Abstractions for algorithms and parallel machines

Keshav Pingali University of Texas, Austin

High-level idea

- · Difficult to work directly with textual programs
 - Where is the parallelism in the program?
 - Solution: use an abstraction of the program that highlights opportunities for exploiting parallelism
 - What program abstractions are useful?
- · Difficult to work directly with a parallel machine
 - Solution: use an abstraction of the machine that exposes features that you want to exploit and hides features you cannot or do not want to exploit
 - What machine abstractions are useful?

Abstractions introduced in lecture

- Program abstraction: computation graph
 - nodes are computations
 - granularity of nodes can range from single operators (+,*,etc.) to arbitrarily large computations
 - edges are precedence constraints of some kind
 - edge a → b may mean computation a must be performed before computation b
 - many variations in the literature
 - imperative languages community:
 - data-dependence graphs, program dependence graphs
 - · functional languages community
- Machine abstraction: PRAM
 - parallel RAM model
 - exposes parallelism
 - hides synchronization and communication

Computation DAG's

- DAG with START and END nodes
- all nodes reachable from START END reachable from all nodes START and END are not essential
- Nodes are computations
 - each computation can be executed by a processor in some number of time-steps
 - computation may require reading/writing shared-memory
 - node weight: time taken by a processor to perform that computation w_i is weight of node i
- Edges are precedence constraints
 - nodes other than START can be executed only after immediate predecessors in graph have been executed

- executed

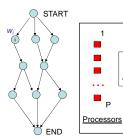
 known as dependences

 Very old model:

 PERT charts (late 50's):

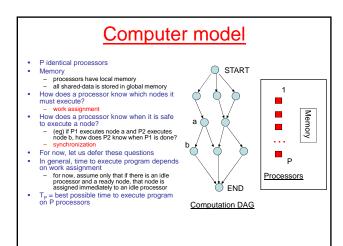
 Program Evaluation and Review
 Technique

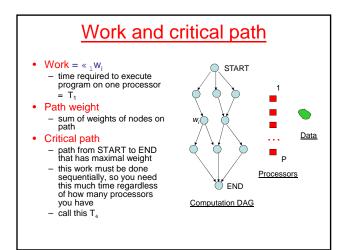
 developed by US Navy to manage
 Polaris submarine contracts

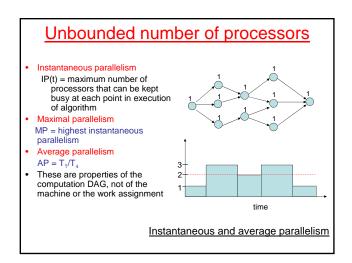


Memory

Computation DAG







Computing critical path etc. Algorithm for computing earliest start times of nodes Keep a value called minimum-start-time (mst) with each node, initialized to 0 Do a topological sort of the DAG • ignoring node weights For each node n (≠ START) in topological order • for each node p in predecessors(n) - mst_n = max(mst_n, mst_p + w_p) Complexity = O(|V|+|E|) Critical path and instantaneous, maximal and average parallelism can easily be computed from this

Speed-up

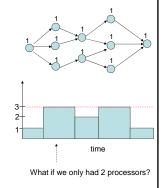
- Speed-up(P) = T_1/T_P
 - intuitively, how much faster is it to execute program on P processors than on 1 processor?
- Bound on speed-up
 - regardless of how many processors you have, you need at least T₄ units of time
 - speed-up(P) % $T_1/T_4 = \ll_1 w_i/CP = AP$

Amdahl's law

- Amdahl
 - suppose a fraction p of a program can be done in parallel
 - suppose you have an unbounded number of parallel processors and they operate infinitely fast
 - speed-up will be at most 1/(1-p).
- · Follows trivially from previous result.
- Plug in some numbers:
 - p = 90% → speed-up & 10
 - p = 99% → speed-up ‰ 100
- To obtain significant speed-up, most of the program must be performed in parallel
 - serial bottlenecks can really hurt you

Scheduling on finite number of processors

- Suppose P % MP (more work than cores)
- There will be times during the execution when only a subset of "ready" nodes can be executed.
- Time to execute DAG can depend on which subset of P nodes is chosen for execution.
- To understand this better, it is useful to have a more formal model of the machine

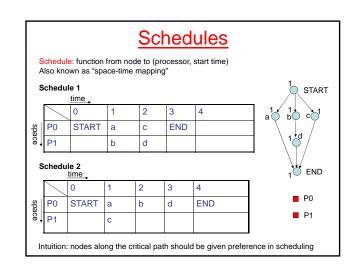


PRAM Model

- Parallel Random Access Machine (PRAM)
- Natural extension of RAM model
- Processors operate synchronously (in lock-step)
 - synchronization in architecture
- Each processor has private memory

Details

- A PRAM step has three phases
 - read: each processor can read a value from shared-memory
 - compute: each processor can perform a computation on local
 - write: each processor can write a value to shared-memory
- · Variations:
 - Exclusive read, exclusive write (EREW)
 - a location can be read or written by only one processor in each step
 - Concurrent read, exclusive write (CREW)
 - Concurrent read, concurrent write (CRCW)
 - some protocol for deciding result of concurrent writes
- We will use the CREW variation
 - assume that computation graph ensures exclusive writes

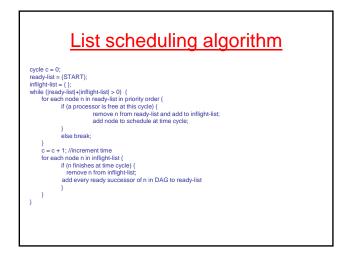


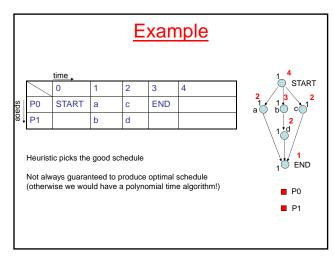
Optimal schedules

- - shortest possible schedule for a given DAG and the given number of processors
- Complexity of finding optimal schedules
- one of the most studied problems in CS
- DAG is a tree:
- level-by-level schedule is optimal (Aho, Hopcroft)
- General DAGs
 - variable number of processors (number of processors is input to problem): NP-complete
 - fixed number of processors
 - 2 processors: polynomial time algorithm 3,4,5...: complexity is unknown!
- Many heuristics available in the literature

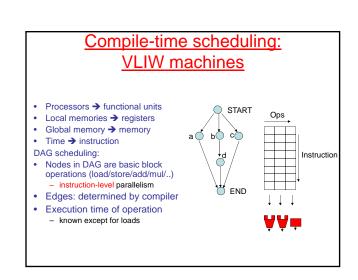
Heuristic: list scheduling

- · Maintain a list of nodes that are ready to execute
 - all predecessor nodes have completed execution
- · Fill in the schedule cycle-by-cycle
 - in each cycle, choose nodes from ready list
 - use heuristics to choose "best" nodes in case you cannot schedule all the ready nodes
- · One popular heuristic:
 - assign node priorities before scheduling
 - priority of node n:
 - weight of maximal weight path from n to END
 - intuitively, the "further" a node is from END, the higher its priority





Applying scheduling theory in practice • What should a node be? - fine-grain: operation like +,*,... - coarse-grain: single loop iteration - very coarse-grain: outer loop iteration - ... • How do we determine the edges between nodes in DAG? - make user specify them - let compiler deduce them from sequential program - • How do we determine how long each node takes to execute? - ask user to tell us - use a model - profiling - • Binding time: - when do we know this information? - consider two applications • VLIW scheduling: information is known at compile-time • Multicore scheduling: node + edges known statically, node execution time known only at runtime



Increasing basic block size

- Basic blocks are fairly small
 - about 5 RISC operations on the average
- Many solutions for increasing scheduling scope
 - loop unrolling
 - trace scheduling: move operations past branches
 - predicated execution
- · DAG scheduling is used extensively in compilers for pipelines, superscalar and VLIW machines

Historical note on VLIW processors

- Ideas originated in late 70's-early 80's
 Two key people:

 Bob Rau (Stanford,UIUC, TRW,
 Cydrome, HP)

 Josh Fisher (NYU,Yale, Multiflow, HP)
 Bob Rau's contributions:

 transformations for making basic blocks
 larger:

 - predication
 software pipelining
- hardware support for these techniques
 predicated execution
 rotating register files
- most of these ideas were later incorporated into the Intel Itanium processor
- transformations for making basic blocks larger:
 - trace scheduling: uses key idea of
- Multiflow compiler used loop unrolling

DAG scheduling for multicores

- hard to build single cycle memory that can be accessed by large numbers of cores

 Architectural change
- - decouple cores so there is no notion of a global step
 - each core/processor has its own PC and cache
 memory is accessed independently by each core
- - since cores do not operate in lock-step, how does a core know when it is safe to execute a node?
- Solution: software synchronization
 - one solution: flag associated with each edge
 - written by processor that executes source of edge - read by processor that executes destination of
- Software synchronization increases overhead
- of parallel execution cannot afford to synchronize at the instruction level
- → nodes of DAG must be coarse-grain: loop iterations
- START ьÒ c) END
- P1: b P2: c d
- How does P2 know when P0 and P1 are done?

Increasing granularity: Block Matrix Algorithms

Original matrix multiplication

for I = 1, Nfor J = 1, Nfor K = 1,NC(I,J) = C(I,J) + A(I,K)*B(K,J)

Block (tiled) matrix multiplication

for IB = 1.N step B parallel loops for JB = 1,N step B for KB = 1,N step B for I = IB, IB+B-1for J = JB, JB+B-1for K = KB, KB+B-1 $C(I,J) = C(I,J) + A(I,K)^*B(K,J)$

B₀₁ B₀₀ B₁₀ B₁₁ C₀₀ A₀₁ C₀₁

> C₁₀ C₁₁

$$\begin{split} &C_{00} &= A_{00}*B_{00} + A_{01}*B_{10} \\ &C_{01} &= A_{01}*B_{11} + A_{00}*B_{01} \\ &C_{11} &= A_{11}*B_{01} + A_{10}*B_{01} \\ &C_{10} &= A_{10}*B_{00} + A_{11}*B_{10} \end{split}$$

A₁₁

New problem

- Difficult to get accurate execution times of coarse-grain nodes
 - conditional inside loop iteration
 - cache misses
 - exceptions
 - O/S processes
 -
- · Solution: runtime scheduling

Example: DAGuE

- Dongarra et al (UTK)
- Programming model for specifying DAGs for parallel tiled dense linear algebra codes
 - nodes: tiled computations
 - DAG edges specified by programmer (see next slides)
- Runtime system
 - keeps track of ready nodes
 - assigns ready nodes to cores
 - determines if new nodes become ready when a node completes

DAGuE: Tiled QR (1)

FOR k = 0 .. SIZE-1
 A[k][k], T[k][k] <- DGEQRT(A[k][k])

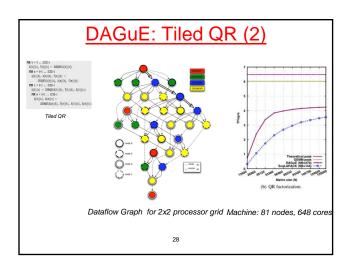
FOR m = k+1 .. SIZE-1
 A[k][k], A[m][k], T[m][k] < DTSQRT(A[k][k], A[m][k], T[m][k])

FOR n = k+1 .. SIZE-1
 A[k][n] <- DORMQR(A[k][k], T[k][k], A[k][n])

FOR m = k+1 .. SIZE-1
 A[k][n], A[m][n] < DSSMQR(A[m][k], T[m][k], A[k][n], A[m][n])</pre>

Tiled QR (using tiles and in/out notations)

27



Summary of DAG scheduling

- DAG:
 - Nodes are computations
 - Edges are dependences
 - Nodes and edges may have associated time
 - node: how long to execute
 - edge: communication time
- Basic algorithm: list scheduling based on priority
- Binding time: when do you know the DAG?
 - VLIW: fine-grain, so known at compile-time
 - Multicore: coarse-grain, so accurate execution time of node is known only at runtime

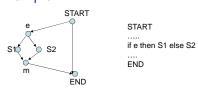
Variations of dependence graphs

Program dependence graph

- Program dependence graphs (PDGs) (Ferrante, Ottenstein, Warren)
 - data dependences + control dependences
- Intuition for control dependence
 - statement s is control-dependent on statement p if the execution of p determines whether n is executed
 - (eg) statements in the two branches of a conditional are control-dependent on the predicate
- Control dependence is a subtle concept
 - formalizing the notion requires the concept of postdominance in control-flow graphs

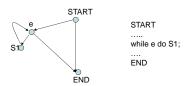
Control dependence

- Intuitive idea:
 - node w is control-dependent on a node u if node u determines whether w is executed
- Example:



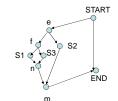
We would say S1 and S2 are control-dependent on e

Examples (contd.)



We would say node S1 is control-dependent on e. It is also intuitive to say node e is control-dependent on itself:
- execution of node e determines whether or not e is executed again.

Example (contd.)



- S1 and S3 are control-dependent on f
- Are they control-dependent on e?
- Decision at e does not fully determine if S1 (or S3 is executed) since there is a later test that determines this
- So we will NOT say that S1 and S3 are control-dependent
 - Intuition: control-dependence is about "last" decision point
- However, f is control-dependent on e, and S1 and S3 are transitively (iteratively) control-dependent on e

Example (contd.)

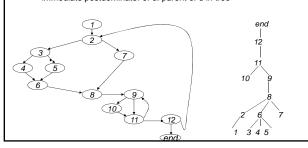
- · Can a node be controldependent on more than one node?
 - yes, see example
 - nested repeat-until loops
 - n is control-dependent on t1 and t2 (why?)
- · In general, controldependence relation can be quadratic in size of program

Formal definition of control dependence

- Formalizing these intuitions is quite tricky
- Starting around 1980, lots of proposed definitions
- · Commonly accepted definition due to Ferrane, Ottenstein, Warren (1987)
- · Uses idea of postdominance
- We will use a slightly modified definition due to Bilardi and Pingali which is easier to think about and work with

Postdominance relation

- Postdominance: relation on nodes (» V§ V)
 - u postdominates v if u occurs on all paths v \$ * END
 - postdominance is reflexive, transitive and anti-symmetric
 - transitive reduction is tree-structured
 - postdominator tree can be built in O(|E|+|V|) time (Buchsbaum et al)
 - immediate postdominator of u: parent of u in tree



Control dependence definition

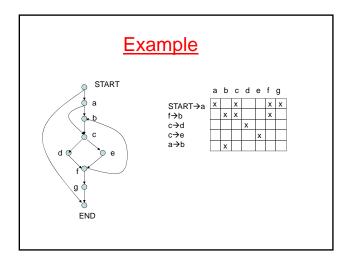
- First cut: given a CFG G, a node w is controldependent on an edge (u→v) if
 - w postdominates v
 - w does not postdominate u
- Intuitively,
 - first condition: if control flows from u to v it is guaranteed that w will be executed
 - second condition: but from u we can reach END without encountering w
 - so there is a decision being made at u that determines whether w is executed

Control dependence definition

- Small caveat: what if w = u in previous definition?
 - See picture: is u controldependent on edge u->v?
 - Intuition says yes, but definition on previous slides says "u should not postdominate u" and our definition of postdominance is reflexive
- Fix: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - if w is not u, w does not postdominate u

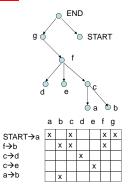
Strict postdominance

- A node w is said to strictly postdominate a node u if
 - w != u
 - w postdominates u
- That is, strict postdominance is the irreflexive version of the dominance relation
- Control dependence: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - w does not strictly postdominate u



Computing control-dependence relation

- Nodes control dependent on edge (u→v) are nodes on path up the postdominator tree from v to ipdom(u), excluding ipdom(u)
 - We will write this as [v,ipdom(u))
 - half-open interval in tree



Computing control-dependence relation

- · Compute the postdominator tree
- Overlay each edge u→v on pdom tree and determine nodes in interval [v,ipdom(u))
- Time and space complexity is O(EV).
- Faster solution: in practice, we do not want the full relation, we only make queries
 - cd(e): what are the nodes control-dependent on an edge e?
 - conds(w): what are the edges that w is control-dependent on?
 - cdequiv(w): what nodes have the same control-dependences as node w?
- It is possible to implement a simple data structure that takes O(E) time and space to build, and that answers these queries in time proportional to output of query (optimal) (Pingali and Bilardi 1997).

Effective abstractions

- Program abstraction is effective if you can write an interpreter for it
- · Why is this interesting?
 - reasoning about programs becomes easier if you have an effective abstraction
 - (eg) give a formal Plotkin-style structured operational semantics for the abstraction, and use that to prove properties of execution sequences
- · One problem with PDG
 - not clear how to write an interpreter for PDG

Dataflow graphs: an effective abstraction

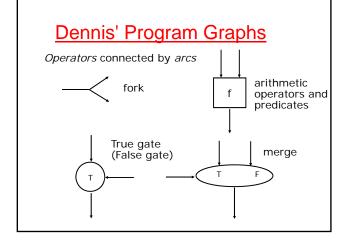
- From functional languages community
- Functional languages:
 - values and functions from values to values
 - no notion of storage that can be overwritten successively with different values
- · Dependence viewpoints:

 - only flow-dependencesno anti-dependences or output-dependences
- · Dataflow graph:
 - shows how values are used to compute other values
 - no notion of control-flow
 - control-dependence is encoded as data-dependence
 - effective abstraction: interpreter can execute abstraction in parallel
- · Major contributors:

 - Jack Dennis (MIT): static dataflow graphsArvind (MIT): dynamic dataflow graphs

Static Dataflow Graphs

Slides from Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology

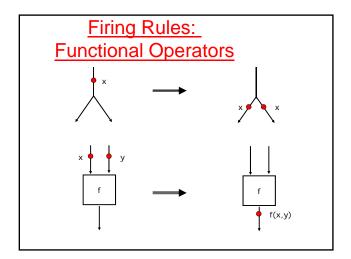


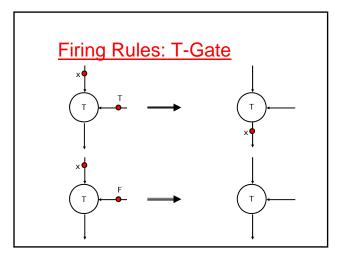
Dataflow

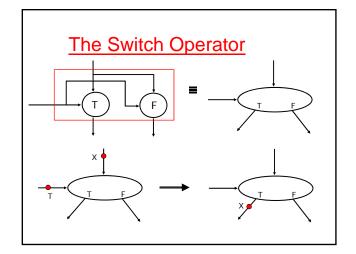
Execution of an operation is *enabled* by *availability of* the required operand values. The completion of one operation makes the resulting values available to the elements of the program whose execution depends on them.

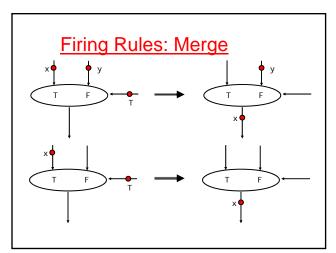
Dennis

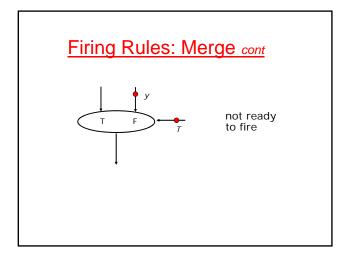
Execution of an operation must not cause side-effect to preserve determinacy. The effect of an operation must be local.

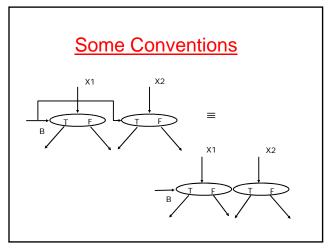


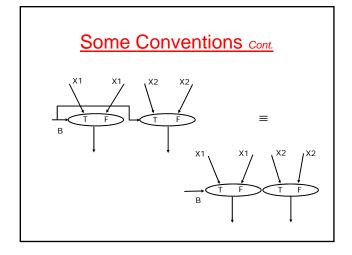


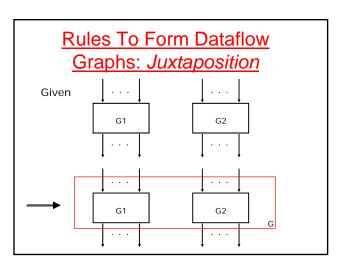


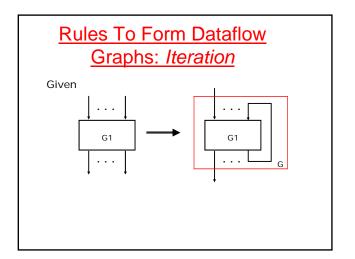


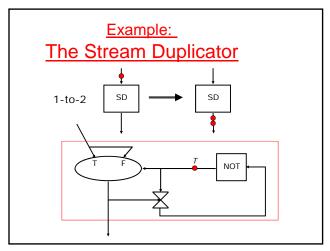


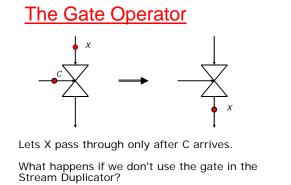


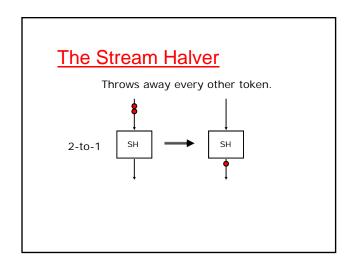






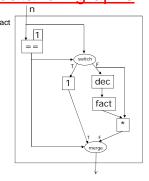






Translation to dataflow graphs

fact(n) =
 if (n==1) then 1
 else n*fact(n-1)



Determinate Graphs

Graphs whose *behavior* is time independent, i.e., the values of output tokens are uniquely determined by the values of input tokens.

A dataflow graph formed by repeated *juxtaposition and iteration of deterministic dataflow operators* results in a deterministic graph.

Problem with functional model

- Data structures are values
- No notion of updating elements of data structures
- Think about our examples:
 - How would you do DMR?
 - Can you do event-driven simulation without speculation?

Effective parallel abstractions for imperative languages

- Beck et al: From Control Flow to Dataflow
- Approach:
 - extend dataflow model to include side-effects to memory
 - control dependences are encoded as datadependences as in standard dataflow model
- Uses:
 - execute imperative languages on dataflow machines (which were being built back in 1990)
 - intermediate language for reasoning operationally about parallelism in imperative languages

Limitations of computation graphs

- · For most irregular algorithms, we cannot generate a static computation graph
 - dependences are a function of runtime data values
- Therefore, much of the scheduling technology developed for computation graphs is not useful for irregular
- Even if we can generate a computation graph, latencies of operations are often unpredictable
- Bottom-line
 - useful to understand what is possible if perfect information about program is available
 - but need heuristics like list-scheduling even in this case!

Summary

- Computation graphs
 - nodes are computations
 - edges are dependences
 - node weights are execution times
- Static computation graphs obtained by
 - studying the algorithmanalyzing the program
- Limits on speed-ups
- critical path
- Amdahl's law
- DAG scheduling

 heuristic: list scheduling (many variations)
- static scheduling: VLIW code generation problem
- dynamic scheduling: DAGuE
 Static computation graphs are useful for regular algorithms, but not very useful for irregular algorithms

Generating computation graphs

- How do we produce computation graphs in the first place?
- Two approaches
 - specify DAG explicitly
 - like parallel programming
 - easy to make mistakes
 - race conditions: two nodes that write to same location but are not ordered by dependence
 - by compiler analysis of sequential programs
- · Let us study the second approach
 - called dependence analysis

Putting it all together

- Write sequential program.
- Compiler produces parallel code
 - generates control-flow graph
 - produces computation DAG for each basic block by performing dependence analysis
 - generates schedule for each basic block
 - use list scheduling or some other heuristic
 - · branch at end of basic block is scheduled on all processors
- · Problem:
 - average basic block is fairly small (~ 5 RISC instructions)
- · One solution:
 - transform the program to produce bigger basic blocks

Limitations

- PRAM model abstracts away too many important details of real parallel machines
 - synchronous model of computing does not scale to large numbers of processors
 - global memory that can be read/written in every cycle by all processors is hard to implement
- · DAG model of programs
 - for irregular algorithms, we may not be able to generate static computation DAG
 - even if we could generate a static computation DAG, latencies of some nodes may be variable on a real machine
 what is the latency of a load?
- Given all these limitation, why study list scheduling on PRAM's in so much detail?

Generating computation graphs

- How do we produce computation graphs in the first place?
- Two approaches
 - specify DAG explicitly
 - like parallel programming
 - · easy to make mistakes
 - race conditions: two nodes that write to same location but are not ordered by dependence
- by compiler analysis of sequential programs
- Let us study the second approach
 - called dependence analysis

Putting it all together

- Write sequential program.
- Compiler produces parallel code
 - generates control-flow graph
 - produces computation DAG for each basic block by performing dependence analysis
 - generates schedule for each basic block
 - use list scheduling or some other heuristic · branch at end of basic block is scheduled on all processors
- · Problem:
 - average basic block is fairly small (~ 5 RISC instructions)
- · One solution:
 - transform the program to produce bigger basic blocks

Limitations

- PRAM model abstracts away too many important details of real parallel machines
 - synchronous model of computing does not scale to large numbers of processors
 - global memory that can be read/written in every cycle by all processors is hard to implement
- · DAG model of programs
 - for irregular algorithms, we may not be able to generate static computation DAG
 - even if we could generate a static computation DAG, latencies of some nodes may be variable on a real machine
 - · what is the latency of a load?
- · Given all these limitation, why study list scheduling on PRAM's in so much detail?

