11/27/2012

Terminology

¢ Graphics Processing Unit (GPU)

H — special processors (accelerators) designed to speed up graphics
GPU Programming Sppications

¢ General-purpose GPUs (GPGPU)

— GPUs that have been massaged so that they can be used for both
graphics and general-purpose applications

H H — we will just refer to them as GPU’s

KeShaV PI nga Il ¢ Compute Unified Device Architecture (CUDA)

— NVIDIA programming model for their GPU’s
¢ Open Computing Language (OpenCL)

— emerging standard for programming heterogeneous processors:

multicores + GPUs + other accelerators

e Kernel
Some slides borrowed from David Kirk and Wen-Mei Hwu, and from Ruetsch and Oster — afunction/loop that is executed on GPU

— a program will usually consist of a sequence of kernels interspersed
with code that is executed on the host device (CPU)

Key features of GPUs Exposed Memory Hierarchy

¢  Global memory:
—  Read/written by host
—  Read/written by all GPU threads Block Block

—  Used to transfer data back and forth
between host and GPU

—  Relatively slow: 400-800 cycles
¢ Constant memory:
—  Read/written by host
—  Read by GPU threads
—  Used to transfer read-only information
¢ Shared memory: L=
—  Read/written by groups of threads
called thread blocks or just blocks
—  Like a software managed L1 cache
—  Faster than global memory:1-4 cycles

° Registers: . In principle, global memory + registers are enough.
—  Read/written by thread Shared-memory: intermediate level of memory hierarchy
—  Private to each thread

¢ Lots of threads

— (eg) NVIDIA Fermi streaming processor has
* 512 cores
* 24,576 threads
— lightweight threads: managed by hardware,
start-up cost is small
e SIMT execution
— groups of threads (warp) operate in SIMD
— Siamese twins: 32 threads joined at hip
— threads in warp are co-scheduled for
execution

e Latency-tolerant architecture

)

memory and synchronization latencies
— cf: time-sharing, dataflow




11/27/2012

Note on hierarchical thread organization

Even on multicore processors
— threads are organized physically in a
hierarchy
— storage is associated with multiple
levels of this hierarchy
* (eg) threads in same chip can share L2
or L3 cache
Difference
— data is automatically moved by
hardware from one cache to another 4-Way Opteron
— so association between threads and Architecture
cache does not have to be exposed
to programming model
Exposed memory hierarchy of GPU
— data movement must be
orchestrated by programmer
— so association between threads and
storage is exposed to programming
model

Hierarchical Organization of Threads

Hierarchy reflects both SIMT and exposed memory hierarchy

Programming model implication
Grid Grid has global memory.
Blocks in grid are usually independent.

Block has id, per-block shared memory.

Block Block Block = |Detail: block id can be 1D,2D,3D.
ICUDA: blockldx.x, blockldx.y,blockld.z

S
2

threads in block.

ICUDA: sync_threads for synchronizing all

Not reflected in programming model.
Performance: thread/memory divergence

Thread has id, registers, PC,

Thread Thread Thread - thread-private local memory.

Detail: thread id can be 1D,2D,3D.

CUDA: threadldx.x,threadldx.y,threadidx.z

First CUDA example

e Let us write a program to compute
—C=A+B
— where A,B,C are arrays

e Thread i will compute
— C[i] = A[i]+BIi]

Basic CUDA program structure

int main (int argc, char **argv ) {

1. Allocate memory space in device (GPU) for input and output data
2. Create input data in host (CPU)

3. Copy input data to GPU

4. Call “kernel” routine to execute on GPU
iterate (with CUDA syntax that defines no of threads and their logical organization)

5. Transfer output data from GPU to CPU

6. Free memory space in device (GPU)
7. Free memory space in host (CPU)

return value;

Kernel routine:
marching orders for one thread (cf. pThreads)

use threadld and blockld to give different work to different threads

Call to a kernel function is asynchronous from CUDA 1.0 on.

Synchronization for blocking host till all previous CUDA calls complete:

cudaThreadSynchronize()




11/27/2012

CUDA Function Declarations

Executed | Only callable

on the: from the:
_device_ float DeviceFunc(Q) device device
_global_ void KernelFuncQ device host
_host_  float HostFunc() host host

= Executed on host, callable from device: not supported
= _global_ defines a kernel function, must return void
- _device_and _host_ can be used together

#define N 256

__global_ void vecAdd(int *A, int *B, int *C) {

int i = threadidx.x;
cli] = Ali] + B[i];

int main (int argc, char **argv ) {

int size = N *sizeof( int);

int *a, *b, *c, *devA, *devB, *devC;

cudaMalloc( (void**)&devA, size) );

cudaMalloc( (void**)&devB, size );
cudaMalloc( (void**)&devC, size );

a=(int* b= (int* = (int*
cu (devA, a, size, ct HostToDevice);
a (devB, b size, cu HostToDevice);

vecAdd<<<1, N>>>(devA, devB, devC);

a (&, devC size,

cudaFree( dev_a);
cudaFree( dev_b);
cudaFree( dev_c);
free(a ); free(b ); free( ¢ );

return (0);

DeviceToHost);

1. Allocating memory in
GPU global memory for data

Use CUDA malloc routines:

Use regular C malloc routines or static variables and compute:

2. Creating input data in “host” (CPU)

int size = N *sizeof( int); // space for N integers
int *devA, *devB, *devC; // devA, devB, devC ptrs

cudaMalloc((void**)&devA, size);

cudaMalloc((void**)&devB, size ); e
cudaMalloc((void**)&devC, size );

Block

Thread

Host t:

int *a, *b, *c;

a = (int*)malloc(size);
b = (int*)malloc(size);
¢ = (int*)malloc(size);




11/27/2012

3. Transferring data from host

- 4. Calling “kernel” routine to execute on
(CPU) to device (GPU) & :
device (GPU)
Use CUDA routine cudaMemcpy CUDA introduces a syntax addition to C:
Triple angle brackets mark call from host code to device code. Contains
cudaMemcpy( devA, &A, size, cudaMemcpyHostToDevice); organization and number of threads in two parameters:

cudaMemcpy( devB, &B, size, cudaMemcpyHostToDevice);
myKernel<<< n, m >>>(argl, ... );

where devA and devB are pointers to destination in device and A
and B are pointers to host data n and m will define organization of thread blocks, and threads in a block.

For now, we will set n = 1, which say one block and m = N, which says N
threads in this block.

argl, ..., -- arguments to routine myKernel typically pointers to device
memory obtained previously from cudaMalloc.

Host t::

Declaring a Kernel Routine

5. Transferring data from device
Example — Adding to vectors A and B (GPU) to host (CPU)

#define N 256
__global__ void vecAdd(int *A, int *B, int *C) { // Kernel definition

inti = threadldx.x;
clil= Al + B[l

Use CUDA routine cudaMemcpy

Each of the N threads performs one pair-

} wise addition: cudaMemcpy( &C, devC, size, cudaMemcpyDeviceToHost);
int main() { Thread 0: devC[0] = devA[0] + devB[0]; . . . . . . .
// allocate device memory & Thread 1:  devC[1] = devA[1] + devB[1]; where devC is a pointer in device and C is a pointer in host.

// copy data to device

// device mem. ptrs devA,devB,devC Thread N-1: devC[N-1] = devA[N-1]+devB[N-1];

vecAdd<<<1, N>>>(devA,devB,devC);

Grid of one block, block has N threads




11/27/2012

6. Free memory in device and host

Use CUDA cudaFree routine:

cudaFree( devA);
cudaFree( devB);
cudaFree( devC);

free(a);
free(b);
free(c);

#define N 256

global_ void vecAdd(int *A, int *B, int *C) {
int i = threadidx.x;
Cli] = Afi] + B[i];

nt main (int argc, char **argv ) {

int size = N *sizeof( int);
int *a,*b,*c, *devA, *devB, *devC;

cudaMalloc( (void**)&devA, size) );
cudaMalloc( (void**)&devB, size );
cudaMalloc( (void**)&devc, size );

a=(int* b= (int* = (int*)m
L (devA, a, size, ct HostToDevice);
a (devB, b size, ct HostToDevice);

vecAdd<<<1, N>>>(devA, devB, devC);

cudaMemcpy( &c, devC size, cudaMemcpyDeviceToHost);
cudaFree( devA;

cudaFree( devB);

cudaFree( devC);

free(a); free(b ); free(c);

return (0);

Note about cudaMemcpy

e cudaMemcpy is synchronous

— begins after all previous CUDA calls are complete

— return control to host after copy is complete

e cudaMemcpyAsync: asynchronous version

/! copy data from host to device
cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

Il execute the kernel
inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

/I run independent CPU code
run_cpu_stuff();

I copy data from device back to host
cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

General grid/block specification

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Obtaining block ID: blockldx.x, blockldx.y
Obtaining thread ID: threadIDx.x, threadldx.y, threadldx.z

Obtaining dimensions of grid and block: gridDim, blockDim




11/27/2012

Blocks and thread IDs

blockldx.x

blockDim.x =5

threadldx.x

10 11 1213 14

Anvioia

+ Common programming pattern: map block-local threadIDs to a global thread ID
* Useful in many array programs for assigning work: see next slide

Using blockld and threadld

CPU program CUDA program

void inc_cpu(int *a, int N) __global__ void inc_gpu(int *a, int N)
{
int idx = blockldx.x * blockDim.x
+ threadldx.x;
idx<N; idx++) if (idx < N)
[idX] +1; —  alidx] = a[idx] + 1;
}

int main() int main()

{

inc_cpu(a, N); dim3 dimBlock (blocksize);
} dim3 dimGrid( ceil( N / (float)blocksize) );
inc_gpu<<<dimGrid, dimBlock>>>(a, N);

CUDA Variable Type Qualifiers

Variable declaration Memory | Scope | Lifetime

__device__ __local__ int Localvar; local thread thread

__device___shared__  int Sharedvar; shared block block
__device__ int Globalvar; global grid application
device constant int ConstantVar; | constant grid application

__device__ isoptional when used with __local__,
_ shared__, or __constant__

Automatic variables without any qualifier reside in a register
— Except arrays that reside in local memory

— Thread-local memory and spilled automatic variables is
allocated in global memory

Synchronization

void _ syncthreads();
Synchronizes all threads in a block

Once all threads have reached this point,
execution resumes normally

Used to avoid RAW / WAR / WAW hazards
when accessing shared or global memory
Allowed in conditional constructs only if the
conditional is uniform across the entire thread
block




11/27/2012

GPU Atomic Integer Operations

Atomic operations on integers in global and
shared memory:
— Associative operations on signed/unsigned ints
e add, sub, min, max, ...
e and, or, xor
. increment, decrement

— Exchange, compare and swap

Requires hardware with compute capability
1.1 and above.

25

Summary of C extensions

¢ Declspecs

— global, device, shared, __device__ float filter[N];
local, constant

__global__ void convolve (float *image) {

+  Keywords __shared__ float region[M];
— threadldx, blockldx o
— gridDim, blockDim region[threadldx] = image[i];
Intrinsics __syncthreads()
— __syncthreads .
image[j] = result;
Runtime API
— Memory, symbol,
execution management // Allocate GPU memory

void *myimage = cudaMal loc(bytes)

Function launch
// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Performance Programming

Key ideas for performance

Usual requirements
— algorithm must have lot of parallelism
Locality

— use tiling to exploit shared-memory: copy blocks of
data from global memory to shared-memory and
operate on them

New issue: exploiting SIMT

— thread divergence: what happens when threads in a
warp follow different control paths?

— memory access optimization:

¢ global memory: memory coalescing
¢ shared memory: avoiding bank conflicts




11/27/2012

Recall: Warp Scheduling

Each Block is executed as Block 1 Warps ~ Block 2 Warps Block 1 Warps
1 1 1
32-thread Wa rps t0tLt2 . 31 t0tlt2.. 31 0Lt

Processor implements
zero-overhead warp
scheduling

any warp whose next

instruction has its operands

31]

g\\\}\\\\\g \\\\}\\\\E \\~:\\\>,\\§

Streaming Multiprocessor

ready for consumption is
eligible for execution

eligible warps are selected SP
for execution on a sp
prioritized scheduling policy SFU | ey | SFU
all threads in a warp S

execute the same
instruction when selected

Thread divergence

¢ Nothing in the programming model requires all threads
within a warp to execute the same sequence of
instructions!

e Conflict with SIMT: what happens if two threads within
a warp want to take different execution paths?

— common case: conditional branch which evaluates to
different values in different threads

e Hardware: different execution paths are serialized

— different control paths taken by the threads in a warp are
traversed one at a time until they all converge again

e Thread divergence: performance problem at warp level

Avoiding thread divergence

Example with divergence:
« If (threadldx.x > 2) { }
¢ This creates two different control paths for threads in a block
« Branch granularity < warp size; threads 0 and 1 follow different path
than the rest of the threads in the first warp
Example without divergence:
e If (threadldx.x / WARP_SIZE > 2) { }
* Also creates two different control paths for threads in a block

¢ Branch granularity is a whole multiple of warp size; all threads in any
given warp follow the same path

If possible, sort the work so that all the work
done by a warp is similar (see example later)

Optimizing memory accesses

float myVar; __shared__ float shVar; _ i _ float glVar;
Thread
Device
Shared
emory

Device Memory

¢ Shared memory (on-chip): warp can send 32 distinct addresses in parallel
¢ Global memory (off-chip): one memory address per transaction




11/27/2012

Optimizing memory accesses

e Optimizing accesses from a warp to shared and global
memory is critical
¢ Different techniques needed
— shared: avoid bank conflicts
— global: memory coalescing
« Difference arises from architectural features
— shared memory (on-chip): 32 different addresses can be
presented in parallel from warp to memory
— global memory (off-chip DRAM): only one address per
memory bus transaction

Bank conflicts

In a parallel machine, many threads access memory
— Therefore, memory is divided into banks
— Essential to achieve high bandwidth

Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

— Conflicting accesses are serialized Bank 15

Bank Addressing Examples

* No Bank Conflicts

— Linear addressing
stride ==

¢ No Bank Conflicts
— Random 1:1 Permutation

Thread 0 Thread 0 Bank 0

Thread 1 Thread 1 Bank 1
Thread 2 Thread 2\ p> i Bank 2
Thread 3 Thread 3 “ Bank 3
Thread 4 Thread 4 ‘ Bank 4
Thread 5 Thread 5 ~ Bank 5

Thread 6
Thread 7

-«

4

Thread 6 <2 Bank 6
Thread 7 ' ~

Thread 15 Bank 15 Bank 15

Bank Addressing Examples

e 2-way Bank Conflicts ¢ 8-way Bank Conflicts

— Linear addressing — Linear addressing
stride == stride ==

Thread 0
Thread 1

Thread 2 ~
Thread 3 ‘
Thread 4 ' 4

Thread 8 /

Thread 9
Thread 10

Thread 11 Bank 15

Thread 0
Thread 1
Thread 2 §

Thread 3

Thread 4 "
Thread 5 ,\
Thread 6 [

Thread 7




11/27/2012

How addresses map to banks on G80

e Each bank has a bandwidth of 32 bits per clock
cycle

e Successive 32-bit words are assigned to
successive banks

* G80 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

¢ No bank conflicts between different half-warps, only
within a single half-warp

Shared memory bank conflicts

e Shared memory is as fast as registers if there are no bank
conflicts
e The fast case:

— If all threads of a half-warp access different banks, there is no bank
conflict

— If all threads of a half-warp access the identical address, there is no
bank conflict (broadcast)
e The slow case:

— Bank Conflict: multiple threads in the same half-warp access the
same bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

Linear Addressing

e Given:

__shared__ float shared[256];
float foo =

shared[baselndex + s *
threadldx.x];

Thread 0
Thread 1
Thread 2 Bank2
Thread 3
Thread 4
Thread s
Thread 6

Thread 7. P

e This is only bank-conflict-free if s
shares no common factors with
the number of banks
— 16 0n G80, so S must be odd

2 Thread 15

Bank 15

Optimizing global memory accesses

Global memory (DRAM) is off-chip
— only one address per memory
transaction
— each load transaction brings some
number of aligned, contiguous bytes
(_say 32 Bytes) from memory (call them Thread 1 oo
lines) Thread 2
— hardware automatically combines
requests to same line from different
threads in warp (coalescing)
— multiple lines processed sequentially
Optimization: Coalesced
— try to ensure that memory requests
from a warp can be coalesced
— (eg) stride-one access across threads in
a warp is good (see picture)
— (eg) use structure of arrays rather than
array of structures

Not coalesced

10



11/27/2012

Coalescing: detail

Global memory requests from warp can be
loads, stores or atomics

Two or more threads in warp can specify the
same address: what should happen?

Load requests to same address: multicast
Stores to same address: one thread will win
Atomics to same address: serialize

CUDA programming examples

Parallel Reduction

Given an array of values, “reduce” them to a
single value in parallel

Examples
— Sum reduction: sum of all values in the array
— Max reduction: maximum of all values in the array

Typically parallel implementation:

— Recursively halve # threads, add two values per
thread

— Takes log(n) steps for n elements, requires n/2
threads

A Vector Reduction Example

Assume an in-place reduction using shared
memory
— The original vector is in device global memory

— The shared memory used to hold a partial sum
vector

— Each iteration brings the partial sum vector closer
to the final sum

— The final solution will be in element 0

11



11/27/2012

A simple implementation

¢ Assume we have already loaded array into
— __shared__ float partialSum[]

unsigned int t = threadldx.x;
for (unsigned int stride = 1;
stride < blockDim.x; stride *= 2)
{
__syncthreads();
if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];
¥

© David Kirk/NVIDIA and Wen-
mei W. Hwu, 2007-2009 .
ECE 498AL, University of 2

Vector Reduction with Bank Conflicts

Array elements

iterations

Vector Reduction with Branch Divergence

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8

Thread 10

Array elements —_—

Some Observations

In each iteration, two control flow paths will be sequentially
traversed for each warp

— Threads that perform addition and threads that do not

— Threads that do not perform addition may cost extra cycles depending
on the implementation of divergence

No more than half of threads will be executing at any time

— All odd index threads are disabled right from the beginning!

— On average, less than % of the threads will be activated for all warps
over time

— After the 5% iteration, entire warps in each block will be disabled, poor
resource utilization but no divergence

* This can go on for a while, up to 4 more iterations (512/32=16= 2%), where
each iteration only has one thread activated until all warps retire

12



11/27/2012

Shortcomings of the implementation

¢ Assume we have already loaded array into
— __shared__ float partialSum[]

unsigned int t = threadldx.x; EESENVE I
for (unsigned int stride = 1; [JCEACICHIEITS
stride < blockDim.x; striEs

{
__syncthreads(Q);

if (t % (2*stride

A better implementation

e Assume we have already loaded array into
— __shared__ float partialSum[]

unsigned int t = threadldx.x;
for (unsigned int stride = blockDim.x / 2;
stride > 1; stride /= 2)
{
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];

No Divergence until < 16 sub-sums

Thread 0

Some Observations About the New
Implementation

e Only the last 5 iterations will have divergence
e Entire warps will be shut down as iterations
progress

— For a 512-thread block, 4 iterations to shut down
all but one warps in each block

— Better resource utilization, will likely retire warps
and thus blocks faster

¢ Recall, no bank conflicts either

13



11/27/2012

Matrix Multiplication

* A simple matrix multiplication example that
illustrates the basic features of memory and

thread management in CUDA programs

— Local, register and shared memory usage
— Thread ID usage

— Memory data transfer API between host and
device

— Assume square matrix for simplicity

Square Matrix Multiplication

P =M * N of size WIDTH x WIDTH
e Without tiling:

— One thread calculates one element
of P

— M and N are loaded wipTH times
from global memory

Memory Layout of a Matrix in C

ol

M1 My My My,

Mo, M1, My, Ms,

M

Step 1: Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in single precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{ k
for (inti = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
float sum = 0;
for (int k = 0; k < Width; ++k) {
float a = M[i * Width + k];
float b = N[k * Width + j];
sum+=a*b;

P[i * Width + j] = sum; b

14



11/27/2012

Step 2: Input Matrix Data Transfer
(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;

1./ Allocate and Load M, N to device memory
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/ Allocate P on the device
cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer
(Host-side Code)
2. // Kernel invocation code — to be shown later

3. // Read P from the device
dam y(P, Pd, size, cudaM yDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

Step 4: Kernel Function

/I Matrix multiplication kernel — per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
/I Pvalue is used to store the element of the matrix

/I that is computed by the thread
float Pvalue = 0;

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadldx.y*Width+k];
float Nelement = Nd[k*Width+threadldx.x];
Pvalue += Melement * Nelement;

}
Pd[threadldx.y*Width+threadldx.x] = Pvalue;

15



11/27/2012

Step 5: Kernel Invocation
(Host-side Code)

/I Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

/I Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Only One Thread Block Used

One Block of threads compute
matrix Pd
— Each thread computes one
element of Pd
Each thread
— Loads a row of matrix Md
— Loads a column of matrix Nd
— Performs one multiply and one
addition for each pair of Md and
Nd elements
— Compute to off-chip memory
access ratio close to 1:1 (not very
high)
Size of matrix limited by the
number of threads allowed in a
thread block Md

WIDTH

Nd

Step 7: Handling Arbitrary Sized Square Matrices

e Have each 2D thread block
compute a (TILE_WIDTH)? sub-
matrix (tile) of the result matrix
— Each has (TILE_WIDTH)? threads

¢ Generate a 2D Grid of

WIDTH/TILE_WID|

You gtill need to put a loop b
around the kernel call for TILE_WIDTH
cases where ty
WIDTH/TILE_WIDTH is greater
than max grid size (64K)! bx tx

A Small Example

Block(0,0) Block(1,0)

Poo [ P1o| P20 | Pso| TILE_WIDTH =2

Poi [ Pia|Pos | Pas

Pos | Pia| Pap | P32

Pos | P3| Pas| P33

Block(0,1) Block(1,1)

16



11/27/2012

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Calculate the row index of the Pd element and M

int Row = blockldx.y*TILE_WIDTH + threadldx.y;

// Calculate the column idenx of Pd and N

int Col = blockldx.x*TILE_WIDTH + threadldx.x;

float Pvalue = 0O;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

G80 Block Granularity Considerations

For Matrix Multiplication using multiple blocks, should | use
8X8, 16X16 or 32X32 blocks?

— For 8X8, we have 64 threads per Block. Since each SM can take up to
768 threads, there are 12 Blocks. However, because each SM can only
take up to 8 Blocks, only 512 threads will go into each SM!

— For 16X16, we have 256 threads per Block. Since each SM can take up
to 768 threads, it can take up to 3 Blocks and achieve full capacity
unless other resource considerations overrule.

— For 32X32, we have 1024 threads per Block. Not even one can fit into
an SM!

How about performance on G80?

All threads access global memory for
their input matrix elements
—  Two memory accesses (8 b
per floating point multiply-ad:
—  4B/s of memory bandwidth/FLO
—  4*346.5 = 1386 GB/s required to
achieve peak FLOP rating
—  86.4 GB/s limits the code at 21.6
GFLOPS
The actual code runs at about 15

GFLOPS Host
Need to drastically cut down memary
accesses to get closer to the peak

346.5 GFLOPS

Grid

s) Block (0, 0)

| | oy

read (0, 0) | Thread (1,0) | Thread (0, 0) | Thread (1, 0)

Block (1, 0)

Matrix Multiplication using
Shared Memory

17



11/27/2012

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) tx
{ ° 012 TILE_WIDTH-1
1. _ shared_ float MdS[TILE_WIDTH][TILE_WIDTH]; Each Comp'JteS one e
2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; . .

- ] square sub-matrix Pd,, of size m
3. int bx = blockldx.x; int by = blockldx.y;
4. int tx = threadldx.x; int ty = threadldx.y; T”-E_WIDTH T

X

// ldentify the row and column of the Pd element to work on [
5. 4hdentify the rou and column Each thread computes one l
6 int Col = bx * TILE_WIDTH + tx;

- : element of Pd

7.  float Pvalue = 0; sub

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (M*TILE_WIDTH + tx)]; by
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width]; m
11. __syncthreads(); o
11, for (int k = 0; k < TILE_WIDTH; ++k) 3
12. Pvalue += Mds[ty][K] * Nds[k][tx]; ty i
13. __synchthreads(Q); W | [ |
. 3 TILE_WIDTRH - -
13. Pd[Row*Width+Col] = Pvalue;
}
69

G80 Shared Memory and Threading Tiling Size Effects
¢ Each SM in G80 has 16KB shared memory
— SM size is implementation dependent!

— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of
shared memory.

— Can potentially have up to 8 Thread Blocks actively executing
 This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads
per block)
— The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing only up to two thread blocks
active at the same time

GFLOPS

* Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16 ;
— The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS! nottiled 24 tles 8@ tiles 122 tiles

18



11/27/2012

GPU Applications

Graphics

Regular algorithms

— CUBLAS, CUFFT, ....

Barnes-Hut

— Burtscher et al: NVIDIA GPU Gem
Graph algorithms

— Nasre et al
See NVIDIA website for longer list

Summary

e Key features of GPUs

— lots of threads: lightweight startup/shutdown
« algorithms: should have lots of parallelism
— warp-based execution: SIMT
* not part of programming model
* performance:
— careful mapping of work to threads to avoid thread divergence
— latency-tolerance: run lots of warps simultaneously to
mask memory latency
— exposed memory hierarchy managed by software
* programming model: thread blocks and explicit data movement
« performance:

— memory coalescing: global memory
— bank conflicts: shared-memory

19



