Introduction Scheduling (Part 1)
Introduction and Acyclic Scheduling

CS 380C: Advanced Compiler Techniques

Thursday, October 11th 2007

Lecture Overview

Lecture Overview

Code Generator

@ Back end part of compiler (code generator)
@ Instruction scheduling

o Register allocation

Instruction Scheduling

@ Input: set of instructions

@ Output: total order on that set

N

Lecture Overview

Lecture Outline

Lectures

© Introduction and acylic scheduling (today)
Q Software pipelining (Tuesday 23)

@ Definition of instruction scheduling

@ Constraints

@ Scheduling process

@ Acylic scheduling: list scheduling

N

Introduction

Introduction to Instruction Scheduling

@ Backend part of the compiler chain (code generation)

@ Inputs: set of instructions (assembly instructions)
@ Outputs: a schedule

@ Set of scheduling dates (one date per instruction)
o Total order

@ Minimize the execution time (number of cycles)

@ Different possible objective functions to minimize:

o Power consumption
@ ...

Introduction

Constraints

@ |s it possible to generate any schedule?

Introduction

Constraints

@ |s it possible to generate any schedule?

Example: @ Possibility to change
instruction order?
a=Db+c ;
d=a+ 3 ;

=f +d ;

(0]
|

Introduction

Constraints

@ |s it possible to generate any schedule?

@ Possibility to change

Example:))
P instruction order?
=b + c ;
a_* @ No, because of data
=a + 3 ;
e =1f +d ; dependences

@ Flow dependences on a and
d

Introduction

Constraints

@ Data dependences enforce a partial order for the final schedule

@ Other types of constraints?

Introduction

Constraints

@ Data dependences enforce a partial order for the final schedule
@ Other types of constraints?

@ Target architecture with 1

Example:

P ALU
a=b+c ;
d=e+ £ ;

Introduction

Constraints

@ Data dependences enforce a partial order for the final schedule
@ Other types of constraints?

@ Target architecture with 1

Example:
P ALU
sIbre Impossibl h
d=ec+f ; ® Impossible to.uset e same
functional unit concurrently

@ Resource constraints

Introduction

Constraints

@ Data dependences enforce a partial order for the final schedule
@ Other types of constraints?

@ Target architecture with 1

Example:
P ALU
sIbre Impossibl h
d=ec+f ; ® Impossible to.uset e same
functional unit concurrently

@ Resource constraints

@ Two types of constraints: data dependences and resource
usage

Constraints

Constraints influencing Instruction Scheduling

@ Data dependences

@ Resource constraints

@ The final schedule must respect these constraints

Dealing with constraints

@ How to represent such constraints to deal with during the
scheduling process?

Constraints

Constraints influencing Instruction Scheduling

@ Data dependences

@ Resource constraints

@ The final schedule must respect these constraints

Dealing with constraints

@ How to represent such constraints to deal with during the
scheduling process?

@ Data dependences — graph

@ Resource constraints — reservation tables or automaton

Constraints

Data Dependence Representation

Data Dependence Graph (DDG)

@ 1 node < 1 instruction

o 1 edge < 1 flow dependence (directed graph)
@ Edge label = parameters of the dependence

@ Latency (# of cycles)
s Distance (# of iterations)

Constraints

Data Dependence Representation

Data Dependence Graph (DDG)
@ 1 node < 1 instruction
o 1 edge < 1 flow dependence (directed graph)

@ Edge label = parameters of the dependence

@ Latency (# of cycles)
s Distance (# of iterations)

@ Example (1-cycle latency):

a=b+c; // ADD1
d=a+ 3 ; // ADD2
e=a+d; // ADD3

Constraints

Data Dependence Representation

Data Dependence Graph (DDG)
@ 1 node < 1 instruction
o 1 edge < 1 flow dependence (directed graph)

@ Edge label = parameters of the dependence

@ Latency (# of cycles)
s Distance (# of iterations)

@ Example (1-cycle latency):

a=b+c ; // ADD1 10 0.
d=a+3; // AD2 (aopy—8»(aonz)10+ (hovs)
e=a+d; // ADD3

Constraints

Data Dependence Representation — Example 2

@ Daxpy loop: double alpha times X
plus Y
@ y—axx+y
o C-like code:
for (i=0; i<N; i++)
| Y[i] = alpha*X[i] + Y[i];

@ Targeting Itanium ISA:
o LD: Load from memory (latency 6
cycles from L2 cache)
@ ST: Store to memory
@ FMA: Fuse multiply and add
(latency 4 cycles)

Constraints

Data Dependence Representation — Example 2

@ Daxpy loop: double alpha times X
plus Y
@ y—axx+y
o C-like code:
for (i=0; i<N; i++)
| Y[i] = alpha*X[i] + Y[i];

@ Targeting Itanium ISA:
o LD: Load from memory (latency 6
cycles from L2 cache)
@ ST: Store to memory
@ FMA: Fuse multiply and add
(latency 4 cycles)

Constraints

Data Dependence Representation — Example 3

@ Daxpy loop with inter-iteration
dependence
o C-like code:
for (i=0; i<N; i++)
| Y[i+2] = alpha*X[i] + Y[i]

@ Inter-iteration dependence

@ Distance of 2

Constraints

Data Dependence Representation — Example 3

@ Daxpy loop with inter-iteration
dependence
o C-like code:
for (i=0; i<N; i++)
| Y[i+2] = alpha*X[i] + Y[i]

@ Inter-iteration dependence

@ Distance of 2

Constraints

Data Dependence Representation

RENEIS
@ Circuits allowed for a distance > 0
@ For basic block, this is only a DAG

@ One fix digit for latency

o Fixed latencies
@ May not be suitable for cache/memory accesses

@ One digit for the distance
o Only uniform dependences

N

Constraints

Resource Constraint Representation

Resources
@ Second set of constraints: resource usage/assignment

@ Need to check if two instructions may race for the same
resource (functional unit, bus, pipeline stage, ...)

@ Can be several cycles ahead (latency > 1)

Constraints

Resource Constraint Representation

Resources
@ Second set of constraints: resource usage/assignment

@ Need to check if two instructions may race for the same
resource (functional unit, bus, pipeline stage, ...)

@ Can be several cycles ahead (latency > 1)

State-of-the-art
@ 2 representations: reservation tables and automaton

Constraints

Reservation Tables — Definition

Reservation tables
@ Intuitive way: resource usage of one instruction as a 2D table

Semantics

@ Rows: latency of the instruction (in cycles)
@ Columns: number of resources available in the target
architecture

@ Cell (i,/) is marked < instruction requires i*
its jt" cycle of execution

h resource during

¢ Binary tables

@ Several tables per instruction (alternatives/options)

Constraints

Reservation Tables — Example 1

Example with pipelined resources:
@ 2 fully pipelined resources (ALU): ALUO and ALU1

@ 2 instructions ADD and MUL

@ Constraints:

@ ADD can be executed on ALUO or ALU1
@ MUL can only be executed on ALU1

Constraints

Reservation Tables — Example 1

Example with pipelined resources:
@ 2 fully pipelined resources (ALU): ALUO and ALU1

@ 2 instructions ADD and MUL

@ Constraints:

@ ADD can be executed on ALUO or ALU1
@ MUL can only be executed on ALU1

Tables for ADD:
ALUO | ALU1
0 X Table for MUL:
ALUO | ALU1
OR 0 X
ALUO | ALU1
0 X

Constraints

Reservation Tables — Example 1

ADD instruction:

ALUO | ALU1 @ Are the following sequences valid?
0 X ADD | ADD ?
ADD | MUL ?
OR MUL | MUL ?
ALUO | ALU1 ADD ; ADD ?
0 X ADD | MUL ; MUL 7

MUL instruction:

ALUO | ALU1
0 X

Constraints

Reservation Tables — Example 1

ADD instruction:

ALUO | ALU1 @ Are the following sequences valid?
0| X ADD | ADD v
ADD | MUL v
OR MUL | MUL X
ALUO | ALU1 ADD ; ADD \/
0 X ADD | MUL ; MUL ./

MUL instruction:

ALUO | ALU1
0 X

Constraints

Reservation Tables — Example 1

ADD instruction:

ALUO

ALU1

X

OR

ALUO

ALU1

X

MUL

instruction:

ALUO

ALU1

X

@ Are the following sequences valid?

ADD
ADD
MUL
ADD
ADD

)

ADD v
MUL v
MUL X
; ADD v

MUL ; MUL +/

@ Test if instructions can be scheduled
together: AND operation

@ Update resource usage: OR operation

Constraints

Reservation Tables — Example 2

Example with complex resources:
@ 2 resources: ALU and LD/ST

@ 3 instructions ADD, SUB and LD
@ Constraints:

o ADD instructions have a latency of 1 cycle

o SUB instructions have a latency of 2 cycles

@ LD uses first the ALU for 1 cycle and then the LD/ST resource
for 1 cycle

Constraints

Reservation Tables — Example 2

Example with complex resources:
@ 2 resources: ALU and LD/ST
@ 3 instructions ADD, SUB and LD

@ Constraints:

o ADD instructions have a latency of 1 cycle
o SUB instructions have a latency of 2 cycles
@ LD uses first the ALU for 1 cycle and then the LD/ST resource

for 1 cycle
_ Table for SUB: Table for LD:
Table for ADD: ALU | LD/ST ALU | LD/ST
ALU | LD/ST
0T X 0| X 0| X
1] X 1 X

Constraints

Reservation Tables — Example 2

ADD instruction:

5 A>L(U LD/ST @ Are the following sequences valid?
ADD | SUB ?
SUB instruction: ADD | ADD 7
SUB | LD ?
ALU | LD/ST LD ; ADD ?
0] X LD ; SUB ?
1] X SUB ; LD ?
LD instruction: ADD ; SUB ; LD 7
LD ; ADD ; SUB 7
ALU | LD/ST
0 X

1 X

Constraints

Reservation Tables — Example 2

ADD instruction:

5 A>L(U LD/ST @ Are the following sequences valid?
ADD | SUB X
SUB instruction: ADD | ADD X
SUB | LD X
ALU | LD/ST LD ; ADD y
0] X LD ; SUB v
1] X SUB ; LD x
LD instruction: ADD 5 SUB ;5 LD x
LD ; ADD ; SUB +/
ALU | LD/ST
0 X

1 X

Constraints

Reservation Tables — Example 2

ADD instruction:

ALU

LD/ST

0] X

SUB instruction:

ALU | LD/ST
0| X
1] X

LD instruction:

ALU

LD/ST

X

@ Are the following sequences valid?

ADD | SUB X
ADD | ADD X
SUB | LD X
LD ; ADD v
LD ; SUB v
SUB ; LD X
ADD ; SUB ; LD x
LD ; ADD ; SUB +/

@ Test and update according to latencies of
instructions

Constraints

Reservation Table — Summary

Use
@ AND operation to check if several instruction can be scheduled

@ OR operation to update the resource state

| \

Advantages

@ Intuitive representation

@ Small storage

@ Many tests

@ Redundant information

Constraints

Automaton

@ Pre-processing of possible resource usages

Semantics

@ 1 state of the automaton < 1 assignment of resources

@ 1 transition of the automaton <> scheduling of an instruction
at the current cycle

Transition label

@ Label of a transition: the instruction to schedule

@ Special label: NOP instruction to advance the current cycle

Constraints

Automaton — Example 1

ADD instruction: MUL instruction:

ALUO | ALU1 OR ALUO | ALU1 ALUO | ALU1
0 X 0 X 0 X

Constraints

Automaton — Example 1

ADD instruction: MUL instruction:
ALUO | ALU1 OR ALUO | ALU1 ALUO | ALU1
0 X 0 X 0 X
ADD

e
P s

@ 2 fully-pipelined resources = 2 bits per state

Constraints

Automaton — Example 1

ADD
NOP

ae ADD,MUL
P e

@ Are the following sequences valid?

ADD | ADD 7
ADD | MUL 7
MUL | MUL 7

ADD ; ADD !
ADD | MUL ; MUL 7?

Constraints

Automaton — Example 1

ADD
NOP

ae ADD,MUL
P e

@ Are the following sequences valid?

ADD | ADD /
ADD | MUL +/
MUL | MUL X

ADD ; ADD v
ADD | MUL ; MUL /

Constraints

Automaton — Example 2

ADD instruction:

SUB instruction:

LD instruction:

ALU

LD/ST

0

X

ALU | LD/ST ALU | LD/ST
0| X 0| X
1] X 1 X

Constraints

Automaton — Example 2

ADD instruction:

SUB instruction:

LD instruction:

ALU

LD/ST

0

X

ALU | LD/ST ALU | LD/ST
0| X 0| X
1] X 1 X

ADD

Constraints

Automaton — Example 2

@ Are the following sequences valid?

ADD | SUB 7 LD ; SUB ?
ADD | ADD 7 SUB ; LD 7
SUB | LD 7 ADD ; SUB ; LD 7
LD ; ADD ? LD ; ADD ; SUB 7

Constraints

Automaton — Example 2

@ Are the following sequences valid?

ADD | SUB X LD ; SUB
ADD | ADD X SUB ; LD
SUB | LD X ADD ; SUB ; LD
LD ; ADD vV LD ; ADD ; SUB

<X X<

Constraints

Automaton — Summary

@ An instruction can be currently scheduled if there is an output
arc from the current state labeled with this instruction

@ Update the state by following this arc

Advantages
@ Low query time: table lookup

Drawbacks

@ Huge computational time (offline)
o Large storage
= split into several automata
@ Not very flexible
¢ e.g. hard to schedule instructions not cycle-wise

\

Constraints

Scheduling Process

Scheme of a classical scheduler
@ High-level part: main heuristic taken care of the data
dependences and driving the scheduling process
@ Low-level part: storage of the resource usages and updates of
the global assignments

Constraints

Scheduling Process

Scheme of a classical scheduler

@ High-level part: main heuristic taken care of the data
dependences and driving the scheduling process

@ Low-level part: storage of the resource usages and updates of
the global assignments

Scheduling process

@ Process begins in the high-level part

@ Pick up the next instruction to insert in the partial schedule
@ Query the low-level part for resource assignements:

o If okay, then goes on with another instruction
@ Otherwise backtrack

List Scheduling

Acyclic Scheduling: List Scheduling

@ Schedule a basic block = acyclic scheduling

@ Goal: minimize the length of the generated code

@ Must respect data dependences and resource constraints

@ Sum the first element of 3 vectors X, Y and Z in the first cell
of array A:

Afo] = X[0] + Y[0] + Z[0];

@ 3 instructions: ADD, LD, ST (1-cycle latency)
@ 3 fully-pipelined resources: ALU, LDO and LD/ST1 units

List Scheduling

Acyclic Scheduling — Example

DDG?

List Scheduling

Acyclic Scheduling — Example

Reservation tables:

List Scheduling

Acyclic Scheduling — Example

Reservation tables:

ADD instruction:
ALU | LDO | LD/ST1

0| X

LD instruction:
ALU | LDO | LD/ST1

0 X

ALU | LDO | LD/ST1
0 X

ST instruction:
ALU | LDO | LD/ST1

0 X

List Scheduling

Acyclic Scheduling — Example

Reservation tables:

ADD instruction:
ALU | LDO | LD/ST1

0| X

LD instruction:
ALU | LDO | LD/ST1

0 X

ALU | LDO | LD/ST1
0 X

ST instruction:
ALU | LDO | LD/ST1

0 X

A possible schedule?

List Scheduling

Acyclic Scheduling — Example

@ A possible schedule respecting both constraints and
minimizing the total length:

LD(X) | LDCY) ; // Cycle 1
ADD1 | LD(Z) ; // Cycle 2
ADD2 ; // Cycle 3

4

ST // Cycle 4 = length

List Scheduling

Acyclic Scheduling — Example

@ A possible schedule respecting both constraints and
minimizing the total length:

LD(X) | LD(CY) ; // Cycle 1
ADD1 | LD(Z) ; // Cycle 2
ADD2 ; // Cycle 3
ST ; // Cycle 4 = length

@ Good the execute as much instructions as possible
@ Pick up the good instruction is crucial (LD(X) and LD(Y)
before LD(Z))

@ Be careful of explicit resource assignments through reservation
tables:
o Only one valid combination to execute a ST and a LD at the
same cycle

List Scheduling

List Scheduling

@ List scheduling algorithm is based on this approach

@ Sort the instruction according to priority based on data
dependences

@ Pick up one ready instruction in priority order

@ Until every instruction has been scheduled

@ Many priority schemes exist

@ We will use the height-based priority:

o Priority of a node is the longest path from that node to the
furthest leaf
@ The path is weighted by latencies

Conclusion

Conclusion

Instruction scheduling
@ Generate a total order of a set of instructions

@ Data dependences
@ Represented as a graph: DDG

@ Resource usages
o Represented as reservation tables or automaton

Acyclic scheduling

@ List scheduling

@ Assign priority to instructions according to their contribution
to the critical path

\

	Lecture Overview
	Introduction to Instruction Scheduling
	Constraints influencing Instruction Scheduling
	Acyclic Scheduling: List Scheduling
	Conclusion

