
Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Instruction Scheduling (Part 2)
Software Pipelining

Patrick Carribault
patrick@ices.utexas.edu

CS 380C: Advanced Compiler Techniques

Tuesday, October 23th 2007

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Lecture Overview

Code Generator

Back end part of compiler (code generator)

Instruction scheduling

Register allocation

Instruction Scheduling

Input: set of instructions

Output: total order on that set

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Lecture Outline

Previous Lecture

1 Introduction to instruction scheduling

2 Representation of data dependences and resource constraints

3 Acyclic scheduling: list scheduling

Today

Loop scheduling: definition of software pipelining

Parameters of software-pipelined schedules

Heuristics: modulo scheduling

Hardware support for code generation of software-pipelined
loops

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Introduction to Software Pipelining

Loop Scheduling

Apply list scheduling on the loop body

Ignore dependence distance > 0

No iteration overlapping ⇒ any schedule respects the
dependence distances

But: exploit only intra-iteration parallelism

How to benefit from inter-iteration parallelism?

1 Unroll the loop before scheduling (or while scheduling)
2 Overlap consecutive iterations in a continuous flow

⇒ Software Pipelining

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

A valid simple schedule?

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

A valid simple schedule? ⇒ Use list scheduling on loop body

Cycle Schedule Cycle r0 r1 r2

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

A valid simple schedule? ⇒ Use list scheduling on loop body

Cycle Schedule

0 A

Cycle r0 r1 r2

0 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

A valid simple schedule? ⇒ Use list scheduling on loop body

Cycle Schedule

0 A

1 B

Cycle r0 r1 r2

0 X

1 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

A valid simple schedule? ⇒ Use list scheduling on loop body

Cycle Schedule

0 A

1 B

2 C

Cycle r0 r1 r2

0 X

1 X

2 X

Length of 3, but inter-iteration parallelism available

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1 – cont.

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1 – cont.

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3
Cycle r0 r1 r2

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1 – cont.

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

Cycle r0 r1 r2

0 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1 – cont.

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

1 B A

Cycle r0 r1 r2

0 X

1 X X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1 – cont.

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

1 B A

2 C B A

Cycle r0 r1 r2

0 X

1 X X

2 X X X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 1 – cont.

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

1 B A

2 C B A

3 C B A

Cycle r0 r1 r2

0 X

1 X X

2 X X X

3 X X X

Kernel (1 cycle), depth of 3

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 2

DDG and reservation tables:

A B
1,0
1,1

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 2

DDG and reservation tables:

A B
1,0
1,1

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule
0 1 2 3

Cycle r0 r1 r2

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 2

DDG and reservation tables:

A B
1,0
1,1

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule
0 1 2 3

0 A

Cycle r0 r1 r2

0 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 2

DDG and reservation tables:

A B
1,0
1,1

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule
0 1 2 3

0 A
1 B

Cycle r0 r1 r2

0 X
1 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 2

DDG and reservation tables:

A B
1,0
1,1

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule
0 1 2 3

0 A
1 B
2 C A

Cycle r0 r1 r2

0 X
1 X
2 X X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 2

DDG and reservation tables:

A B
1,0
1,1

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule
0 1 2 3

0 A
1 B
2 C A
3 B

Cycle r0 r1 r2

0 X
1 X
2 X X
3 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 2

DDG and reservation tables:

A B
1,0
1,1

C
1,0

A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

Schedule with overlapped iterations?

Cycle Schedule
0 1 2 3

0 A
1 B
2 C A
3 B
4 C A

Cycle r0 r1 r2

0 X
1 X
2 X X
3 X
4 X X

Kernel (2 cycles), depth of 2

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 3

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1

0 X

B r0 r1

0 X

C r0 r1

0 X

Schedule with overlapped iterations?

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 3

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1

0 X

B r0 r1

0 X

C r0 r1

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3
Cycle r0 r1

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 3

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1

0 X

B r0 r1

0 X

C r0 r1

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

Cycle r0 r1

0 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 3

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1

0 X

B r0 r1

0 X

C r0 r1

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

1 B

Cycle r0 r1

0 X

1 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 3

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1

0 X

B r0 r1

0 X

C r0 r1

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

1 B

2 C A

Cycle r0 r1

0 X

1 X

2 X X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 3

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1

0 X

B r0 r1

0 X

C r0 r1

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

1 B

2 C A

3 B

Cycle r0 r1

0 X

1 X

2 X X

3 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Example 3

DDG and reservation tables:

A B
1,0

C
1,0

A r0 r1

0 X

B r0 r1

0 X

C r0 r1

0 X

Schedule with overlapped iterations?

Cycle Schedule

0 1 2 3

0 A

1 B

2 C A

3 B

4 C A

Cycle r0 r1

0 X

1 X

2 X X

3 X

4 X X

Kernel (2 cycles), depth of 2

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Software Pipelining – Definition

Definition

Do not wait for an iteration to finish to launch the next one

Constant time between two consecutive iteration launches

Initiation Interval (or II)

Need to respect constraints (including dependence distance)

Prolog/Kernel/Epilog

Schedule

Several iterations alive in the kernel (depth)

One instruction scheduling ⇒ one cycle and one iteration

⇒ 2-dimensional schedule

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Software Pipelining – Parameters

Performance

Performance in cycles P with n iterations:

P = (n − 1) × II + M

Linear in II ⇒ lower is better

Parameters

Initiation Interval II

Depth D

Makespan M

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Initiation Interval

Initiation Interval

Time (in cycles) between 2 consecutive iteration launches

Corresponds to the kernel size

Shape the overall performance of pipelined schedule

Parameters influencing II

Data dependences: RecMII:

RecMII = max
∀circuits θ

⌈

latency(θ)

distance(θ)

⌉

Resource constraints: ResMII

Minimum value MII :

MII = max(ResMII, RecMII)

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Data Dependences – RecMII

Dependence Constraint

Let σ be the schedule date of instructions for one iteration, l

is the latency and d the distance

Consider a and b two instructions:

Intra-iteration constraint (d(a, b) = 0)

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Data Dependences – RecMII

Dependence Constraint

Let σ be the schedule date of instructions for one iteration, l

is the latency and d the distance

Consider a and b two instructions:

Intra-iteration constraint (d(a, b) = 0)

σ(a) + l(a, b) ≤ σ(b)

Inter-iteration constaint (loop-carried dependences)

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Data Dependences – RecMII

Dependence Constraint

Let σ be the schedule date of instructions for one iteration, l

is the latency and d the distance

Consider a and b two instructions:

Intra-iteration constraint (d(a, b) = 0)

σ(a) + l(a, b) ≤ σ(b)

Inter-iteration constaint (loop-carried dependences)

σ(a) + l(a, b) ≤ σ(b) + II × d(a, b)

MII due to dependence constraints on a circuit θ

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Data Dependences – RecMII

Dependence Constraint

Let σ be the schedule date of instructions for one iteration, l

is the latency and d the distance

Consider a and b two instructions:

Intra-iteration constraint (d(a, b) = 0)

σ(a) + l(a, b) ≤ σ(b)

Inter-iteration constaint (loop-carried dependences)

σ(a) + l(a, b) ≤ σ(b) + II × d(a, b)

MII due to dependence constraints on a circuit θ

l(θ) − II × d(θ) ≤ 0 ⇒ II ≥
l(θ)

d(θ)

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Depth and Makespan

Depth

Number of iterations alive in the kernel

Secondary parameter

Influence prolog/epilog size

Complex relation with II

Makespan

Time to complete a whole iteration in the kernel loop

Secondary parameter

Related to both II and depth of the pipeline

Influence variable lifetimes

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Software Pipelining Approaches

Main approaches

Exact algorithms: enumerate every possibility (NP-Complete)

Heuristics: best choice in production compilers

Heuristic family

Modulo scheduling

Kernel recognition

Today

Approach mainly used in production compilers: modulo

scheduling

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Modulo Scheduling

Principle

Schedule a single iteration such as it is valid repeted every II

cycle

Need to fix II before scheduling one iteration

If not possible, then increase the value of targeted II

Main algorithm

Sort the nodes by priority

Compute MII

II = MII

While (schedule not valid)

Schedule a single iteration with II

If (schedule not valid)

II++

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Iterative Modulo Scheduling (IMS)

Principle

Seminal work on modulo scheduling by Bob Rau, MICRO-27
(1994)

Extension of list scheduling to loop

Notion of budget

Compiler

Implemented in Intel’s compiler ICC

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Iterative Modulo Scheduling (IMS)

Pick up next instruction in decreasing priority H

H(P) =



0 if P is a leaf

maxQ∈Succ(P) (H(Q) + L(P, Q) − II × D(P, Q)) otherwise

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Iterative Modulo Scheduling (IMS)

Pick up next instruction in decreasing priority H

H(P) =



0 if P is a leaf

maxQ∈Succ(P) (H(Q) + L(P, Q) − II × D(P, Q)) otherwise

Compute the range to schedule it: [Estart, Estart + II − 1]

Estart(P) = max
Q∈Pred(P)



0 if Q is unscheduled

max(0, σ(Q) + L(Q, P) − II × D(Q, P)) otherwise

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Iterative Modulo Scheduling (IMS)

Pick up next instruction in decreasing priority H

H(P) =



0 if P is a leaf

maxQ∈Succ(P) (H(Q) + L(P, Q) − II × D(P, Q)) otherwise

Compute the range to schedule it: [Estart, Estart + II − 1]

Estart(P) = max
Q∈Pred(P)



0 if Q is unscheduled

max(0, σ(Q) + L(Q, P) − II × D(Q, P)) otherwise

Try to schedule it within the range

If failed (due to either data dependences or resource usage),
then force the schedule and unschedule conflicting instructions

Involve a notion of budget to avoid cyclically unscheduling the
same set of instructions

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

IMS – Example 1 [LlosaPACT96]

DDG:

n1
 LD

n3
ADD

2,0

n5
ADD

2,0

n6
MUL

2,0

n4
MUL

2,0

n8
MUL

2,0

n2
LD

2,0

n7
ST

2,0

n10
ADD

2,0

n9
LD

2,0

n11
MUL

2,0

2,0

n12
ST

2,0

Reservation tables:
LD/ST r0 r1 r2 r3

0 X
1 X

LD/ST r0 r1 r2 r3

0 X
1 X

ADD r0 r1 r2 r3

0 X
1 X

MUL r0 r1 r2 r3

0 X
1 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

IMS – Example 2

DDG:

A

B

1,0

C

1,0

D

1,0

E

1,0

1,1

Reservation tables:
A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

D r0 r1 r2

0 X

E r0 r1 r2

0 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

IMS – Example 2

1 Compute MII:

RecMII = 3, ResMII = 3 ⇒ MII = 3

2 Compute priority H

H(A) = 4, H(B) = 3, H(C) = 2, H(D) = 1, H(E) = 0

3 Start the scheduling process with II = MII = 3

Cycle Schedule
0 A
1 B
2 C

3
4
5 D

6 E

Cycle r0 r1 r2

0 X X
1 X
2 X X

4 Success: II = 3, D = 3, M = 7

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Swing Modulo Scheduling (SMS)

Principle

By Llosa et al., PACT’96

Avoid the need to unscheduled instructions

i.e., when both predecessors and successors are scheduled

Based on the scheduling of strongly connected components
(SCC)

Sort SCC by decreasing RecMII

Go backward and forward on nodes linking two SCCs

When it is impossible to schedule an instruction, do not force,
just increase II

Compiler

Implemented in GCC by IBM Haifa

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

SMS – Example 1 [LlosaPACT96]

DDG:

n1
 LD

n3
ADD

2,0

n5
ADD

2,0

n6
MUL

2,0

n4
MUL

2,0

n8
MUL

2,0

n2
LD

2,0

n7
ST

2,0

n10
ADD

2,0

n9
LD

2,0

n11
MUL

2,0

2,0

n12
ST

2,0

Reservation tables:
LD/ST r0 r1 r2 r3

0 X
1 X

LD/ST r0 r1 r2 r3

0 X
1 X

ADD r0 r1 r2 r3

0 X
1 X

MUL r0 r1 r2 r3

0 X
1 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

SMS – Example 2

DDG:

A

B

1,0

C

1,0

D

1,0

E

1,0

1,1

Reservation tables:
A r0 r1 r2

0 X

B r0 r1 r2

0 X

C r0 r1 r2

0 X

D r0 r1 r2

0 X

E r0 r1 r2

0 X

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

SMS – Example 2

1 Compute MII:

RecMII = 3, ResMII = 3 ⇒ MII = 3

2 Compute priority order O

O =< C , D, E , B, A >

3 Start the scheduling process with II = MII = 3

Cycle Schedule
-3 A
-2
-1 B

0 C
1 D
2 E

Cycle r0 r1 r2

0 X X
1 X
2 X X

4 Success: II = 3, D = 2, M = 6

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Code Generation and Hardware Support

Register Allocation

Classical register allocation

Problems arise when lifetimes exceed II cycles

Solutions:

Software: Modulo variable expansion
Hardware: Rotating register file

Predication

Small irregular control ⇒ If-conversion

Kernel-only loop

Example of architecture

Overview of Itanium architecture

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Register Allocation

Example

for (i=0; i<N; i++) // Latencies of 2 cycles

Z[i] = X[i] + Y[i]; // @X in r2, @Y in r3, @Z in r4

Software-pipelined schedule with II = 1:

Cycle Schedule
0 ST[r4]=r7,8 FMA r7=r5,r1,r6 LD r5=[r2],8

LD r6=[r3],8

Lifetime of 2 cycles ⇒ produced values are erased

Solutions

1 Unroll the kernel 2 times (Modulo Variable Expansion)

2 Use rotating registers (hardware feature)

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Predication

Principle

Convert control dependence into data dependence

Add one bit (predicate) per instruction

Instruction is commited iff the predicate is true

Applications

If-conversion (small control irregularity)

Kernel-only schedule

Example:

if (c)

A ;

else

B ;

⇒

cmp p1,p2=c

(p1) A;

(p2) B;

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Itanium 2 Architecture

EPIC (Explicitly Parallel Instruction Computing)

VLIW-like architecture except for memory operations
(out-of-order memory accesses)

IPC up to 6 (Instructions Per Cycle)

Compiler has to expose parallelism (+ constraints on
instruction grouping: bundling)

Provides fully support for software-pipelined schedules:
rotating register files and predication

Currently

Itanium2 Montecito

Dual-core with hyperthreading (2-way)

Seperate caches: L1, L2 and L3 (12MB for L3)

Lecture Overview Introduction Modulo Scheduling Hardware Support Conclusion

Conclusion

Instruction Scheduling

Input: set of instructions

Output: order on instructions

Must respect both data dependences and resource constraints

Need a model to represent such constraints (DDG, reservation
tables, automaton, . . .)

Schedule Types

Basic block: List scheduling

Loop:

List scheduling on the body ⇒ do not benefit from
intra-iteration parallelism
Software pipelining ⇒ Modulo scheduling heuristics (IMS,
SMS)

	Lecture Overview
	Introduction to Software Pipelining
	Modulo Scheduling
	Code Generation and Hardware Support
	Conclusion

