Computing Static Single Assignment (SSA) Form

Overview

- What is SSA?
- Advantages of SSA over use-def chains
- "Flavors" of SSA
- Dominance frontiers revisited
- Inserting \$\phi\$-nodes
- Renaming the variables
- Translating out of SSA form

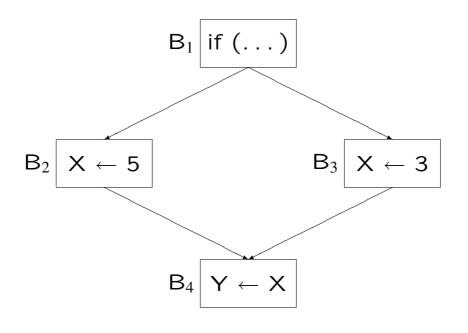
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, "Efficiently Computing Static Single Assignment Form and the Control Dependence Graph", *ACM TOPLAS* 13(4), October, 1991, pp. 451–490.

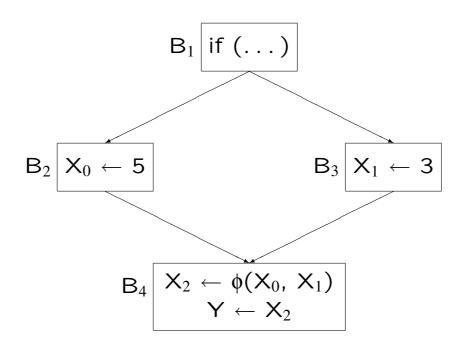
What is SSA?

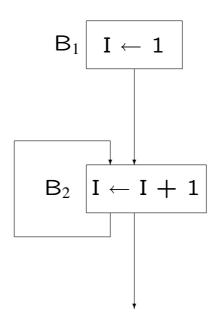
- Each assignment to a variable is given a unique name
- All of the uses reached by that assignment are renamed
- Easy for straight-line code

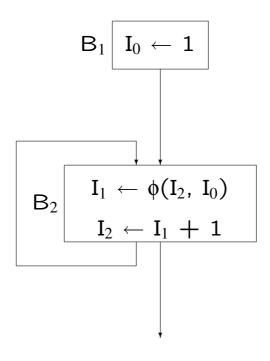
What about control flow?

⇒ \$\phi\$-nodes









CS 380C Lecture 4

4

Static Single Assignment

Advantages of SSA over use-def chains

- More compact representation
- Easier to update?
- Each USE has only one definition
- Definitions are explicit merging of values definitions may still reach multiple φ-node

"Flavors" of SSA

Where do we place \$\phi\$-nodes?

Condition:

If two non-null paths $X \stackrel{+}{\to} Z$ and $Y \stackrel{+}{\to} Z$ converge at node Z, and nodes X and Y contain assignments to V (in the original program), then a ϕ -node for V must be inserted at Z (in the new program).

minimal

As few as possible subject to condition

Briggs-minimal Invented by Preston Briggs As few as possible subject to condition, and V must be live across some basic block

pruned

As few as possible subject to condition, and no dead ϕ -nodes

Dominance Frontiers Revisited

The dominance frontier of X is the set of nodes Y s.t.

X dominates a predecessor of Y, but

X does not strictly dominate Y.

$$DF(X) = \{Y \mid \exists P \in pred(Y), (X DOM P and X \neg DOM! Y)\}$$

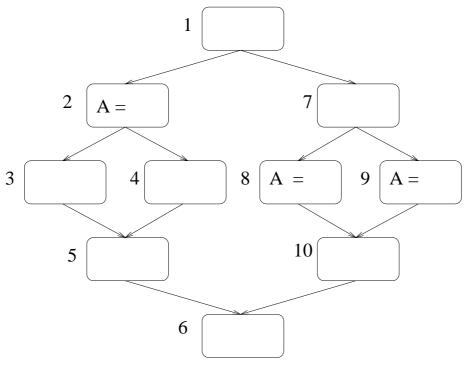
If X appears on every path from *entry* to Y, then X *dominates* Y (X DOM Y).

If X DOM Y and $X \neq Y$, then X strictly dominates Y (X DOM! Y).

The *immediate dominator* of Y (IDOM(Y)) is the closest strict dominator of Y.

IDOM(Y) is Y's parent in the dominator tree.

Dominance Frontier Example



$$DF(8) =$$

$$DF(9)=$$

$$DF({8,9}) =$$

$$DF({2,8,9,10}) =$$

Iterated Dominance Frontier

Extend the dominance frontier mapping from nodes to sets of nodes:

$$DF(L) = \bigcup_{X \in L} DF(X)$$

The *iterated* dominance frontier $DF^+(L)$ is the limit of the sequence:

$$DF_1 = DF(L)$$

 $DF_{i+1} = DF(L \cup DF_i)$

Theorem 1

The set of nodes that need ϕ -nodes for any variable V is the iterated dominance frontier DF⁺(\mathcal{L}), where \mathcal{L} is the set of nodes with assignments to V.

Inserting ∮-nodes

```
for each variable V
    HasAlready \leftarrow \emptyset
    EverOnWorkList \leftarrow \emptyset
    WorkList \leftarrow \emptyset
    for each node X containing an assignment to V
        EverOnWorkList \leftarrow EverOnWorkList \cup \{X\}
        WorkList \leftarrow WorkList \cup \{X\}
    end for
   while WorkList \neq \emptyset
        remove X from WorkList
       for each Y \in DF(X)
           if Y \notin HasAlready
               insert a \phi-node for V at Y
                HasAlready \leftarrow HasAlready \cup \{Y\}
               if Y \notin EverOnWorkList
                    EverOnWorkList \leftarrow EverOnWorkList \cup \{Y\}
                    WorkList \leftarrow WorkList \cup \{Y\}
        end for
    end while
endfor
```

Renaming the variables

Data Structures

Stacks array of stacks, one for each original variable V The subscript of the most recent definition of V Initially, Stacks[V] = EmptyStack, \forall V

Counters an array of counters, one for each original variable

The number of assignments to V processed Initially, Counters[V] = 0, \forall V

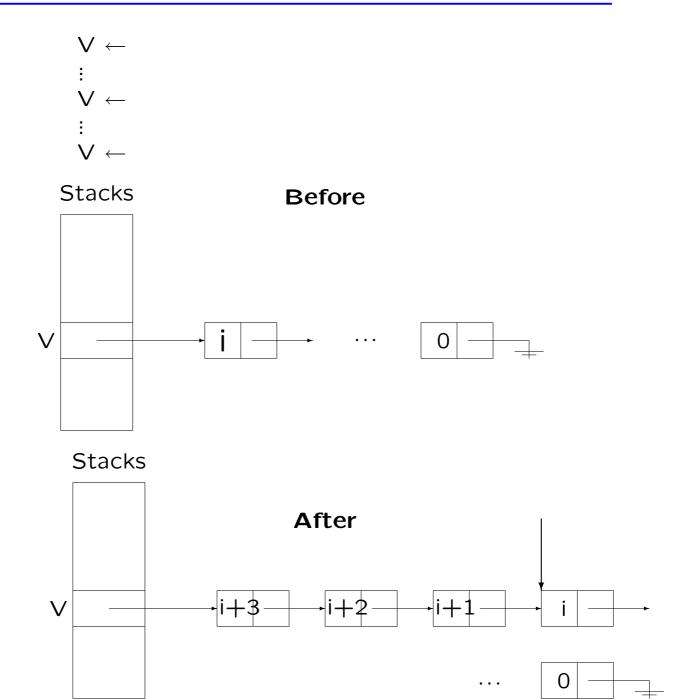
procedure **GenName**(Variable V) $i \leftarrow \text{Counters}[V]$ replace V by V_i Push i onto Stacks[V] Counters[V] $\leftarrow i + 1$

Rename - a recursive procedure

- Walks the dominator tree in preorder
- Initially, call Rename(entry)

```
procedure Rename(Block X)
//first process \u03c4-nodes
   for each \phi-node P in X
       GenName(LHS(P))
//then process statements in block X
   for each statement A in X
       for each variable V \in RHS(A)
          replace V by V_i, where i = \text{Top}(\text{Stacks}[V])
      for each variable V \in LHS(A)
          GenName(V)
//then update any \u03c4-functions in CFG successors of X
   for each Y \in SUCC(X)
      j \leftarrow \text{position in } Y'\text{s } \phi \text{-nodes corresponding to } X
       for each \phi-node P in Y
          replace the j<sup>th</sup> operand of RHS(P) by V_i
             where i = Top(Stacks[V])
//recursively visit children of X in dominator tree
   for each Y \in SUCC(X)
       Rename(Y)
//when backing out of X, pop variables defined in X
   for each \phi-node or statement A in X
      for each V_i \in LHS(A)
          Pop (Stacks[V])
```

What happens to Stacks during Renaming?



Computing SSA Form

Compute dominance frontiers

Insert ∳-nodes

Rename variables

Theorem 2

Any program can be put into minimal SSA form using this algorithm.

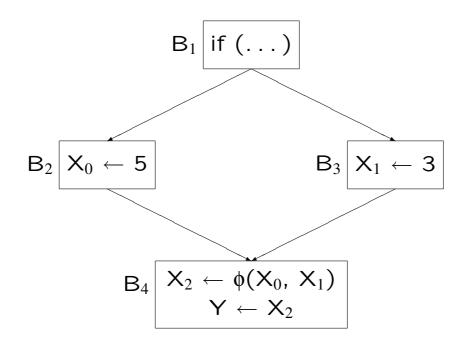
Translating Out of SSA Form

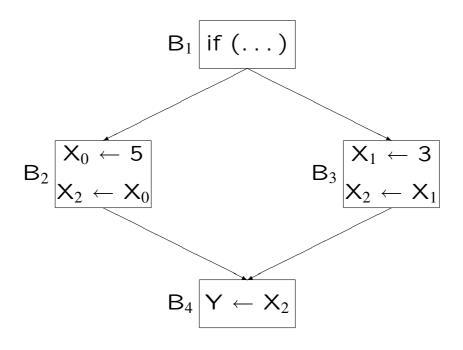
Restore original names to variables

Delete all \$\phi\$-nodes

Replace ϕ -nodes with copies in predecessors

Translating Out of SSA Form





Next Time

Static Single Assignment

- Induction variables (standard vs. SSA)
- Loop Invariant Code Motion with SSA