
Program Representations

Announcements

Assignment 1 is posted on the course web-site.

Today

• Organization of modern compilers

• Control flow graphs

• Opportunities for scalar optimization

• Dataflow analysis

Major phases of a modern compiler

Abstract syntax tree

Source program

Low−level representation (3−address code,....)

Augmented low−level representation

Assembly or machine code

High−level Optimizer

Front−end

Low−level Optimizer

Code generator

Source program: collection of files, each of which is
a sequence of characters
Output of compiler: assembly/machine for actual
machine or virtual machine like JVM

Front-end

Goal: convert linear structure of input program into
hierarchical structure

Input: source program

Output: abstract syntax tree + symbol table

Tasks:

• lexical analysis: convert sequence of characters in
a file into sequence of tokens

• parsing: convert sequence of tokens into a
hierarchical representation of program structure
(abstract syntax tree)

• auxiliary tasks:

– macro/template expansion

– produce a symbol table

– perform type-checking

–

High-level Optimizer

Goal: perform high-level analysis and optimization of
program

Input: AST + symbol table from front-end

Output: Low-level program representation such as
3-address code

Tasks:

• procedure/method inlining

• array dependence analysis

• loop transformations: unrolling, permutation,
tiling, jamming, distribution,...

•

Low-level Optimizer

Goal: perform scalar optimizations on low-level
representation of program

Input: low-level representation of program (3-address
code)

Output: optimized low-level representation of program
+ auxiliary information (def-use chains,SSA etc.)

Tasks

• dataflow analysis: reaching definitions, live
variable analysis,...

• generation of auxiliary information: conversion to
SSA form,...

• scalar optimizations: constant folding, partial
redundancy elimination, strength reduction,...

Code Generator

Goal: produce assembly/machine code from optimized
low-level representation of program

Input: optimized low-level representation of program
from low-level optimizer

Output: assembly/machine code for real or virtual
machine

Tasks:

• Register allocation

• Instruction selection

• Data movement instruction generation

•

Notes

• Front-ends may generate low-level representation
directly if compiler does not do high-level
optimizations.

• Some compilers may regenerate high-level
representation from low-level representation (many
Java compilers).

• Nowadays, compilation can be performed off-line
or on-line while program is executing (just-in-time
compilation).

Focus of next couple of weeks: low-level
optimizer

How does a compiler analyze and optimize low-level
representation of program?

Low-level representation

We will use a simple 3-address representation:

• Statement:

– performs one arithmetic/logical operation, or

– compute boolean expression and jump
conditionally

– unconditional jump

• Any statement can be given a label and jump
targets are labels.

• Book-keeping statements: denote start and end of
procedures/functions/etc.

Targets of jump statement: statements whose
execution may immediately follow execution of jump
statement

Explicit targets of jump statement: targets mentioned
explicitly in jump statement

Implicit target of jump statement: statement that
follows jump statement

For now, focus on one procedure. Assume statements
are numbered sequentially.

Running example

1 A = 4
2 t1 = A ∗ B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 ∗ k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3

10 goto L1
11 L3: halt

First task is to make flow of control explicit: produce
control-flow graph

Control Flow Graph

• Divides statements into basic blocks

• Basic block: a maximal sequence of statements
I0,I1,...,In such that if I j and I j+1 are two adjacent
statements in this sequence, then

– execution of I j is always followed immediately
by the execution of I j+1, and

– execution of I j+1 is immediately preceded by
execution of I j.

• Edges between basic blocks represent potential
flow of control.

More formally, CFG = 〈V,E,Entry〉, where

V = vertices or nodes, representing a statement or
basic block (group of statements).

E = edges, potential flow of control
E ⊆V ×V

Entry ∈V , unique program entry

For convenience, assume all V are reachable from Entry,

(∀v ∈V)[Entry ∗→ v]

Control Flow Graph Construction

Constructing CFGs with basic blocks (sets of
statements)

• Identify Leaders - first statement of a basic block

• In lexicographic order, construct a block by
appending subsequent statements up to, but not
including, the next leader.

Leader identification:

1. first statement in the program, or

2. explicit target statement of any conditional or
unconditional branch, or

3. statement immediately following a conditional or
unconditional branch (this statement is an implicit
target).

Basic Block Partition Algorithm

Input: set of statements,
stat(i) = ith statement in input program

Output: set of leaders, set of basic blocks where block(x)
is the set of statements in the block with leader x.

Algorithm:

leaders = {1} // Leaders, first statement
for i = 1 to |n| // n = number of statements

if stat(i) is a branch then
leaders = leaders ∪ all potential targets of stat(i)

endfor
worklist = leaders // Basic blocks
while worklist not empty do

x = smallest numbered stat in worklist
worklist = worklist - {x}
block(x) = {x}
for (i = x + 1; i ≤ |n| and i 6∈ leaders; i++)

block(x) = block(x) ∪ {i}
endfor

endwhile

Basic Block Example

1 A = 4
2 t1 = A ∗ B

3 L1: t2 = t1 / C
4 if t2 < W goto L2

5 M = t1 ∗ k
6 t3 = M + I

7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3

10 goto L1

11 L3: halt

Leaders =

Blocks =

Determining the Edges in a Control Flow Graph

∃ directed edge from B1 to B2 if:

1. ∃ a branch from the last statement of B1 to the
first statement B2 (B2 is a leader).

2. B2 immediately follows B1 in program order and B1
does not end with an unconditional branch.

Input: block(), a sequence of basic blocks
Output: CFG where nodes are basic blocks
Algorithm:

for i = 1 to the number of blocks do
x = last statement of block(i)
if stat(x) is a branch then

for each explicit target y of stat(x)
create edge from block i to block y

endfor
if stat(x) is not an unconditional branch then

create edge from block i to block i + 1
endfor

CFG Example

 A = 4
 t1 = A * B

L1: t2 = t1/C

 if t2 < W goto L2

 M = t1*k
 t3 = M+I

L2: H = I
 M = t3 −H

 if T3 >= 0 goto L3

 goto L1

L3: halt

Discussion

• We defined CFG as a graph in which nodes
represent basic blocks. In some situations, we will
also consider the statement-level CFG in which
nodes are individual statements. We will use the
term CFG to mean either kind of graph.

• In statement-level CFG, it is sometimes
convenient to use a node to explicitly represent
merging of control in the control flow graph as
shown in the next slide.

• If the input language is structured, the front-end
can generate the basic block CFG directly.

Statement-level CFG Example

 t1 = A * B

L1: t2 = t1/C

 if t2 < W goto L2

 M = t1*k

 M = t3 −H

 goto L1

L3: halt

 A = 4

 t3 = M+I

 if T3 >= 0 goto L3

L2: H = I

merge

