
Optimization

Last Time

• Loop Invariant Code Motion

• Induction Variable Recognition

Today

• More Loop Optimizations

– Strength Reduction

– Linear Test Replacement

– Loop Unrolling

– Scalar Replacement

CS 380C Lecture 6 1 Optimization



Induction Variables Review

Definitions

1. A basic induction variable is a variable J

• whose only definition within the loop is an
assignment of the form J := J ± c, where c is
loop invariant).

2. A mutual induction variable I may be

• defined once within the loop, and its value is a
linear function of some other induction variable
I’ such that

I = c1 * I’ ± c2

or

I = I’ / c1 ± c2.

where c1, c2 are loop invariant.

3. A family of induction variables includes a basic
induction variable and any mutual induction
variables.

CS 380C Lecture 6 2 Optimization



Strength Reduction

Philosophy: Replace an expensive instruction, multiply,
with a cheaper one, addition.

• Applied to uses of an induction variable (or uses of
a family of induction variables)

• Opportunity: array indexing

• Why: slow or non-existent integer multiply

Example

J = 0 for (J = 0; J<100; J++)
A(J) = 0

L2: if (J>=100) GOTO L1
I := 4 * J + &A
*I := 0
J := J + 1
GOTO L2

L1:

In Linpackd, on the IBM RT/PC, strength reduction
led to an improvement of about 15 percent.

Allen, Cocke, Kennedy, “Reduction in Operator
Strength,” in Program Flow Analysis, Muchnick and
Jones editors, 1981, pp. 79-101.

CS 380C Lecture 6 3 Optimization



Strength Reduction Algorithm

Algorithm

Let I be an induction variable in the family of basic
induction variable J, such that: I = c1 ∗ J + c2

• Create new variable, I’

• Initialize in preheader, I’ = c1 ∗ J + c2

• Track value of J. After J := J + c3, add

I’ := I’ + (c1 ∗ c3)

• Replace definition of I with I := I’

Key point

• c1, c2 and c3 are constant or loop invariant, so
the computation can be moved out of the loop or
folded at compile time

• reduces number of multiplies executed at run time

CS 380C Lecture 6 4 Optimization



Strength Reduction Example

Original Code

J := 0

L2: if (J >= 100) GOTO L1
I := 4 * J + &A
*I := 0
J := J + 1
GOTO L2

L1:

After Strength Reduction

J := 0
I’ := 4 * J + &A

L2: if (J >= 100) GOTO L1
I := I’
*I := 0
J := J + 1
I’ := I’ + (4 * 1)
GOTO L2

L1:

CS 380C Lecture 6 5 Optimization



Candidates for Strength Reduction

• IV multiplied by an invariant

i = 2 i = 2
i.50 = i ∗ 50

=⇒

i = i + 1 i = i + 1
. . . i ∗ 50 i.50 = i.50 + 50

. . . i.50

candidates = /0

for each statement s
if (opcode = MUL and one operand in IV

and the other is invariant)
add s to candidates

end for

• Polynomials - IV multiplied by different IV

• IV multiplied by itself

• IV modulo a constant

• addition of induction variables

CS 380C Lecture 6 6 Optimization



Strength Reduction

while candidates not empty
remove s from candidates
if s is “e = i ∗ c + a” replace it with “e = i.c + a”
else let i.c = s.c, i = IV in rhs
for each reaching definition point to i

if i.c assigned at Def point continue
if Def is outside of loop

insert “i.c = i ∗ c” in landing pad
else if Def is “i = j”

insert “i.c = j ∗ c”
add “i.c = j ∗ c” to candidates

else if Def is “i = i + a”
insert “i.c = i.c + a ∗ c”
add “i = i + a” with s.c = i.c to candidates

else if Def is “i = j + a”
insert “i.c = j ∗ c + a ∗ c”
add “i.c = j ∗ c + a ∗ c” to candidates

endif
end while

CS 380C Lecture 6 7 Optimization



Examples

i = 2 i = 2
i.50 = i ∗ 50

for i < k =⇒ for i < k
i = i + 1 i = i + 1
l = i ∗ 50 i.50 = i.50 + 50

l = i.50

j = 2 j = 2

for j < k =⇒ for i < k

e = j ∗ 3

i = j + 1 i = j + 1

l = i ∗ 50

j = j + 1

CS 380C Lecture 6 8 Optimization



Strength Reduction Details

• What happens if two induction variables I1 and I2
are in the family of the same basic induction
variable J with the same constants c1 and c2?

• When might this happen in real code?

do i = 1, n
A(i) = B(i) + B(i+1)

i = 0

l1: ...
i = i + 1
j = i + 1
t1 = 4*i + &A
t2 = 4*i + &B
t3 = 4*j + &B
...

CS 380C Lecture 6 9 Optimization



Linear Test Replacement

Eliminate the induction variable altogether

• the loop test often is the last use of a basic
induction variable after strength reduction

• fewer instructions, fewer live ranges

Algorithm:

• If the only use of a IV is the loop test and its own
increment

• and if the test is always computed (i.e., there is
only one exit from the loop)

• Then replace the test with an equivalent one

say test is “i compare k”,

if ∃ IV named i.c,
replace test with “i.c compare c∗ k”

• How does the sign of c affect the test?

CS 380C Lecture 6 10 Optimization



Example

i = 2 i = 2
i.50 = i ∗ 50 i.50 = i ∗ 50

for i < k =⇒ for i.50 < k ∗50

i = i + 1
i.50 = i.50 + 50 i.50 = i.50 + 50
. . . i.50 . . . i.50

CS 380C Lecture 6 11 Optimization



Reduction of operator strength

Taxonomy — Reduction of Operator Strength
Machine Independent
remove redundancy no (gets some cses)
move evaluation no
specialize yes
remove useless code maybe
expose opportunities yes
Machine Dependent
costly op→cheap op yes assumes mult costly
hide latency no
use powerful op no

CS 380C Lecture 6 12 Optimization



Loop Unrolling

To reduce loop overhead, we can unroll loops.

do i = 1 to 100 by 1

a(i) = a(i+1) + b(i)

end =⇒
do i = 1 to 100 by 4

a(i) = a(i+1) + b(i)

a(i+1) = a(i+2) + b(i+1)

a(i+2) = a(i+3) + b(i+2)

a(i+3) = a(i+4) + b(i+3)

end

Unrolled by a factor of four

Advantages

• execute fewer total instructions

• more fodder for cse, strength reduction,
instruction scheduling, etc.

• move consecutive accesses closer together

Disadvantages

• code size increase

• may confuse register allocator and instruction
scheduler

CS 380C Lecture 6 13 Optimization



Scalar Replacement

Problem: register allocators never keep a(i) in a
register

Idea: trick the allocator

1. locate patterns of consistent re-use

2. replace load with a copy into temporary

3. replace store with copy from temporary

4. may need copies at end of loop (re-use spans > 1
iteration)

Benefits

• decrease number of loads and stores

• keep re-used values in registers

• often see improvements by factors of 2× to 3×

Carr, “Memory-Hierarchy Management,” Dissertation,
Rice University, September 1992.

CS 380C Lecture 6 14 Optimization



Scalar Replacement

do i = 1, n

do j = 1, n

a(i) = a(i) + b(j)

enddo
enddo

do i = 1, n

t = a(i)

do j = 1, n

t = t + b(j)

enddo

a(i) = t
enddo

Scalar replacement exposes the reuse of a(i)

• traditional scalar analysis is inadequate

• use dependence analysis to understand array
references

do i = 1, n

a(i) = a(i - 1)

enddo

t = a(i - 1)

do i = 1, n

a(i) = t

t = a(i)

enddo

CS 380C Lecture 6 15 Optimization



Next Time

Data Flow Analysis

Read: T.J. Marlow and B.G. Ryder, ”Properties of
Data Flow Frameworks,” ACTA Informatica, 28, pgs
121-163, 1990.

CS 380C Lecture 6 16 Optimization


