Instruction Scheduling (Part 2)
Software Pipelining

Patrick Carribault
patrick@ices.utexas.edu

CS 380C: Advanced Compiler Techniques

Tuesday, October 23th 2007

Lecture Overview

Lecture Overview

Code Generator

@ Back end part of compiler (code generator)
@ Instruction scheduling

o Register allocation

Instruction Scheduling

@ Input: set of instructions

@ Output: total order on that set

N

Lecture Overview

Lecture Outline

Previous Lecture

© Introduction to instruction scheduling

© Representation of data dependences and resource constraints

© Acyclic scheduling: list scheduling

Loop scheduling: definition of software pipelining

(]

@ Parameters of software-pipelined schedules
@ Heuristics: modulo scheduling
°

Hardware support for code generation of software-pipelined
loops

Introduction

Introduction to Software Pipelining

Loop Scheduling

@ Apply list scheduling on the loop body

@ Ignore dependence distance > 0

@ No iteration overlapping = any schedule respects the
dependence distances

@ But: exploit only intra-iteration parallelism

How to benefit from inter-iteration parallelism?

@ Unroll the loop before scheduling (or while scheduling)
© Overlap consecutive iterations in a continuous flow
= Software Pipelining

Introduction

Example 1

DDG and reservation tables:

COa(D(E

Alr0O|rl|r2 B|r0O|rl|r2 C|lr0|rl|r2
0 X 0 X 0 X

@ A valid simple schedule?

Introduction

Example 1

DDG and reservation tables:

COa(D(E

Alr0O|rl|r2 B|r0O|rl|r2 C|lr0|rl|r2
0 X 0 X 0 X

@ A valid simple schedule? = Use list scheduling on loop body

Cycle | Schedule ‘ Cycle | r0 ‘ rl ‘ r2 ‘

Introduction

Example 1

DDG and reservation tables:

COa(D(E

Al r0O|rl|r2 B|r0O|rl|r2 Clr0|rl|r2
0] X 0 X 0 X

@ A valid simple schedule? = Use list scheduling on loop body

Cycle | Schedule Cycle | rO | r1 | r2
0 A 0 X

Introduction

Example 1

DDG and reservation tables:

G2

Al r0O|rl|r2 B|r0|rl| r2 Clr0|rl|r2
0] X 0 X 0 X

@ A valid simple schedule? = Use list scheduling on loop body

Cycle | Schedule Cycle | O | rl1 | r2
0 A 0 X
1 B 1 X

Introduction

Example 1

DDG and reservation tables:

COa(D(E

Al r0O|rl|r2 B|r0|rl|r2 Clr0|rl|r2
0 X 0 X 0 X

@ A valid simple schedule? = Use list scheduling on loop body

Cycle | Schedule Cycle | rO | r1 | r2
0 A 0 X
1 B 1 X
2 C 2 X

@ Length of 3, but inter-iteration parallelism available

Introduction

Example 1 — cont.

DDG and reservation tables:

COa(D(E

Al r0O|rl|r2 B|r0|rl|r2 Clr0|rl|r2
0] X 0 X 0 X

@ Schedule with overlapped iterations?

Introduction

Example 1 — cont.

DDG and reservation tables:

COa(D(E

Al r0O|rl|r2 B|r0|rl|r2 Clr0|rl|r2
0] X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
0]1]2]3

Cycle | r0 ‘ rl ‘ r2 ‘

Introduction

Example 1 — cont.

DDG and reservation tables:

G202

Al r0O|rl|r2 B|r0O|rl|r2 Clr0|rl|r2
0] X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
011123
0 A

Cycle | rO | r1 | r2
0 X

Introduction

Example 1 — cont.

DDG and reservation tables:

G2

Alr0O|rl|r2 B|r0O|rl|r2 C|lr0|rl|r2
0 X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule Cycle | r0 | r1 | r2
0123
0 A & A
1 B|A . > 1=

Introduction

Example 1 — cont.

DDG and reservation tables:

G202

Al r0O|rl|r2 B|r0|rl|r2 Clr0|rl|r2
0] X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule Cycle [10 [r1 | r2
01213
0 A : 0
1 B|A . 2R
Clela 2 X | X | X

Introduction

Example 1 — cont.

DDG and reservation tables:

OO G
Al r0O|rl|r2 B|r0|rl| r2 Clr0|rl|r2
0 X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule Cycle [r0 [r1 | r2
0/1(2]3
0 A : 0
1 B|A . AR R
2 X | X | X
2 C|B|A 3 X1 X | X
3 C|B|A

@ Kernel (1 cycle), depth of 3

Introduction

Example 2

DDG and reservation tables:

1l >

Alr0O|rl|r2 B|r0O|rl|r2 C|lr0|rl|r2
0 X 0 X 0 X

@ Schedule with overlapped iterations?

Introduction

Example 2

DDG and reservation tables:

1l >

Alr0O|rl|r2 B|r0O|rl|r2 C|lr0|rl|r2
0 X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule

Cycle | 0 | rl | r2 |

Introduction

Example 2

DDG and reservation tables:

OO
il >

Al r0O|rl|r2 B|r0|rl|r2 Clr0|rl|r2
0] X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
0[1]2(3
0 A

Cycle | rO | r1 | r2

Introduction

Example 2

DDG and reservation tables:
10 10
OO O

Alr0O|rl|r2 B|r0O|rl|r2 C|lr0|rl|r2
0 X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
11213

Cycle | 0 | r1 | r2

0
0 A
1 B

Introduction

Example 2

DDG and reservation tables:

11 >

Al r0O|rl|r2 B|r0|rl|r2 Clr0|rl|r2
0 X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule Cycle [0 [21] 2
01|23
0 X
0 A
1 B 1 X
2 X X
2 ClA

Introduction

Example 2

DDG and reservation tables:

OO
il >

Ajlr0|rl|r2 B|r0|rl| r2 C|lr0|rl | r2
0 X 0 X 0 X
@ Schedule with overlapped iterations?

Cycle Schedule Cycle 20 [=1 [r2

011123
0 X

0 A

1 5 1 X

et 2 x| IX

3 B

Introduction

Example 2

DDG and reservation tables:

il

Al r0O|rl|r2 B|r0|rl|r2 Clr0|rl|r2
0] X 0 X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule Cycle [0 [z1] 2
0(1]2]3
0 X
0 A
1 B 1 X
> [C[A 2 | X X
3 B 3 X
1 CTA 4 X X

o Kernel (2 cycles), depth of 2

Introduction

Example 3

DDG and reservation tables:

COa(D(E

Al r0|rl B|r0|rl Clr0|r1l
0] X 0] X 0 X

@ Schedule with overlapped iterations?

Introduction

Example 3

DDG and reservation tables:

COa(D(E

Al r0|rl B|r0|rl Clr0|r1l
0] X 0] X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
0]1]2]3

Cycle | 0 ‘ rl ‘

Introduction

Example 3

DDG and reservation tables:

G202

Al r0|rl B|r0|rl Clr0|r1l
0] X 0] X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
011123
0 A

Cycle | 0 | r1

Introduction

Example 3

DDG and reservation tables:

G2

Alr0O|rl B|r0|ril C|r0|r1
0 X 0| X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
11213

Cycle | r0 | r1

0
0 A
1 B

Introduction

Example 3

DDG and reservation tables:

G202

Al r0|rl B|r0|rl Clr0|r1l
0] X 0] X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule
y Cycle | r0 | r1
0123
0 X
0 A
1 B 1 X
2 X | X
C|lA

Introduction

Example 3

DDG and reservation tables:

O OO
A|lr0|rl B|r0|rl C|r0|r1
0] X 0| X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule Cycle 20 [=1
0(1]2]3
0 X
0 A
1 5 1 X
il 2 X%
3 B

Introduction

Example 3

DDG and reservation tables:

G2
A|lr0|rl B|r0|rl C|xr0 |1
0] X 0| X 0 X

@ Schedule with overlapped iterations?

Cycle Schedule Cycle | 0 | r1
0111213
0 X
0 A
) - 1 X
2 C|lA : .
3 B . %
4 C|lA . ABRA

o Kernel (2 cycles), depth of 2

Introduction

Software Pipelining — Definition

@ Do not wait for an iteration to finish to launch the next one

@ Constant time between two consecutive iteration launches
@ Initiation Interval (or /l)

(]

Need to respect constraints (including dependence distance)

(]

Prolog/Kernel /Epilog

Several iterations alive in the kernel (depth)

(]

One instruction scheduling = one cycle and one iteration
= 2-dimensional schedule

Introduction

Software Pipelining — Parameters

Performance

@ Performance in cycles P with n iterations:

P=(n—1)xIl+M

@ Linear in /Il = lower is better

4

Parameters

@ Initiation Interval //
@ Depth D
@ Makespan M

N

Introduction

Initiation Interval

Initiation Interval

@ Time (in cycles) between 2 consecutive iteration launches
@ Corresponds to the kernel size

@ Shape the overall performance of pipelined schedule

Parameters influencing //

@ Data dependences: RecMI!I.

RecMIl = max [

Vcircuits 0

latency(0)
distance(0)

@ Resource constraints: ResM|/

@ Minimum value MIl:

MII = max(ResMIl, RecMII)

Introduction

Data Dependences — RecMl|

Dependence Constraint

@ Let o be the schedule date of instructions for one iteration, /
is the latency and d the distance

@ Consider a and b two instructions:
o Intra-iteration constraint (d(a, b) = 0)

Introduction

Data Dependences — RecMl|

Dependence Constraint

@ Let o be the schedule date of instructions for one iteration, /
is the latency and d the distance

@ Consider a and b two instructions:
o Intra-iteration constraint (d(a, b) = 0)

o(a)+ I(a, b) < o(b)

s Inter-iteration constaint (loop-carried dependences)

Introduction

Data Dependences — RecMl|

Dependence Constraint

@ Let o be the schedule date of instructions for one iteration, /
is the latency and d the distance

@ Consider a and b two instructions:
o Intra-iteration constraint (d(a, b) = 0)

o(a)+ I(a, b) < o(b)
s Inter-iteration constaint (loop-carried dependences)

o(a) + I(a, b) < o(b) + Il x d(a, b)

-

MII due to dependence constraints on a circuit 0

A\

Introduction

Data Dependences — RecMl|

Dependence Constraint

@ Let o be the schedule date of instructions for one iteration, /
is the latency and d the distance

@ Consider a and b two instructions:
o Intra-iteration constraint (d(a, b) = 0)

o(a)+ I(a, b) < o(b)
s Inter-iteration constaint (loop-carried dependences)

o(a) + I(a, b) < o(b) + Il x d(a, b)

-

MII due to dependence constraints on a circuit 0

)= 11 x d() <0 = //>’((99))

A\

Introduction

Depth and Makespan

@ Number of iterations alive in the kernel
@ Secondary parameter

@ Influence prolog/epilog size

o Complex relation with //

Makespan

@ Time to complete a whole iteration in the kernel loop
@ Secondary parameter
@ Related to both /I and depth of the pipeline

@ Influence variable lifetimes

Introduction

Software Pipelining Approaches

Main approaches

@ Exact algorithms: enumerate every possibility (NP-Complete)

@ Heuristics: best choice in production compilers

Heuristic family

@ Modulo scheduling

@ Kernel recognition

Today

@ Approach mainly used in production compilers: modulo
scheduling

| \

N

Modulo Scheduling

Modulo Scheduling

@ Schedule a single iteration such as it is valid repeted every I/
cycle
@ Need to fix /I before scheduling one iteration

@ If not possible, then increase the value of targeted //

4

Main algorithm

Sort the nodes by priority
Compute MII
IT = MII
While (schedule not valid)
Schedule a single iteration with II
If (schedule not valid)
| II++

Modulo Scheduling

lterative Modulo Scheduling (IMS)

@ Seminal work on modulo scheduling by Bob Rau, MICRO-27
(1994)

@ Extension of list scheduling to loop
@ Notion of budget

@ Implemented in Intel's compiler ICC

Modulo Scheduling

lterative Modulo Scheduling (IMS)

@ Pick up next instruction in decreasing priority H

HPY — 0 if P is a leaf
(P) = maxgesuce(p) (H(Q) + L(P, Q) — Il x D(P, Q)) otherwise

Modulo Scheduling

lterative Modulo Scheduling (IMS)

@ Pick up next instruction in decreasing priority H
HPY — 0 if P is a leaf
(P) = maxgesuce(p) (H(Q) + L(P, Q) — Il x D(P, Q)) otherwise
@ Compute the range to schedule it: [Estart, Estart + Il — 1]

if Q is unscheduled

0
Estart(P) = Qgg;g(P){ max(0, #(Q) + L(Q, P) — Il x D(Q, P)) otherwise

Modulo Scheduling

lterative Modulo Scheduling (IMS)

@ Pick up next instruction in decreasing priority H

HPY — 0 if P is a leaf
(P) = maxgesuce(p) (H(Q) + L(P, Q) — Il x D(P, Q)) otherwise

@ Compute the range to schedule it: [Estart, Estart + Il — 1]

if Q is unscheduled

0
Estart(P) = QerS;T,(P){ max(0, #(Q) + L(Q, P) — Il x D(Q, P)) otherwise

@ Try to schedule it within the range

o If failed (due to either data dependences or resource usage),
then force the schedule and unschedule conflicting instructions

@ Involve a notion of budget to avoid cyclically unscheduling the
same set of instructions

Modulo Scheduling

IMS — Example 1 [LlosaPACT96]

DDG:

Reservation tables:

LD/ST | rO | r1 | r2 | r3
0 X
1 X
LD/ST | rO | r1 | r2 | r3
0 X
1 X
ADD | rO | rl1 | r2 | r3
0 X
1 X
MUL | rO | rl | r2 | r3
0 X
1 X

Modulo Scheduling

IMS — Example 2
DDG:

Reservation tables:
A|lr0O|rl]|r2

0| X

B|r0 | rl | r2
0| X

C|lxr0|rl | r2

D|xr0O |rl | r2

Modulo Scheduling

IMS — Example 2

@ Compute MII:

@ RecMIl = 3, ResMIl =3 = MIl =3
© Compute priority H

o H(A) =4, H(B) =3, H(C) =2, H(D) =1, H(E) =0
© Start the scheduling process with /I = MIl =3

Cycle | Schedule

0 A

1 B Cycle | 0 | r1 | r2
2 C 0 X X
3 1 X

4 2 X | X

5 D

L6 [E |

@ Success: [=3, D=3, M=7

Modulo Scheduling

Swing Modulo Scheduling (SMS)

@ By Llosa et al., PACT'96

@ Avoid the need to unscheduled instructions
@ i.e., when both predecessors and successors are scheduled

@ Based on the scheduling of strongly connected components
(SCQ)
@ Sort SCC by decreasing RecMI|

@ Go backward and forward on nodes linking two SCCs

@ When it is impossible to schedule an instruction, do not force,
just increase //

@ Implemented in GCC by IBM Haifa

Modulo Scheduling

SMS — Example 1 [LlosaPACT96]

DDG:

Reservation tables:

LD/ST | rO | r1 | r2 | r3
0 X
1 X
LD/ST | rO | r1 | r2 | r3
0 X
1 X
ADD | rO | rl1 | r2 | r3
0 X
1 X
MUL | rO | rl | r2 | r3
0 X
1 X

Modulo Scheduling

SMS — Example 2
DDG:

Reservation tables:
A|lr0O|rl]|r2

0| X

B|r0 | rl | r2
0| X

C|lxr0|rl | r2

D|xr0O |rl | r2

E|xr0O|rl | r2

SMS — Example 2

@ Compute MII:
@ RecMIl = 3, ResMIl =3 = MIl = 3
@ Compute priority order O
e O=<C,D,E,B,A>
© Start the scheduling process with I/ = MIl =3

Cycle

Schedule

-3

A

2

-1

0

1

2

m|O| 0| @

Modulo Scheduling

@ Success: [=3, D=2, M=6

Cycle | 0 | r1 | r2
0 X | X
1 X
2 X X

Hardware Support

Code Generation and Hardware Support

Register Allocation

@ Classical register allocation

@ Problems arise when lifetimes exceed /I cycles
@ Solutions:

o Software: Modulo variable expansion
o Hardware: Rotating register file

@ Small irregular control = If-conversion

@ Kernel-only loop

Example of architecture
@ Overview of Itanium architecture

Hardware Support

Register Allocation

for (i=0; i<N; i++) // Latencies of 2 cycles
| z[i] = X[i] + Y[i]; // @X in r2, @Y in r3, @Z in r4d

@ Software-pipelined schedule with /I = 1:

Cycle Schedule
0 ST[r4]=r7,8 FMA r7=r5,r1,r6 LD r5=[r2],8
LD r6=[r3],8

@ Lifetime of 2 cycles = produced values are erased

© Unroll the kernel 2 times (Modulo Variable Expansion)

© Use rotating registers (hardware feature)

Hardware Support

Predication

Principle
@ Convert control dependence into data dependence
@ Add one bit (predicate) per instruction

@ Instruction is commited iff the predicate is true

Applications

@ If-conversion (small control irregularity)

@ Kernel-only schedule

N

Example:

1T ic) cmp pl,p2=c
else , = (pl) A

| B - (p2) B;

Hardware Support

[tanium 2 Architecture

EPIC (Explicitly Parallel Instruction Computing)

@ VLIW-like architecture except for memory operations
(out-of-order memory accesses)

@ IPC up to 6 (Instructions Per Cycle)

@ Compiler has to expose parallelism (4 constraints on
instruction grouping: bundling)

@ Provides fully support for software-pipelined schedules:

rotating register files and predication
>

Currently

@ [|tanium?2 Montecito

@ Dual-core with hyperthreading (2-way)
@ Seperate caches: L1, L2 and L3 (12MB for L3)

Conclusion

Conclusion

Instruction Scheduling

@ Input: set of instructions

@ Output: order on instructions
@ Must respect both data dependences and resource constraints

s Need a model to represent such constraints (DDG, reservation
tables, automaton, ...)

Schedule Types

@ Basic block: List scheduling
@ Loop:
o List scheduling on the body = do not benefit from
intra-iteration parallelism

s Software pipelining = Modulo scheduling heuristics (IMS,
SMS)

	Lecture Overview
	Introduction to Software Pipelining
	Modulo Scheduling
	Code Generation and Hardware Support
	Conclusion

