

• Usually, software can benefit from these features 
only if it is carefully written to exploit them

• Agenda in CS 377P:
– Understand performance-critical architectural features 

in modern computers
– Develop general principles and techniques that can 

guide us in writing programs to exploit these features
– Use state-of-the-art tools to put these into practice

• Two major concerns:
– Exploiting parallelism
– Exploiting locality
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Why worry about performance?

• Until ~2005
– Most programmers did not worry about performance 

• Programs ran faster on each new generation of computer
• If you didn’t like the performance, you could wait and buy a new 

computer
– Small number of single-processor performance programmers

• Caches: exploit locality
• Vectorization

– Even smaller number of parallel programmers
• HPC centers: worried about parallelism and locality

• Since then
– Programs do not run any faster on new hardware unless they 

exploit parallelism
• What drove this dramatic change?
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Moore’s Law

• What Moore said [1965]:
– Number of transistors on a chip 

double every new generation of 
technology (~1.5 years)

– Empirical observation: how many 
transistors can be placed on IC 
wafer economically

• What people think Moore said:
– Processor frequency doubles 

every 1.5 years

Gordon Moore (Intel)
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Microprocessor trend data
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What were all those transistors used for?

• On-chip caches
• Pipelined instruction 

execution
– Instruction-level parallelism 

(ILP)

• Many functional units
– VLIW or superscalar to keep 

functional units busy

• Vector units
– (e.g.) Intel’s AVX 512

• Wider on-chip data-paths
– 8bit  16 bit  32 bit  

64 bit
Intel Pentium floorplan
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Caches: typical latency numbers

From: Latency numbers every HPC programmer should know

Software must exploit locality to make effective use of caches
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 Scalar mode
– one instruction produces one 

result
– E.g.  vaddss,  (vaddsd)

 Vector (SIMD)  mode
– one instruction can produce multiple 

results
– E.g.  vaddps,  (vaddpd) 
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8 doubles for AVX-512

for (I=0; i<n; i++) Z[i] = X[i] + Y[i];

Vector instructions

Note: AVX was introduced in 2011
Before that, MMX and SSE. 
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Software challenges for 
performance programmers before 2005

• Exploiting instruction-level parallelism
– (e.g.) loop unrolling to create long basic blocks 

(see later)

• Exploiting vector parallelism
– (e.g.) vectorization of innermost loops 

• Exploiting memory hierarchy
– exploit spatial and temporal locality
– code and data transformations for enhancing 

spatial and temporal locality
– (e.g.) blocking of loops 16



Getting performance is hard

• Amdahl’s Law
– Simple observation that shows that unless most 

program operations can be optimized, the benefits of 
performance optimization are limited

– Unoptimized portions of program become bottleneck 

• Analogy: suppose I go from Austin to Houston at 
60 mph, and return “infinitely” fast. What is my 
average speed?
– Answer: 120 mph, not infinity
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Amdahl’s Law (details)

• In general, program will have both optimized and 
unoptimized portions
– Suppose program has N operations

• r*N operations in optimized portion
• (1-r)*N operations in unoptimized portion

• Assume 
– Unoptimized portion requires one time unit per operation
– Optimized portion can be executed infinitely fast so it takes zero 

time to execute. 
• Speed-up: 

  Original execution time           =          N      =       1
  Optimized execution time               (1-r)*N        (1-r)

• Even if r = 0.99, speed-up is only 100.

Unless most of your program is performance-optimized, you won’t
see much benefit. 18



SINCE 2005
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Fundamental change since ~2005

• Moore’s Law still holds
– We get more transistors in each new 

technology generation
• However

1. Architects have run out of ideas for how to 
use these transistors to speed up single-
thread performance

2. Processor clock speed have stalled at roughly 
1-3 GHz
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(1) Using the additional transistors: old 
ideas have run out of steam 

• More cache
– More cache buys performance until working set of program fits 

in cache

• Deeper pipeline
– Deeper pipeline buys frequency at expense of increased branch 

mis-prediction penalty
– Deeper pipelines => higher clock frequency => more power

• Add more functional units/vector units
– Diminishing returns for adding more units

• Wider data paths
– Increases bandwidth between functional units in a 

core but we now have comprehensive 64-bit designs
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(2) Processor clock speed increase has stalled 

• Old picture: 
– Processor clock 

frequency 
doubled every 1.5 
years

• New picture: 
– Power problems 

limit further 
increases in clock 
frequency
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One use of transistors: go multicore

• Use transistors to build 
multiple cores without 
increasing clock frequency
– does not require micro-

architectural 
breakthroughs

– non-linear scaling of 
power density with 
frequency will not be a 
problem

23



Intel Skylake chip

Chip

Block diagram of each core24



Clusters and data-centers

• 8,368 nodes
• Intel 8280 Cascade Lake processors with 56 cores/socket

TACC Frontera cluster
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Software challenges post-2005

• Exploiting parallelism: keep the cores busy 
– Node-level and thread-level parallelism
– Load-balancing

• Exploiting memory hierarchy
– Spatial and temporal locality
– Avoid sharing data with other cores as far as 

possible

• New kinds of bugs: 
– race conditions, deadlocks

26



Parallel programming

• Shared-memory programming
– Architecture: processor has some number of cores (e.g., Intel Skylake has 

up to 18 cores depending on the model)
– Application program is decomposed into a number of threads, which run 

on these cores 
– Threads communicate by reading and writing memory locations
– We will study pThreads and OpenMP for shared-memory programming

• Distributed-memory programming
– Architecture: network of machines (Stampede II: 4,200 KNL hosts)
– Application program and data structures are partitioned into processes, 

which run on machines
– Processes communicate by sending and receiving messages since they 

have no memory locations in common
– We will study MPI for distributed-memory programming
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Major Lecture Topics

• Applications
– Parallelism and locality in important algorithms

• Locality
– Memory hierarchy, code and data transformations

• Vector parallelism
– Vectorizing compilers

• Shared-memory parallelism
– Multicore architectures, pThreads, OpenMP, TBB

• Distributed-memory parallelism
– Clusters, MPI

• GPUs
– CUDA
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