
An Experimental Comparison of
Cache-oblivious and Cache-conscious Programs ∗

Kamen Yotov, Tom Roeder, Keshav Pingali
Cornell University

{kyotov,tmroeder,pingali}@cs.cornell.edu

John Gunnels, Fred Gustavson
IBM T. J. Watson Research Center

{gunnels,fg2}@us.ibm.com

ABSTRACT
Cache-oblivious algorithms have been advanced as a way of
circumventing some of the difficulties of optimizing applica-
tions to take advantage of the memory hierarchy of mod-
ern microprocessors. These algorithms are based on the
divide-and-conquer paradigm – each division step creates
sub-problems of smaller size, and when the working set of a
sub-problem fits in some level of the memory hierarchy, the
computations in that sub-problem can be executed without
suffering capacity misses at that level. In this way, divide-
and-conquer algorithms adapt automatically to all levels of
the memory hierarchy; in fact, for problems like matrix mul-
tiplication, matrix transpose, and FFT, these recursive al-
gorithms are optimal to within constant factors for some
theoretical models of the memory hierarchy.

An important question is the following: how well do care-
fully tuned cache-oblivious programs perform compared to
carefully tuned cache-conscious programs for the same prob-
lem? Is there a price for obliviousness, and if so, how much
performance do we lose? Somewhat surprisingly, there are
few studies in the literature that have addressed this ques-
tion.

This paper reports the results of such a study in the
domain of dense linear algebra. Our main finding is that
in this domain, even highly optimized cache-oblivious pro-
grams perform significantly worse than corresponding cache-
conscious programs. We provide insights into why this is so,
and suggest research directions for making cache-oblivious
algorithms more competitive.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: compilers, code gener-
ation, optimization; G.4 [Mathematical Software]

∗This work is supported in part by NSF grants 0615240,
0541193, 0509307, 0509324 and 0406380, as well as grants
from the IBM and Intel Corportations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

G eneral Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Memory hierarchy, Memory Latency, Memory bandwidth,
Cache-oblivious algorithms, Cache-conscious algorithms, Nu-
merical Software

1. INTRODUCTION
The contributions of this paper are the following.

• We present detailed experiments on a number of high-
performance platforms that show that even highly op-
timized recursive cache-oblivious programs may per-
form significantly worse than highly optimized cache-
conscious programs for the same problem.

• We argue that part of the performance problem arises
because the schedule of operations in recursive codes
may be sub-optimal for exploiting processor pipelines.
We show that the schedule of operations in iterative
codes can make better use of processor pipelines.

• We argue that the rest of the performance problem
arises from memory latency. Using analytical models,
we point out that cache blocking serves two purposes:
it can reduce the effective latency of memory requests
and it can reduce the bandwidth required from mem-
ory. We argue quantitatively that I/O optimal algo-
rithms [20, 25] may ameliorate the bandwidth prob-
lem, but their performance may still suffer from mem-
ory latency. In highly tuned iterative cache-conscious
codes, the effective latency of memory requests is re-
duced by pre-fetching. We believe that this is needed
in cache-oblivious programs as well.

1.1 Memory Hierarchy Problem
The performance of many programs on modern computers

is limited by the performance of the memory system in two
ways. First, the latency of memory accesses can be many
hundreds of cycles, so the processor may be stalled most of
the time, waiting for loads to complete. Second, the band-
width from memory is usually far less than the rate at which
the processor can consume data.

Both problems can be addressed by using caching – if most
memory requests are satisfied by some cache level, the effec-
tive memory latency as well as the bandwidth required from
memory are reduced. As is well known, the effectiveness of

93

caching for a problem depends both on the algorithm used
to solve the problem, and on the program used to express
that algorithm (simply put, an algorithm defines only the
dataflow of the computation, while a program for a given
algorithm also specifies the schedule of operations and may
perform storage allocation consistent with that schedule).
One useful quantity in thinking about these issues is algo-
rithmic data reuse, which is an abstract measure of the num-
ber of accesses made to a typical memory location by the
algorithm. For example, the standard algorithm for mul-
tiplying matrices of size n × n performs O(n3) operations
on O(n2) data, so it has excellent algorithmic data reuse
since each data element is accessed O(n) times; in contrast,
matrix transpose performs O(n2) operations on O(n2) data,
so it has poor algorithmic data reuse. When an algorithm
has substantial algorithmic data reuse, the challenge is to
write the program so that the memory accesses made by
that program exhibit both spatial and temporal locality. In
contrast, programs that encode algorithms with poor algo-
rithmic data reuse must be written so that spatial locality
is exploited.

1.2 Programming styles
Two programming styles are common in the domain of

dense linear algebra: iterative and recursive.
In the iterative programming style, computations are im-

plemented as nested loops. It is well known that näıve pro-
grams written in this style exhibit poor temporal locality
and do not exploit caches effectively. Temporal locality can
be improved by tiling the loops either manually or with re-
structuring compilers [22, 28]. The resulting program can be
viewed as a computation over block matrices; tile sizes must
be chosen so that the working set of each block computation
fits in cache [12, 24]. If there are multiple cache levels, it
may be necessary to tile for each one. Tiling for registers
requires loop unrolling [2]. Since tile sizes are a function of
cache capacity, and loop unroll factors depend on the num-
ber of available registers and on instruction cache capac-
ity, this style of coding is called cache-conscious program-
ming because the code either explicitly or implicitly embod-
ies parameters whose optimal values depend on the archi-
tecture1. Simple architectural models or empirical search
can be used to determine these optimal values [13, 27, 29].
Cache-conscious programs for dense linear algebra problems
have been investigated extensively by the numerical linear
algebra community and the restructuring compiler commu-
nity. The Basic Linear Algebra Subroutine (BLAS) [1] li-
braries produced by most vendors are cache-conscious iter-
ative programs, as are the matrix factorization routines in
libraries like LAPACK [3].

In the recursive programming style, computations are im-
plemented with divide-and-conquer. For example, to multi-
ply two matrices A and B, we can divide the larger matrix
(say A) into two sub-matrices A1 and A2, and multiply A1

and A2 by B; the base case of this recursion is reached when
both A and B have a single element. Programs written in
this divide-and-conquer style perform approximate blocking
in the following sense. Each division step generates sub-
problems of smaller size, and when the working set of some
sub-problem fits in a given level of cache, the computation

1Strictly speaking, these codes are both processor-conscious
and cache-conscious, but we will use standard terminology
and just call them cache-conscious.

Figure 1: An empirical study of recursive and iter-
ative matrix multiplication programs

can take place without suffering capacity misses at that level.
The resulting blocking is only approximate since the size of
the working set may be smaller than the capacity of the
cache.

An important theoretical result about divide-and-conquer
algorithms was obtained in 1981 by Hong and Kung [20]
who also introduced the I/O model to study the memory
hierarchy performance of algorithms. This model consid-
ers a two level memory hierarchy consisting of a cache and
main memory. The processor can compute only with values
in the cache, so it is necessary to move data between cache
and memory during program execution. The I/O complexity
of a program is an asymptotic measure of the total volume
of data movement when that program is executed. Hong
and Kung showed that divide-and-conquer programs for ma-
trix multiplication and FFT are optimal under this measure.
In 1997, Gustavson implemented highly optimized recursive
versions of common linear algebra routines [19]. In 1999,
Frigo et al. extended the Hong and Kung result to matrix
transposition; they also coined the adjective cache-oblivious
to describe these programs because cache parameters are
not reflected in the code [16].

A natural question is the following: in domains like dense
linear algebra in which it is important to exploit caches, how
well do highly-optimized cache-oblivious programs perform
compared to highly-optimized cache-conscious programs? Is
there a performance penalty, in other words, that cache-
oblivious recursive programs pay for the ability to adapt
automatically to the memory hierarchy? Somewhat sur-
prisingly, we have not found any definitive studies of this
question in the literature; the few comparative studies that
we have found have compared the performance of unopti-
mized recursive and iterative programs. For example, Fig-
ure 1 shows the results of one study that found that a recur-
sive implementation of matrix multiplication on an Itanium-
2 outperforms an iterative implementation [21]. However,
careful examination of this graph shows that the recursive
implementation runs at about 30 Mflops; in comparison, the
cache-conscious iterative native BLAS on this machine runs
at almost 6 GFlops, as we discuss later in this paper.

1.3 Organization of this paper
In this paper, we describe the results of a study of the rela-

tive performance of highly-optimized recursive and iterative
programs for (i) matrix multiplication on several modern ar-
chitectures: IBM Power 5, Sun UltraSPARC IIIi, and Intel

94

Itanium 2, and (ii) matrix transpose on a single processor of
the IBM Blue Gene2. The Power 5 is an out-of-order RISC
processor, the UltraSPARC is an in-order RISC processor,
and the Itanium is a long instruction word processor.

Key hardware parameters and details of the software on
these machines are shown in Table 1. The L2 cache on the
IBM Blue Gene processor is small because it is a prefetch
buffer. Most of the programs we evaluate are generated by
a domain-specific compiler we are building called BRILA
(Block Recursive Implementation of Linear Algebra). The
compiler takes recursive descriptions of linear algebra prob-
lems, and produces optimized iterative or recursive pro-
grams as output. It also implements key optimizations like
scalar replacement [8], register allocation and operation schedul-
ing at the level of the C program; these optimizations can be
turned on or off as desired. Wherever appropriate, we com-
pared the code produced by BRILA with code in vendor
libraries like IBM’s ESSL.

The rest of this paper is organized as follows.
In Section 2, we motivate approximate blocking by giv-

ing a quantitative analysis of how blocking can reduce the
required bandwidth from memory. This analysis provides a
novel way of thinking about the I/O optimality.

In Section 3, we discuss the performance of näıve iterative
and recursive programs for matrix multiplication. These
programs are processor-oblivious because they do not exploit
registers and pipelines in the processor; they are also cache-
oblivious. Therefore, neither program performs well on any
architecture.

In Sections 4 and 5, we evaluate approaches for making the
recursive and iterative programs processor-conscious. The
goal is to enable these programs to exploit registers and pro-
cessor pipelines. This is accomplished by unrolling loops and
recursive calls, generating long basic blocks of instructions
that are called from the main computations. These long ba-
sic blocks are called microkernels in this paper. Microkernels
also serve to reduce loop and recursive call overhead. We
discuss a number of algorithms for register allocation and
scheduling of the microkernels, which we have implemented
in the BRILA compiler. The main finding is that we were
unable to produce a microkernel for the recursive code that
performed well, even after considerable effort. In contrast,
microkernels from the iterative code obtain near-peak per-
formance. Therefore, in the rest of our studies of matrix
multiplication, we only used microkernels obtained from the
iterative code.

In Section 6, we add cache-consciousness to the processor-
conscious code obtained in the previous section. We study
the performance of programs obtained by wrapping recursive
and cache-blocked iterative outer control structures around
the iterative microkernels from the previous section. We
also measure the performance obtained by using the native
BLAS on these machines. The main finding in this section is
that prefetching is important to obtain better performance.
While prefetching is easy if the outer control structure is
iterative, it is not clear how to accomplish this if the outer
control structure is recursive.

Section 7 presents some findings about matrix transposi-
tion on a single processor of the IBM Blue Gene machine.
Section 8 concludes with ideas for improving the perfor-
mance of cache-oblivious algorithms.

2We did not have time to study matrix transpose on the
other architectures, but we expect the results to be similar.

2. APPROXIMATE BLOCKING
In this section, we give a quantitative estimate of the

impact of blocking on effective memory latency as well as
on the bandwidth required from memory. This analysis
provides a novel way of looking at approximate blocking
in cache-oblivious programs. As a running example, we
use Matrix-Matrix Multiply (MMM) on the Intel Itanium
2 architecture. The Itanium 2 can execute 2 FMAs (fused
multiply-adds) per cycle, so to multiply two N×N matrices,

this platform would ideally spend N3

2
cycles. However, any

näıve version of matrix multiplication will take much longer
because the processor spends most of its time waiting for
memory loads to complete.

To examine the impact of blocking on the overhead from
memory latency and bandwidth, we first consider a simple,
two-level memory model consisting of one cache level and
memory. The cache is of capacity C, with line size LC , and
has access latency lC . The access latency of main memory
is lM . We consider blocked MMM, in which each block com-
putation multiplies matrices of size NB × NB . We assume
that no data reuse between block computations and blocks
that are contiguous in memory.

2.1 Upper Bound on NB

We derive an upper bound on NB by requiring the size
of the working set of the block computation to be less than
the capacity of the cache, C. The working set depends on
the schedule of operations, but it is bounded above by the
size of the sub-problem. Therefore, the following inequality
is a conservative approximation.

3N2
B ≤ C (1)

Better approximations exist: in particular, it can be shown
that it is sufficient to keep in the cache just one of the three
blocks, a row or column of another block, and single element
of the third block [29, 27], but Inequality (1) is sufficient for
our purpose.

2.2 Effect of Blocking on Latency
The total number of memory accesses each block compu-

tation makes is 4N3
B . Each block computation brings 3N2

B

data into the cache, which results in
3N2

B
LC

cold misses. If

the block size is chosen so that the working set fits in the
cache and there are no conflict misses, the cache miss ratio of
the complete block computation is 3

4NB×LC
. Assuming that

memory accesses are not overlapped, the expected memory
access latency is as follows.

l =

(
1 − 3

4NB × LC

)
× lC +

3

4NB × LC
× lM (2)

Equation 2 shows that the expected latency decreases
with increasing NB , so latency is minimized by choosing
the largest NB for which the working set fits in the cache.
In practice, the expected memory latency computed from
Equation 2 is somewhat pessimistic because loads can be
overlapped with each other or with actual computations,
reducing the effective values of lC and lM . These optimiza-
tions are extremely important in the generation of the micro-
kernels, as we describe in Section 4. Furthermore, hardware
and software prefetching can also be used to reduce effective
latency, as discussed in Section 6.

95

Itanium 2 Power 5 UltraSPARC IIIi IBM Blue Gene

Vendor CC Intel C 9.0 IBM XLC 7.0 Sun C 5.5 XLC 8.1
GCC gcc 3.4.3 gcc 3.4.3 gcc 3.2.2 n/a
OS Version Linux 2.6.9 IBM AIX 5.3 Sun Solaris 9 BLRTS V1R3M1
PAPI Version 3.0.8.1 3.0.8.1 3.0.8.1 n/a
BLAS Version Intel MKL 8.0 ESSL 4.2.0.2 Sun Studio 8 ESSL 4.2.5

processor Frequency 1.5 GHz 1.65 GHz 1.06 GHz 700 MHz
processor Peak Rate 6.0 GFlops 6.6 GFlops 2.12 GFlops 2.8 GFlops
Has FMA Yes Yes No Yes
Has RegRelAddr No Yes Yes Yes
of Registers 128 32 32 32 16-byte SIMD
L1 Size 16 kB 32 kB 64 kB 32 kB
L1 Line Size 64 B 128 B 32 B 32 B
L2 Size 256 kB 1.875 MB 1 MB 2 kB
L2 Line Size 128 B 128 B 32 B 128 B
L3 Size 3 MB 36 MB n/a 4 MB
L3 Line Size 128 B 512 B n/a 128 B
I-Cache Size 16 kB 64 kB 32 kB 32 kB

Table 1: Software and Hardware parameters

FPU Registers L2 L3 MemoryL1

4*

2

2*

4

4

6
0.5

Figure 2: Bandwidth of the Itanium 2 memory hi-
erarchy, measured in doubles/cycle3.

2.3 Effect of Blocking on Bandwidth
In the restructuring compiler community, blocking is seen

as a technique for reducing the effective latency of memory
accesses. To understand the virtues of the cache-oblivious
approach, it is better to view blocking as a technique for
reducing the bandwidth required from memory.

Each FMA operation in MMM reads three values and
writes one value. The required bandwidth to perform these

reads and writes is 4N3 ÷ N3

2
= 8 doubles/cycle. Figure 23

shows the bandwidth between different levels of the mem-
ory hierarchy of the Itanium (floating-point values are not
cached in the L1 cache on the Itanium). It can be seen
that the register-file can sustain the required bandwidth but
memory cannot.

To reduce the bandwidth required from memory, we can
block the computation for the register file. Since each block
computation requires 4N2

B data moved, our simple memory

model implies that the total data moved is
(

N
NB

)3

×4N2
B =

4N3

NB
. The ideal execution time of the computation is still

N3

2
, so the bandwidth required from memory is 4N3

NB
÷ N3

2
=

8
NB

doubles/cycle. Therefore, cache blocking by a factor of

NB reduces the bandwidth required from memory by the
same factor.

We can now write the following lower bound on the value
of NB , where B(L1, M) is the bandwidth between cache and
memory.

8

NB
≤ B(L1, M) (3)

3Floating-point values are not cached at L1 in Itanium 2,
they are transferred directly to / from L2 cache. The L2
cache can transfer 4 values to floating point registers and 2
values from floating point registers per cycle, but there is a
maximum total of 4 memory operations.

Inequalities 1 and 3 imply the following inequality for NB :

8

B(L1, M)
≤ NB ≤

√
C

3
(4)

This argument generalizes to a multi-level memory hier-
archy. If B(Li, Li+1) is the bandwidth between levels i and
i + 1 in the memory hierarchy, NB (i) is the block size for
the ith cache level, and Ci is the capacity of this cache, we
obtain the following inequality:

8

B(Li, Li+1)
≤ NB (i) ≤

√
Ci

3
(5)

In principle, there may be no values of NB (i) that satisfy
the inequality. This can happen if the capacity of the cache
as well as the bandwidth to the next level of the memory hi-
erarchy are small. According to this model, the bandwidth
problem for such problems cannot be solved by blocking (in
principle, there may be other bottlenecks such as the inabil-
ity of the processor to sustain a sufficient number of out-
standing memory requests). An early version of the Power
PC 604 suffered from this problem — it had an L1 cache
of only 4K double words, and there was not enough band-
width between the L1, L2 caches, and memory to keep the
multiply-add unit running at peak.

For the Itanium 2, we have seen that register blocking is
needed to prevent the bandwidth between registers and L2
cache from becoming the bottleneck. If NB (R) is the size of

the register block, we see that 8
4
≤ NB (R) ≤

√
126
3

. There-

fore, NB (R) values between 2 and 6 will suffice. If we use
NB (R) in this range, the bandwidth required from L2 to
registers is between 1.33 and 4 doubles per cycle. Note that
this much bandwidth is also available between the L2 and
L3 caches. Therefore, it is not necessary to block for the L2
cache to ameliorate bandwidth problems. Unfortunately,
this bandwidth exceeds the bandwidth between L3 cache
and memory. Therefore, we need to block for the L3 cache.

The appropriate inequality is 8
0.5

≤ NB (L3) ≤
√

4MB
3

.

Therefore, NB (L3) values between 16 and 418 will suffice.
Thus, for the Itanium 2, there is a range of block sizes

that can be used. Since the upper bound in each range is
more than twice the lower bound, the approximate blocking
of a divide-and-conquer implementation of a cache-oblivious
program will generate sub-problems in these ranges, and

96

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

A0

A1

C0

C1

B

A0

A1

C0

C1

B

C00 ← A00 × B00 + A01 × B10
C01 ← A01 × B11 + A11 × B01
C11 ← A11 × B01 + A10 × B01
C10 ← A10 × B00 + A11 × B10

(a) All Dimensions

C0 ← A0 × B

C1 ← A1 × B

(b) Largest Dimension

Figure 3: Divide-and-conquer strategies for MMM

therefore bandwidth is not a constraint. Of course, latency
of memory accesses may still be a problem. In particular,
since blocking by cache-oblivious programs is only approxi-
mate, the analysis of Section 2.2 suggests that reducing the
impact of memory latency is more critical for cache-oblivious
codes than it is for cache-conscious codes. We will revisit
this point in more detail in Section 6.

3. NA-IVE CODES
In this section, we discuss näıve recursive and iterative

programs that are oblivious to both the processor and the
memory hierarchy. There are two high-level design deci-
sions to be made when writing either program: what control
structure and what data structure to use.

Figure 3 shows two recursive control structures for im-
plementing matrix multiplication. A well-known approach
is to bisect both A and B along rows and columns, generat-
ing eight independent sub-problems as shown in Figure 3(a).
The recursion terminates when the matrices consist of single
elements. For obvious reasons, we refer to this strategy as
the all-dimensions (AD) strategy.

Bilardi et al. [7] have pointed out that it is possible to op-
timize memory hierarchy performance by using a Gray code
order to schedule the eight sub-problems so that there is
always one sub-matrix in common between successive sub-
problems. One such order can be found in Figure 3(a) if the
sub-problems are executed in left-to-right, top-to-bottom or-
der. For example, the first two sub-problems have C00 in
common, and the second and third have A01 in common.

An alternative control strategy is the largest-dimension
(LD) strategy proposed by Frigo et al. [16], in which only
the largest of the three dimensions is divided, as shown in
Figure 3(b). Both the AD and LD strategies lead to pro-
grams that are optimal in the Hong and Kung I/O complex-
ity model [20].

As a baseline for performance comparisons, we used the
simple iterative version of matrix multiplication. The three
loops in this program are fully permutable, so all six orders
of the loop nest compute the same values. In our experi-
ments, we used the jki order. For the experiments in this
section, we chose row-major array order. Note that the jki
loop order is the worst loop order for exploiting spatial lo-
cality if arrays stored in row-major order (as discussed in

[14]). We chose this order to eliminate any advantage the
iterative code might obtain from exploiting spatial locality.

As an aside, we mention that we investigated Morton-
Z storage order [10] as an alternative to row-major order.
Accessing array elements is substantially more complex for
Morton-Z order, especially for matrices whose dimensions
are not a power of two. Even for matrices whose dimensions
are a power of two, we rarely found any improvement in
performance. This finding is consistent with previous stud-
ies that have concluded that space-filling storage orders like
Morton-Z order pay off only when the computation is out of
core [6].

Figure 4 shows the results of performing complete MMMs
on the machines in our study (for lack of space, we have
consolidated all the performance graphs for each machine
into a single graph). Since we explore a large number of
implementations in this paper, we use a tuple to distinguish
them, the first part of which describes the outer control
structure.

• R – using the Recursive AD control structure;
• I – using a triply-nested Iterative control structure;

The second part of the tuple describes the microkernel,
and it will be explained as the microkernels are developed
in Sections 4 and 5. However, when the outer control struc-
ture invokes a single statement to perform the computations,
we use the symbol S (for Statement). For completeness, we
include performance lines for MMM performed by the Ven-
dor BLAS using standard row-major storage format for the
arrays.

With this notation, note that the lines labelled R S in
Figure 4 shows the performance of the AD cache-oblivious
program, while the lines labelled I S shows the performance
of the nested loop program. Both programs perform very
poorly, obtaining roughly 1% of peak on all the machines.
As a point of comparison, vendor BLAS on the Itanium 2
achieves close to peak performance. The performance of LD
was close to that of AD on all machines, so we do not discuss
it further.

3.1 Discussion
To get some insight into why these programs perform

so poorly, we studied the assembly listings and the values
of various hardware counters on the four machines. This
study revealed three important reasons for the poor perfor-
mance.

• As is well-known, the major problem with the recursive
program is the overhead of recursion, since each divi-
sion step in the divide-and-conquer process involves
a procedure call. Our measurements on the Itanium
showed that this overhead is roughly 100 cycles per
FMA, while on the UltraSPARC, it is roughly 360 cy-
cles. This integer overhead is much less for the itera-
tive program.

• A second reason for poor performance is that the pro-
grams make poor use of registers. Compilers do not
track register values across procedure calls, so register
blocking for the recursive code is difficult. In principle,
compilers can perform register blocking for the itera-
tive program, but none of the compilers were able to
accomplish this.

• Finally, a remarkable fact emerges when we look at the
number of L2 cache misses on the Itanium. Figure 5

97

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000

M
F

lo
ps

Matrix Size

Power 5

R T(120,4x4x120,BC)
I T(120,4x4x120,BC)

R T(4x4x120,BC)
Vendor BLAS

I T(4x4x120,BC)
R R(10x10x10,BB)

R R(9x9x9,BC)
R R(15x15x15,NN)

I S
R S

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000

M
F

lo
ps

Matrix Size

Ultrasparc IIIi

Vendor BLAS
R T(120,4x4x120,BC)
I T(120,4x4x120,BC)

R T(4x4x120,BC)
R R(8x8x8,BC)
R R(8x8x8,BB)

I T(4x4x120,BC)
R R(8x8x8,NN)

I S
R S

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000

M
F

lo
ps

Matrix Size

Itanium 2

Vendor BLAS
R T(120,8x8x12,BC)
I T(120,8x8x12,BC)

R T(8x8x12,BC)
R R(9x9x9,BC)
R R(9x9x9,BB)
I T(8x8x12,BC)
R R(5x5x5,NN)

R S
I S

Figure 4: Complete MMM performance

shows the number of cache misses per FMA for the
iterative and recursive programs.
The iterative program suffers roughly two misses per
FMA. This makes intuitive sense because for the jki
loop order, the accesses to Aik and Cij miss in the cache
since the A and C arrays are stored in row-major order
but are accessed in column-major order. The element

 0

 0.5

 1

 1.5

 2

 2.5

 1500 2000 2500 3000 3500 4000 4500 5000

M
is

se
s

pe
r

F
M

A

Matrix Size

Itanium 2 Misses per FMA

R S
I S

Figure 5: Data cache misses per FMA instruction
in MMM

Bkj is invariant in the innermost loop, so it does not
cause cache misses. Therefore, each iteration of the in-
nermost loop performs one FMA, makes four data ac-
cesses, and misses on two of these accesses, resulting in
a miss ratio of 0.5 and misses/FMA of 2. In short, poor
memory hierarchy behavior limits the performance of
the iterative code. Remarkably, the recursive program
suffers only 0.002 misses per FMA, resulting in a miss
ratio of 0.0005! This low miss ratio is a practical man-
ifestation of the theoretical I/O optimality of the re-
cursive program. Nevertheless, the poor performance
of this code shows that I/O optimality alone does not
guarantee good overall performance.

To improve performance, it is necessary to massage the re-
cursive and iterative codes so that they become more processor-
conscious and exploit the processor pipeline and the register
file. Section 4 describes how processor-consciousness can be
added to recursive codes. Section 5 describes how this can
be done for iterative codes.

4. PROCESSOR-CONSCIOUS RECURSIVE
CODES

To make the recursive program processor-conscious, we
generate a long basic block of operations called a microkernel
that is obtained by unrolling the recursive code completely
for a problem of size RU ×RU ×RU [16]. The overall recur-
sive program invoke this microkernel as its base case. There
are two advantages to this approach. First, it is possible to
perform register allocation and scheduling of operations in
the microkernel, thereby exploiting registers and the proces-
sor pipeline. Second, the overhead of recursion is reduced.

We call the long basic block a recursive microkernel since
the multiply-add operations are performed in the same order
as they were in the original recursive code (there is no recur-
sion in the code of the microkernel, of course). The optimal
value of RU is determined empirically for values between 1
and 15.

Together with the control structure, one needs to worry
about which data structure to use to represent the matri-
ces. Virtually all high-performance BLAS libraries inter-
nally use a form of a blocked matrix, such as Row-Block-Row
(RBR) [19]. An alternative is to use a recursive data layout,
such as a space filling curve like Morton-Z [10]. We com-
pared the MMM performance using both these choices and
we rarely saw any performance improvement using Morton-
Z order over RBR. Thus we use RBR in all experiments in
this paper, and we chose the data block size to match our

98

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 o
f P

ea
k

RU

(a) Power 5 Microkernels in Isolation

T(4x4x120,BC)
Ideal

BB
BC
NS
NN

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

P
er

ce
nt

 o
f P

ea
k

RU

(b) Ultrasparc IIIi Microkernels in Isolation

T(4x4x120,BC)
Ideal

BC
BB
NN
NS

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

P
er

ce
nt

 o
f P

ea
k

RU

(c) Itanium 2 Microkernels in Isolation

T(8x8x12,BC)
Ideal

BC
BB
NS
NN

Figure 6: Microkernel performance in isolation

block size. Note however, that the native BLAS on all the
machines use standard row-major order for the input arrays
and copy these arrays internally into RBR format, so care
should be taken in performance comparisons with the native
BLAS.

We considered three different approaches to performing
register allocation and scheduling for the microkernel.

4.1 R(RU × RU × RU , NN)

The first approach is to use the native compiler on each
platform to compile the microkernel. We call this version
R(RU×RU×RU , NN) because it is generated from Recursive
inlining when data is RU along the three dimensions; NN
stands for Native-None, and it means that the native com-
piler is used to schedule the code and no other register allo-
cation is performed.

Figure 6 shows the performance of different microkernels
in isolation on the four architectures of interest. Intuitively,
this is the performance obtained by a microkernel if all of its
memory accesses are satisfied by the highest cache level (L2
on the Itanium and L1 on the other machines). This perfor-
mance is measured by invoking the microkernel repeatedly
on the same data (the RBR format ensures that there are
no conflict misses).

We focus on the UltraSPARC results. Figure 6(b) shows
that the performance of the microkernel on the UltraSPARC
in isolation is only about 11% of peak. This is also the
performance of the complete MMM computation using this
microkernel (190 MFlops out of 2.12 GFlops). The line la-
belled “ideal” corresponds to the highest performance one
can achieve for a microkernel of given size, given the cost of
ramping up and draining the computations of the microker-
nel. The line labelled “T(4x4x120,BC)” shows the perfor-
mance of the best iterative microkernel, discussed in detail
in Section 5.

Figure 4 shows that the overall performance is better than
that of the näıve recursive version discussed in Section 3 be-
cause the overhead of recursion is amortized over the compu-
tations in the microkernel. An examination of the assembly
code, however, showed that the compilers were not able to
register allocate array elements. This optimization requires
the compiler to discover whether or not the matrices are
aliased. Even in the best production compilers, this alias
analysis is often insufficient.

Some compilers can be told to assume that there is no
aliasing in the microkernel. We found that the Intel C com-
piler (version 9.0) on the Itanium 2 was able to produce code
comparable in performance to that of our most advanced re-
cursive microkernel (Section 4.3) if it is told that there is no
aliasing in the code for the microkernel.

4.2 R(RU × RU × RU , BB)

At Frigo’s suggestion [15], we addressed this problem by
implementing modules in the BRILA compiler that (i) used
Belady’s algorithm [4] to perform register allocation on the
unrolled microkernel code, and then (ii) performed schedul-
ing on the resulting code. Our implementation of Belady’s
algorithm is along the lines of [18]. This code was then com-
piled using the native compiler on each platform. In these
experiments, we ensured that the native compiler was used
only as a portable assembler, and that it did not perform any
optimizations that interfered with BRILA optimizations.

The key idea behind using Belady’s algorithm is that when
it is necessary to spill a register, the value that will be needed
furthest in the future should be evicted. This value is easy
to discover in the context of microkernels, since we have one
large basic block. The Belady register allocation algorithm
is guaranteed to produce an allocation that results in the
minimum number of loads. Different architectures require
slightly different versions of the allocator. For instance, on
the Itanium 2, Belady register allocation is implemented in
two passes – one to allocate floating-point registers and a
subsequent one to allocate integer registers. This division is
necessary because the Itanium 2 architecture does not have
a register-relative addressing mode, so the address of each
memory operation needs to be pre-computed into an integer
register. To decide on an allocation for the integer registers,
we need to know the order of floating-point memory opera-
tions, but this order is not known before the floating-point
registers themselves are allocated.

The BRILA scheduler is a simplified version of a general
instruction scheduler found in compilers, since it has to han-
dle only a basic block of floating-point FMAs (or multiplies
and adds when the architecture does not have an FMA in-
struction), floating-point loads and stores, and potentially
integer adds (for pointer arithmetic on Itanium 2). It ac-
cepts a simple description of the architecture and uses it to

99

• The scheduler works on blocks of the following instruc-
tion types:

• Floating-point FMA, multiply, and add;
• Floating-point load and store;
• Integer arithmetic for address computation.

• The scheduler is parameterized by a description of the
target architecture, which consists of:

• HasFMA : bool – specifies whether the architecture
has a floating-point FMA instruction.

• HasRegRelAddr : bool – specifies whether the archi-
tecture supports register relative addressing mode,
or all addresses need to computed into an integer
register in advance (e.g. Itanium 2).

• Latency : instruction → bool – specifies the latency
in cycles of all instructions of interest.

• Set of possible instruction bundles, each of which
can be dispatched in a single cycle. The way we de-
scribe this set is by first mapping each instruction
of interest to an instruction type. Each instruction
type can be dispatched to one or more different
execution ports inside the processor. Finally, the
processor can dispatch at most one instruction to
each execution port, for a subset of execution ports
per cycle. We enumerate the possible sets of exe-
cution ports that can be dispatched together.

• The scheduler produces instruction bundles at each step
as follows:

1. Considers all instructions which have not been
scheduled yet;

2. Without changing the relative order of the instruc-
tions, removes all instructions from the list which
depend on instructions that have not been sched-
uled yet;

3. Greedily selects the largest subset of instructions
from the resulting list which matches one of the
subsets of execution ports the processor supports.
It ensures that:

• Instructions of the same type execute in pro-
gram order;

• Instructions from different types are given
different execute preferences. The scheduler
prefers to dispatch computational instructions
most, followed by loads and stores, followed by
integer arithmetic (if necessary).

Figure 7: The BRILA instruction scheduler

schedule the instructions appropriately. A brief description
of the scheduler is presented in Figure 7.

We call the resulting microkernel, generated by using the
Belady register allocation algorithm and the BRILA sched-
uler, R(RU × RU × RU , BB), where BB stands for BRILA-
Belady.

Figure 6(b) shows that on the UltraSPARC, the perfor-
mance in isolation of this microkernel is above 40% of peak
for RU > 3. The performance of the complete MMM is only
at about 640 MFlops, or just about 32% of the 2 GFlops
peak rate. Note that on the Itanium 2, register spills hurt
the performance of this microkernel for RU > 7. An even
greater drop occurs for RU > 9 because the microkernel
overflows the I-Cache.

Interestingly, for the R(RU × RU × RU , NS) microkernel,
Figure 4(a) shows that the IBM XLC Compiler at its highest
optimization level is able to produce code which is slightly
faster than the corresponding BB microkernel.

1. Generate the sequence of FMA operations in the same
way we do this for R(RU × RU × RU , NN)

2. Generate an approximate schedule for this sequence:

1. Consider the issue width of the processor for
floating-point operations and schedule that many
FMA instructions per cycle. Assume that an arbi-
trary number of other instructions (memory, inte-
ger arithmetic) can be executed in each cycle.

2. If the processor has no FMA instruction, break
each FMA into its two components, replace the
FMA with its multiply part, and schedule its add
part for Latency (multiply) cycles later;

3. Assume an infinite virtual register file, and allocate
each operand of each computational floating-point
instruction (FMA, multiply, or add) into a differ-
ent virtual register.

1. Schedule a memory load into a register
Latency (load) cycles before the FMA (or mul-
tiply) using the corresponding value.

2. Schedule a memory store from a register
Latency (FMA) (or Latency (add)) cycles after
the FMA (or add) that modifies that register.

3. Whenever the life spans of two registers that
hold the same physical matrix element over-
lap, we merge them into a single virtual reg-
ister and eliminate unnecessary intermediate
loads and stores. This step is required to pre-
serve the semantics of the microkernel.

4. Additionally, when the life spans of two reg-
isters that hold the same physical matrix el-
ement do not overlap, but are close (say at
most δ cycles apart), we still merge them to
take advantage of this reuse opportunity. This
step is not required to preserve the correctness
of the program, but can allow significant reuse
of already loaded values. The parameter δ de-
pends on architectural parameters.

5. Use graph coloring to generate a virtual to logical reg-
ister mapping.

6. Use the BRILA scheduler, described in Figure 7, for the
corresponding architecture to produce a final schedule
for the microkernel.

Figure 8: Register allocator and scheduler in BRILA

4.3 R(RU × RU × RU , BC)

Although Belady’s algorithm minimizes the number of
loads, it is not necessarily the best approach to register al-
location on modern machines; for example, we can afford to
execute more than the optimal number of loads from mem-
ory if they can be performed in parallel with each other or
with computation4. Therefore, we decided to investigate an
integrated approach to register allocation and scheduling [5,
17, 23]. Figure 8 briefly describes the algorithm we imple-
mented in BRILA.

Both UltraSPARC IIIi and Itanium 2 are in-order archi-
tectures, and precise scheduling is extremely important for
achieving high-performance. Figure 6(b) and 6(c) show that
the BC strategy works better on these architectures than the
other strategies discussed in this section. As we can see in
Figure 6(b), the performance of this microkernel in isolation

4Belady invented his policy while investigating page replace-
ment policies for virtual memory systems, and the algorithm
is optimal in that context since page faults cannot be over-
lapped. Basic blocks, however, have both computation and
memory accesses to schedule, and can overlap them to gain
higher performance.

100

on the UltraSPARC is about 50% of peak for RU > 3. The
performance of the complete MMM is about 760 MFlops, or
just about 38% of peak. On the Itanium 2 architecture, the
performance of the microkernel in isolation is 93% of peak.
Although this level of performance is not sustained in the
complete MMM, Figure 4(c) shows that the complete MMM
reaches about 3.8 GFlops or about 63% of peak.

The situation is more complex for the Power 5 since it
is an out-of-order architecture and the hardware reorders
instructions during execution. Figures 4(a) and 6(a) show
that the Belady register allocation strategy (BB) performs
better on Power 5 than the integrated graph coloring and
scheduling approach (BC). Intuitively, this occurs because
the out-of-order hardware schedules around stalls caused by
the Belady register allocation.

4.4 Discussion
Our work on adding processor-consciousness to recursive

MMM codes led us to the following conclusions.

• The microkernel is critical to overall performance of
the recursive code. Producing a high-performance mi-
crokernel is a non-trivial job, and requires substantial
programming effort.

• The performance of the program obtained by following
the canonical recipe (recursive outer control structure
and recursive microkernel) is substantially lower than
the near-peak performance of highly optimized iter-
ative codes in vendor BLAS. The best we were able
to obtain was 63% of peak on the Itanium 2; on the
UltraSPARC, performance was only 38% of peak.

• For generating the microkernel code, using Belady’s
algorithm followed by scheduling may not be optimal.
Belady’s algorithm minimizes the number of loads, but
minimizing loads does not necessarily maximize perfor-
mance. An integrated register allocation and schedul-
ing approach appears to perform better.

• Most compilers we used did not do a good job with
register allocation and scheduling for long basic blocks.
This problem has been investigated before [5, 17, 23].
The situation is more muddied when processors per-
form register renaming and out-of-order instruction
scheduling. The compiler community needs to pay
more attention to this problem.

5. PROCESSOR-CONSCIOUS ITERATIVE
CODES

We now discuss how processor-consciousness can be added
to iterative codes.

5.1 Iterative microkernels
Most numerical linear algebra libraries as well as the AT-

LAS system [27] use iterative microkernels whose structure
is shown pictorially in Figure 9. Unlike the recursive micro-
kernels described in Section 4 that have a single degree of
freedom RU , the iterative microkernels have three degrees
of freedom called KU , NU , and MU . The microkernel loads
a block of the C matrix of size MU × NU (shown as a solid
rectangle inside C in Figure 9) into registers, and then ac-
cumulates the results of performing a sequence of size KU

of outer products between small column vectors of A and
small row vectors of B.

M
U

NB

NB NB

A C

B

KU

KU

NU

Figure 9: Iterative microkernel and minikernel used
in ATLAS

Our iterative microkernels are generated by BRILA as
follows.

1. Start with a simple kji triply-nested loop for perform-
ing an MMM with dimensions 〈KU , NU , MU 〉 and un-
roll it completely to produce a sequence of MU ×NU ×
KU FMAs.

2. Use the algorithm described in Figure 8 for register
allocation and scheduling, starting with the sequence
of FMAs generated above.

We examined the schedule of our microkernel and com-
pared it to the structure of the ATLAS microkernel, which
is shown in Figure 9. Both perform the computation in-
structions in the same order and keep the submatrix of C in
registers at all times. Our BRILA compiler uses a descrip-
tion of the architecture to schedule the loads from A and B
more precisely. ATLAS relies on the native compiler.

The iterative microkernel generated in this way has a num-
ber of advantages. For the kji loop order, the number of re-
quired registers does not depend on the KU parameter [29,
27]. Thus we can optimize the values of MU and NU to
make the working set of the microkernel fit in the register
file. Then, we can optimize the value of KU to make the
code of the microkernel fit in the instruction cache. In prin-
ciple, we can generate recursive microkernels for non-square
blocks, but their dimensions are not independent since each
dimension affects both register allocation and instruction
cache utilization.

Table 2 shows the performance of our iterative microker-
nels in isolation (also shown as a solid flat horizontal line in
Figure 6(a-d)). We name the iterative microkernels with T
for Tiled, the block size MU × NU × KU and the allocation
- scheduling pair (BC or BB).

It can be seen that iterative microkernels perform sub-
stantially better than recursive microkernels on most archi-
tectures, obtaining close to peak performance on most of
them.

5.2 Overall MMM Performance
To perform complete MMMs, the iterative microkernel is

wrapped in an outer control structure consisting of a triply-

101

Architecture Micro-Kernel Percent

Power 5
R(8 × 8 × 8, BB) 58%
T(4 × 4 × 120, BC) 98%

UltraSPARC IIIi
R(12 × 12 × 12, BC) 53%
T(4 × 4 × 120, BC) 98%

Itanium 2
R(9 × 9 × 9, BC) 93%
T(8 × 8 × 12, BC) 94%

Table 2: Performance of the best microkernels in
isolation.

nested loop that invokes the iterative microkernel within
its body. The resulting code is processor-conscious but not
cache-conscious, and therefore has a working set of a matrix,
a panel of another matrix and a block from the third matrix;
because it uses a microkernel, it does provide register block-
ing. The experimental results are labelled with I, followed
by the microkernel name from Table 2 in Figure 4(a-d).

On all four machines, the performance trends are simi-
lar. When the problem size is small, performance is great
because the highly-tuned iterative microkernel obtains its
inputs from the highest cache level. However, as the prob-
lem size increases, performance drops rapidly because there
is no cache blocking. This can be seen most clearly on the
Power 5. Performance of I T(4×4×120, BC) is initially at 5.8
GFlops. When the working set of the iterative version be-
comes larger than the 1920KB L2 cache (for matrices of size
480 × 480 × 480), performance drops to about 3.8 GFlops.
Finally, when the working set of the iterative version be-
comes larger than the 36MB L3 cache (for matrices of size
2040 × 2040 × 2400), performance drops further to about 2
GFlops, about 30% of peak.

5.3 Discussion
Table 2 shows that on a given architecture, iterative mi-

crokernels are larger in size than recursive microkernels. It is
possible to produce larger iterative microkernels because of
the decoupling of the problem dimensions: the size of the KU

dimension is limited only by the capacity of the instruction
cache, and is practically unlimited if a software-pipelined
loop is introduced along KU .

In summary, iterative microkernels outperform recursive
microkernels by a wide margin on three out of four architec-
tures we studied; performance of the recursive microkernel
was close to that of the iterative microkernel only on the Ita-
nium. Since overall MMM performance is bounded above
by the performance of the microkernel, these results sug-
gest that use of recursive microkernels is not recommended.
Other researchers have recently come to the same conclu-
sion [11]. In the rest of the experiments on matrix mul-
tiplication, we will therefore focus exclusively on iterative
microkernels.

6. INCORPORATING CACHE BLOCKING
Without cache blocking, the performance advantages of

the highly optimized iterative microkernels described in Sec-
tion 5 are obtained only for small problem sizes; once the
working set of the problem is larger than the capacity of the
highest cache level, performance drops off. To sustain per-
formance, it is necessary to block for the memory hierarchy.

In this section, we describe two ways of accomplishing
this. The first approach is to wrap the iterative microkernel
in a recursive outer control structure to perform approxi-

mate blocking. The second approach is to use iterative outer
control structures and perform explicit cache tiling.

6.1 Recursive outer control structure
Figure 4 presents the complete MMM performance of the

iterative microkernels within a recursive outer structure.
The corresponding lines are labelled with R followed by the
name of the microkernel from Table 2. On all four ma-
chines, performance stays more or less constant indepen-
dent of the problem size, demonstrating that the recursive
outer control structure is able to block approximately for all
cache levels. The achieved performance is between 60% (on
the UltraSPARC IIIi) and 75% (on the Power 5) of peak.
While this is good, overall performance is still substantially
less than the performance of the native BLAS on these ma-
chines. For example, on the Itanium, this approach gives
roughly 4 GFlops, whereas vendor BLAS obtains almost 6
GFlops; on the Ultrasparc III, this approach obtains roughly
1.2 GFlops, whereas vendor BLAS gets close to 1.6 GFlops.

6.2 Blocked iterative outer control structure
These experiments suggest that if an iterative outer con-

trol structure is used, we may need to tile explicitly for all
levels of the memory hierarchy. A different approach that
leads to even better performance emerges if one studies the
handcoded BLAS on various machines. On most machines,
the handcoded BLAS libraries are proprietary, so we did not
have access to them. However, the ATLAS distribution has
hand-optimized codes for some of the machines in our study.
The minikernels in these codes incorporate one level of cache
tiling, and prefetching is done so that while one microker-
nel is executing, data for the next microkernel is prefetched
from memory [26]. The resulting performance is very close
to that of vendor BLAS on all machines (we do not show
these performance lines in Figure 4 to avoid cluttering the
figure).

To mimic this structure, we used the BRILA compiler
to generate a minikernel composed of a loop nest wrapped
around the MU×NU×KU iterative microkernel; the miniker-
nel performs a matrix multiplication of size NB ×NB ×NB

by invoking the iterative microkernel repeatedly, as shown in
Figure 9. This is essentially the structure of the minikernel
used in the ATLAS system [27].

For our experiments, we set NB to 120 on all machines.
The rationale for choosing 120 as the cache tile size is the
following. For the machines in our study, it is not neces-
sary to tile for the L1 cache. On all machines we looked at
there is enough concurrency in the optimized microkernel to
cover the latency of L2 cache accesses. A tile size of 120
satisfies Inequality (5) for the L2 cache on all the machines
in our study other than the IBM Blue Gene where it is sat-
isfied for the L3 cache. In addition, it is advantageous to
make the cache tile size some multiple of the register tile
size to avoid performance problems that arise from “left-
over” pieces within the cache tile that cannot be executed
by the register tile. The number 120 is a composite number
divisible by the sizes of the register tiles in our study. There-
fore, our blocked iterative code provides a counterpoint to
the recursive code since it uses a single cache tile size instead
of a entire range of cache tile sizes.

As with the microkernels, this minikernel can then be
used with either recursive or iterative outer control struc-
tures. The experimental results in Figure 4 show a number

102

of interesting points. The recursive and iterative outer con-
trol structures achieve almost identical performance for most
problem sizes. For instance R T(120,4x4x120,BC) reaches
nearly 6 GFlops on the Power 5 and maintains its perfor-
mance through matrix sizes of 5000 × 5000. On the other
hand, I T(120,4x4x120,BC) matches this performance until
the matrices become too large to fit in the L2 cache; per-
formance then falls off because there is no tiling for the L3
cache.

We have not yet implemented prefetching in BRILA, but
for iterative minikernels, the memory access pattern is reg-
ular and predictable, so instructions that touch memory lo-
cations required for successive microkernels can be inserted
into the computationally intensive code of earlier microker-
nels without performance penalty. However, it is not clear
how one introduces prefetching into programs with a recur-
sive outer control structure. Following the line of reasoning
described in Section 2, we believe this is required to raise
the level of performance of the recursive approach to that of
the iterative approach. Whether prefetching can be done in
some cache-oblivious manner remains to be seen.

6.3 Discussion
Our minikernel work led us to the following conclusions.

• Wrapping a recursive control structure around the it-
erative microkernel gives a program that performs rea-
sonably well since it is able to block approximately for
all levels of cache and block exactly for registers.

• If an iterative outer control structure is used, it is nec-
essary to block for relevant levels of the memory hier-
archy.

• To achieve performance competitive with hand-tuned
kernels, minikernels need to do data prefetching. It is
clear how to do this for an iterative outer control struc-
ture but it is not clear how to do this for a recursive
outer control structure.

7. MATRIX TRANSPOSE
Matrix Transposition (MT) is different in behavior from

MMM. It does O(N2) work on O(N2) data, so there is no
algorithmic reuse, but it can benefit from exploiting spatial
locality in data cache and data TLB. There are no multiply-
add operations in the microkernel, but an important perfor-
mance metric is the rate at which data is stored in memory.

We performed our experiments with out-of-place MT on
the IBM Blue Gene architecture. We used standard row-
major data layout and ran four different algorithms.

• Näıve Iterative - double nested loop;

• Näıve Recursive - divide-all-dimensions recursion;

• Optimized CO - following the CO recipe; divide-all-
dimensions recursive outer structure with an optimized
32 × 32 microkernel; and

• Optimized CC - the ESSL vendor library.

To study the impact of conflict misses, we ran all ex-
periments with the leading dimension equal to the size of
the corresponding matrix (exact), as well as with a leading
dimension slightly larger than the size of the correspond-
ing matrix (padded). In Figure 10 we show our results for

Figure 10: Matrix Transpose runtime in cycles on
IBM Blue Gene for all four implementations using
square matrices (log scale).

Figure 11: Matrix Transpose runtime in cycles on
IBM Blue Gene for padded and exact optimized CO
and CC implementations using square matrices (lin-
ear scale).

“padded” (note the log scale). The best performance is ob-
tained by ESSL, followed by the optimized CO, Näıve Iter-
ative, and finally the Näıve Recursive. For space reasons we
do not show the graph for “exact”, as it is very similar and
the relative performance is preserved, though performance
is smaller in absolute sense due to cache conflict misses.

Figure 11 shows the relative performance of the optimized
CO and CC implementations for both “exact” and “padded”
data (note the linear scale). The ESSL CC implementation
on padded data is fastest. Optimized CO on padded data is
about 20% slower. The experiments on “exact” data exhibit
a similar relative gap.

These results are in line with the results from the MMM
results discussed earlier: (i) näıve iterative and recursive im-
plementations do not exhibit good performance; (ii) it is a
substantial effort to produce a good microkernel for both
optimized CO and optimized CC approaches, and (iii) op-
timized cache-conscious code usually performs significantly
better than the optimized cache-oblivious code.

103

8. CONCLUSIONS AND FUTURE WORK
We began this paper by asking whether there was a price

that cache-oblivious programs pay for the ability to adapt
automatically to the memory hierarchy. The results in this
paper provide a quantitative answer, in two parts.

First, our experiments show that high-performance codes
must at least be processor-conscious in the sense that they
require microkernels that are carefully optimized for the pro-
cessor pipeline, registers and L1 I-cache. We also found that
iterative microkernels for matrix-multiplication performed
better than the recursive microkernels we produced using
the methods prescribed in the literature. We believe this
is because the iterative microkernels have more degrees of
freedom that permit independent optimization for different
processor resources, but this needs to be investigated.

Second, our experiments show that on current architec-
tures, a single level of cache tiling and modest prefetching
are adequate to generate high-performance matrix multipli-
cation code. In particular, it is sufficient to tile approxi-
mately for the L2 cache on most current architectures, so
adapting to all levels of the memory hierarchy by generat-
ing a range of tile sizes using divide-and-conquer appears to
be unnecessary.

The results in this paper suggest several directions for
future research.

• Are these conclusions valid for multicore architectures [9]?

• Can we produce better microkernels starting from the
recursive code?

• Better register allocation and scheduling techniques
are needed for long basic blocks.Using Belady’s algo-
rithm followed by scheduling is not necessarily optimal
because minimizing the number of loads is not neces-
sarily correlated to optimizing performance on archi-
tectures that support multiple outstanding loads and
can overlap loads with computation.

• How do we integrate prefetching into cache-oblivious
algorithms?

• The näıve recursive code described in Section 3 is I/O
optimal, but delivers only 1% of peak on all architec-
tures. Intuitively, the I/O complexity of a program de-
scribes only one dimension of its behavior, and focus-
ing on I/O optimality alone may be misleading when
it comes to overall performance. What models are ap-
propriate for describing other dimensions of program
behavior to obtain a comprehensive description of pro-
gram performance?

Acknowledgements: We would like to thank Matteo Frigo
and Gianfranco Bilardi for useful discussions.

9. REFERENCES
[1] Basic Linear Algebra Routines (BLAS).

http://www.netlib.org/blas.

[2] R. Allan and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann Publishers, 2002.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen, editors. LAPACK Users’
Guide. Second Edition. SIAM, Philadelphia, 1995.

[4] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal, 5(2):78–101,
1966.

[5] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Integrated
instruction scheduling and register allocation techniques. In
LCPC ’98, pages 247–262, London, UK, 1999. Springer-Verlag.

[6] Gianfranco Bilardi, 2005. Personal communication.

[7] Gianfranco Bilardi, Paolo D’Alberto, and Alex Nicolau. Fractal
matrix multiplication: A case study on portability of cache
performance. In Algorithm Engineering: 5th International
Workshop, WAE, 2001.

[8] David Callahan, Steve Carr, and Ken Kennedy. Improving
register allocation for subscripted variables. In PLDI, pages
53–65, 1990.

[9] Ernie Chan, Enrique S. Quintana-Orti, Gregorio
Quintana-Orti, and Robert van de Geijn. Supermatrix
out-of-order scheduling of matrix operations for smp and
multi-core architectures. In Symposium on Parallelism in
Algorithms and Architectures (SPAA), June 2007.

[10] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala,
and Mithuna Thottethodi. Recursive array layouts and fast
parallel matrix multiplication. In ACM Symposium on Parallel
Algorithms and Architectures, pages 222–231, 1999.

[11] Rezaul Chowdhury and Vijaya Ramachandran. The
cache-oblivious gaussian elimination paradigm: Theoretical
framework, parallelization and experimental evaluation. In
Symposium on Parallelism in Algorithms and Architectures
(SPAA), June 2007.

[12] S. Coleman and K. S. McKinley. Tile size selection using cache
organization and data layout. In PLDI, 1995.

[13] Keith D. Cooper, Devika Subramanian, and Linda Torczon.
Adaptive optimizing compilers for the 21st century. J.
Supercomput., 23(1):7–22, 2002.

[14] J. J. Dongarra, F. Gustavson, and A. Karp. Implementing
linear algebra algorithms for dense matrices on a vector
pipeline machine. SIAM Review, 26(1):91–112, 1984.

[15] Matteo Frigo, 2005. Personal communication.

[16] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-oblivious algorithms. In FOCS ’99:
Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, page 285. IEEE Computer Society, 1999.

[17] J. R. Goodman and W.-C. Hsu. Code scheduling and register
allocation in large basic blocks. In ICS ’88, pages 442–452,
New York, NY, USA, 1988. ACM Press.

[18] Jia Guo, Maŕıa Jesús Garzarán, and David Padua. The power
of Belady’s algorithm in register allocation for long basic
blocks. In Proc. 16th International Workshop in Languages
and Parallel Computing, pages 374–390, 2003.

[19] Fred Gustavson. Recursion leads to automatic variable blocking
for dense linear-algebra algorithms. IBM Journal of Research
and Development, 41(6):737–755, 1997.

[20] Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue
pebble game. In Proc. of the thirteenth annual ACM
symposium on Theory of computing, pages 326–333, 1981.

[21] Piyush Kumar. Cache-oblivious algorithms. In Lecture Notes
in Computer Science 2625. Springer-Verlag, 1998.

[22] W. Li and K. Pingali. Access Normalization: Loop
restructuring for NUMA compilers. ACM Transactions on
Computer Systems, 1993.

[23] Cindy Norris and Lori L. Pollock. An experimental study of
several cooperative register allocation and instruction
scheduling strategies. In MICRO 28, pages 169–179, Los
Alamitos, CA, USA, 1995. IEEE Computer Society Press.

[24] Robert Schreiber and Jack Dongarra. Automatic blocking of
nested loops. Technical Report CS-90-108, Knoxville, TN
37996, USA, 1990.

[25] Sivan Toledo. A survey of out-of-core algorithms in numerical
linear algebra. In External memory algorithms. American
Mathematical Society, Boston, MA, 1999.

[26] Clint Whaley. personal communication, 2005.

[27] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.
Automated empirical optimization of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, 2001.

[28] M. Wolfe. Iteration space tiling for memory hierarchies. In
Third SIAM Conference on Parallel Processing for Scientific
Computing, December 1987.

[29] Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran, David
Padua, Keshav Pingali, and Paul Stodghill. Is search really
necessary to generate high-performance BLAS? Proceedings of
the IEEE, 93(2), 2005.

104

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

