
�
�

�
�

Linear Loop Transformations

for Locality Enhancement

�

�
�

�
�

Story so far

� Cache performance can be improved by tiling and permutation

� Permutation of perfectly nested loop can be modeled as a

linear transformation on the iteration space of the loop nest�

� Legality of permutation can be determined from the

dependence matrix of the loop nest�

� Transformed code can be generated using ILP calculator�

�

�
�

�
�

Theory for permutations applies to other loop transformations that

can be modeled as linear transformations� skewing� reversal�scaling�

Transformation matrix� T �a non�singular matrix�

Dependence matrix� D

Matrix in which each column is a distance�direction vector

Legality� T�D � 	

Dependence matrix of transformed program� T�D

Small complication with code generation if scaling is included�

�

�
�

�
�

Overview of lecture

� Linear loop transformations� permutation� skewing�

reversal�scaling

� Compositions of linear loop transformations� matrix viewpoint

� Locality matrix� model for temporal and spatial locality

� Two key ideas�

� Height reduction

�� Making a loop nest fully permutable

� A uni�ed algorithm for improving cache performance

� Lecture based on work we did for HPs compiler product line

�

�
�

�
�

Key algorithm� �nding basis for null space of an integer matrix

De�nition� A vector x is in null space of a matrix M if Mx � 	�

It is easy to �nd a basis for null space of matrix in column�echelon

form�

m z

Null space basis:

0

I

mxz

zxz

General matrix M�

� Find unimodular matrix U so that MU � L is in

column�echelon form�

� If x is a vector in null space of L� Ux is in null space of M�

� If B is basis for null space of L� UB is basis for null space of M�

�

�
�

�
�

Example� M�U � L

�
BB�

 	 �

	 � �

 �

�

CCA �
�

BB�

 	 ��

	
 �

	 	

�
CCA �

�
BB�

 	 	

	 � 	

 �
 	
�

CCA

Basis for null space of M � U� �	 	
� � ��� �

�

�

�
�

�
�

Some observations�

� We have used reduction to column�echelon form� MU � L�

� We can also view this as a matrix decomposition� M � LQ

where Q is inverse of U from previous step�

� Analogy� QR factorization of real matrices�

Unimodular matrices are like orthogonal matrices in reals�

� Special form of this decomposition� M � LQ where all diagonal

elements of L are non�negative�

� This is called a psuedo�Hermite normal form of matrix�

�

�
�

�
�

Motivating example� Wavefront code

���� �� �� ���� ��
��
��
��

�
�
�
�

���� �� �� ���� ���� ��

���� �� �� ���� ���� ��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

���� �� �� ���� ��
��
��
��

�
�
�
�

I

J

1 2 3 54

1

2

3

4

5

DO I = 1,N
 DO J = 1,N
 X(I,J) = X(I-1,J+1)......

Dependence matrix =
-1

 1

Dependence between two iterations

�� iterations touch the same location

�� potential for exploiting data reuse�

N iteration points between executions of dependent iterations�

Can we schedule dependent iterations closer together�

�

�
�

�
�

For now� focus only on reuse opportunities between dependent

iterations�

This exploits only one kind of temporal locality�

There are other kinds of locality that are important�

� iterations that read from the same location� input dependences

� spatial locality

Both are easy to add to basic model as we will see later�

	

�
�

�
�

Exploiting temporal locality in wavefront

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�� ����

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�� ����

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�� ����

�� ���� �� ���� �
�
�
�

��
��
��
��

�� ���� �� ���� �
�
�
�

��
��
��
��

���� ���� �� �� �� ��

���� ���� �� �� �
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�� ��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�� ��

���� ���� �� �� �
�
�
�

�
�
�
�

I

J

1 2 3 54

1

2

3

4

5

I

J

1 2 3 54

1

2

3

4

5

Tiling is illegal!Permutation is illegal!

We have studied two transformations� permutation and tiling�

Permutation and tiling are both illegal�

�

�
�

�
�

Height Reduction

��

�
�

�
�

One solution� schedule iterations along �� degree planes �

H

G

J

I

Note�
� Transformation is legal�

� Dependent iterations are scheduled close together� so good for

locality�

Can we view this in terms of loop transformation�

Loop skewing followed by loop reversal�

��

�
�

�
�

Loop Skewing� a linear loop transformation

I

J

U

V

I
J

= U
V1 1

1 0

1
-1

1
0

Skewing of inner loop by outer loop:

Skewing of inner loop by an outer loop: always legal

New dependence vectors: compute T*D

In this example, D = T*D =

This skewing has changed dependence vector but it has not brought dependent iterations

closer together....

1 0
k 1

(k is some fixed integer)

��

�
�

�
�

Skewing outer loop by inner loop

I
J

= U
V

I

J

U

V

1 1
0 1

1 k
0 1

Outer loop skewing:

Skewing of outer loop by inner loop: not necessarily legal

In this example, D =
-1

T*D = 0
-1

1 incorrect

Dependent iterations are closer together (good) but program is illegal (bad).
How do we fix this??

��

�
�

�
�

Loop Reversal�a linear loop transformation

0 0I U

U = [-1][I]

DO I = 1, N

X(I) = I+2 X(-U) = -U +2

DO U = -N,-1

Transformation matrix = [-1]

Another example: 2-D loop, reverse inner loop U
V

I
J

1 0
0 -1

=

Legality of loop reversal: Apply transformation matrix to all dependences & verify lex +ve

5 -5

Code generation: easy

��

�
�

�
�

Need for composite transformations

1 1
0 1

1 0
0 -1

I

J

U

V

I
J

= U
V

U
V

= G
H

G

H

Composition of linear transformations
= another linear transformation!

Composite transformation matrix is

* =
1 0
0 -1

1 1
0 1

1 1
0 -1

How do we synthesize this composite transformation??

close together!
In final program, dependent iterations are

Transformation: skewing followed by reversal

��

�
�

�
�

Some facts about permutation�reversal�skewing

� Transformation matrices for permutation�reversal�skewing are

unimodular�

� Any composition of these transformations can be represented

by a unimodular matrix�

� Any unimodular matrix can be decomposed into product of

permutation�reversal�skewing matrices�

� Legality of composite transformation T � check that T�D � 	�

�Proof� T� � �T� � �T� �D�� � �T� � T� � T�� �D��

� Code generation algorithm�

� Original bounds� A � I � b

� Transformation� U � T � I

� New bounds� compute from A � T��U � b

��

�
�

�
�

Synthesizing composite transformations using matrix�based

approaches

� Rather than reason about sequences of transformations� we can

reason about the single matrix that represents the composite

transformation�

� Enabling abstraction� dependence matrix

��

�
�

�
�

Height reduction� move reuse into inner loops

Dependence vector is
�

�
��

�
�

Prefer not to have dependent iterations in di�erent outer loop iterations�

So dependence vector in transformed program should look like
�

�
��

�
�

So T �
�

�
��

�
�

�
�

��
�

This says 	rst row of T is orthogonal to
�

�
��

�
�

So 	rst row of T can be chosen to be
� ���

What about second row�

�	

�
�

�
�

Second row of T �call it s� should satisfy the following properties�

� s should be linearly independent of 	rst row of T
non�singular

matrix��

� T �D should be a lexicographically positive vector�

� Determinant of matrix should be � or ��
unimodularity��

One choice�
� � ��� giving T �
�

� �

� ��
�

�

�

�
�

�
�

General questions

� How do we choose the �rst few rows of the transformation

matrix to push reuses down�

�� How do we �ll in the rest of the matrix to get unimodular

matrix�

��

�
�

�
�

Choosing �rst few rows of transformation matrix�

For now� assume dependence matrix D has only distances in it�

Algorithm�

� Let B be a basis for null space of D�

� Use transpose of basis vectors as �rst few rows of

transformation matrix�

Example� study running example in previous slides�

��

�
�

�
�

Extension to direction vectors� easy

Consider D �
�

BBBBB�
�

	 �

 �

�
 ��
�

CCCCCA

Let �rst row of transformation be �r� r� r� r���

If this is orthogonal to D� it is clear that r� and r� must be zero�

Ignore
st and �nd rows of D and �nd basis for null space of

remaining rows of D � �

�

Pad with zeros to get partial transformation� �	 	

�

General picture� knock out rows of D with direction entries� use

algorithm for distance vectors� and pad resulting null space vectors

with 	s�

��

�
�

�
�

Filling in rest of matrix�

� Turns out to be easier if we drop unimodularity requirement

� Completion procedure� generate a non�singular matrix T given

�rst few rows of this matrix

� Problem� how do we generate code if transformation matrix is

a general non�singular matrix�
��

�
�

�
�

Completion Procedure

Goal� to generate a complete transformation from a partially

speci�ed one �
� �

� �
��

�
��

�
�

�
�

��
�

Given�

� a dependence matrix D

� a partial transformation P
	rst few rows�

generate a non�singular matrix T that extends P and that satis	es all

the dependences in D
TD � ���

Precondition�

� rows of P are linearly independent

� P �D � �
no dependences violated yet�

��

�
�

�
�

Completion algorithm� iterative algorithm

� From D� delete all dependences d for which Pd � 	�

�� If D is now empty� use null space basis determination to add

more rows to P to generate a non�singular matrix�

�� Otherwise� let k be the �rst row of �reduced� D that has a

non�zero entry� Use ek �unit row vector with
 in column k and

zero everywhere else� as the next row of the transformation�

�� Repeat from step �i��

Proof� Need to show that ek is linearly independent of existing

rows of partial transformation� and does not violate any

dependences� Easy �see Li�Pingali paper��

��

�
�

�
�

Example�
�

BB�
	

� � �

� � �
�

CCA
�

BB�

 � �

 	

�
 	 �

�

CCA �
�

	 	 	
�

No dependence is satis�ed by partial transformation�

Next row of transformation � �
 	 	�

New partial dependence matrix is

�
BB�
	 	 	

 � �

� � �
�

CCA
��

�
�

�
�

All dependences are now satis�ed� so we are left with the problem

of completing transformation with a row independent of existing

ones�

Basis for null space of partial transformation � �	
 �
�

T �
�

BB�
	

 	 	

	
 �

�

CCA

��

�
�

�
�

Problem� transformation matrix T we obtain is non�singular but

may not be unimodular�

Two solutions� based on T � LQ pseudo�Hermite normal form

decomposition where L is lower�triangular with positive diagonal

elements

� Develop code generation technology for non�singular matrices�

� Use Q as transformation matrix�

Question� How do we know this is legal� and is good for

locality�

First� let us understand what transformations are modeled by

non�singular matrices that are not unimodular�

�	

�
�

�
�

Loop scaling�change step size of loop

DO �� I � ����� vs DO �� U � �������

�� Y�I� � I �� Y�U	�� � U	�

Scaling matrix� non�unimodular transformation�
� �

� k
�

�

�
�

�
�

� Scaling� like reversal� is not important by itself�

� Nonsingular linear loop transformations�

permutation�skewing�reversal�scaling

� Any non�singular integer matrix can be decomposed into

product of permutation�skewing�reversal�scaling matrices�

� Standard decompositions� �pseudo��Hermite form T � L �Q

where Q is unimodular and L is lower triangular with positive

diagonal elements� �pseudo��Smith normal form T � UDV

where U� V are unimodular and D is diagonal with positive

elements�

� Including scaling in repertoire of loop transformations makes it

easier to synthesize transformations but complicates code

generation�

��

�
�

�
�

Code generation with a non�singular transformation T

Code generation for unimodular matrix U �

� Original bounds� A � I � b

� Transformation� J � U � I

� New bounds� compute from A � U��J � b

Key problem here� T�� is not necessarily an integer matrix�

��

�
�

�
�

Di�culties�

I

J

I
J

= U
V

DO I = 1,3
DO J = 1,3
 A(4J-2I+3,I+J) = J;

DO U = -2,10,2
 DO V = -U/2 +3 max(1,ceil(u/2+1/2)),
 -U/2 + 3min(3,floor(U/2+3/2)),3
 A[U+3,V] = (U+2V)/6

1 1
-2 4

 How do we determine integer lower and upper bounds?
Key problems:

How do we determine step sizes?
 (rounding up from rational bounds is not correct)

U

Solution� use Hermite normal form decomposition T � L �Q

��

�
�

�
�

Running example� factorize T � L �Q

-1 2
 0 1

-1 3
2 0

-1 3
2 0 -1 2

 0 1

I

J

U

DO U = -2,10,2
 DO V = -U/2 +3 max(1,ceil(u/2+1/2)),
 -U/2 + 3min(3,floor(U/2+3/2)),3
 A[U+3,V] = (U+2V)/6

U

DO I = 1,3

DO J = 1,3

 A(4J-2I+3,I+J) = J;

DO P = -1,5

 DO Q = max(1,ceil(p+1/2)),min(3,floor(p+3/2)

 A(2P+3,-P+Q) = Q

-2 4
 1 1

=

Initial Iteration Space

Final Iteration Space

Auxiliary Iteration Space

��

�
�

�
�

Using non�singular matrix T as transformation matrix�

Running example�

� Given T � L �Q where L is triangular with positive diagonal

elements and Q is unimodular�

-1 3
2 0

0 1
-1 2

1 1
-2 4

=

� Use Q as the transformation to generate bounds for auxiliary space�

�� � p � �

max
�� ceil

p ������ � q � min
�� f loor

p ������

� Read o� bounds for 	nal iteration space from L�
� �

�� �
��

p
q

�
�

�
u

v
�

�� � u � ��

�u�� �max
�� ceil

u�� ������ � v � �u�� � �min
�� f loor

u�� ��

��

�
�

�
�

� Step sizes of loops� diagonal entries of L

� Change of variables in body�
i

j
�

�
�

���� ���

��� ���
��

u
v

�

� Good to use strength reduction to replace the integer divisions by

additions and multiplications�

Complete transformation with non�singular matrix is needed for

generating code for distributed�memory parallel machines and similar

problems
see Wolfe�s book��

Bottom line� transformation synthesis procedure can focus on producing

non�singular matrix� Unimodularity is not important�

��

�
�

�
�

Solution � to code generation with non�singular transformation

matrices

Lemma� If L is a n� n triangular matrix with positive diagonal

elements� L maps lexicographically positive vectors into

lexicographically positive vectors�

Intuition� L does not change the order in which iterations are done

but just renumbers them�

Proof� Consider d � L �� where � is a lexicographically positive

vector and show that d is lexicographically positive as well�

� Auxiliary space iterations are performed in same order as

corresponding iterations in �nal space�

� Memory system behavior of auxiliary program is same as

memory system behavior of �nal program�

��

�
�

�
�

For memory system optimization� we can use a non�singular

transformation matrix T as follows� compute Hermite normal form

of T � L �Q and use Q as transformation matrix�

��

�
�

�
�

Putting it all together for wavefront example�

���� ���� �� ���� ��
��
��
��

��
��
��
��

���� ���� �� ���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

���� ���� �� ���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

���� ����

I

J

1 2 3 54

1

2

3

4

5

DO I = 1,N
 DO J = 1,N
 X(I,J) = X(I-1,J+1)......

Dependence matrix =
-1

 1

� Find rows orthogonal to space spanned by dependence vectors� and

use them as the partial transformation� In this example� the

orthogonal subspace is spanned by the vector
� ���

� Apply completion procedure to partial transformation to generate

full transformation� We would add row
� ��� So transformation is�
� �

� �
�

�	

�
�

�
�

General picture�

Exploit dependences � spatial locality � read�only data reuse

� a dependence matrix D with dependence vectors

�� a locality matrix L � D with locality vectors

Locality matrix has additional vectors to account for spatial

locality and read�only data reuse�

Intuitively� we would like to scan along directions in L in innermost

loops� provided dependences permit it�

�

�
�

�
�

Modeling spatial locality� scan iteration space points so that we get

unit stride accesses �or some multiple thereof�

Example� from Assignment

DO I � ��

DO J � ���

C�I�J� � A�I�J� � B�J�I�

If arrays are stored in column�major order� we should interchange the

two loops� How do we determine this in general�

��

�
�

�
�

Example� array stored in column�major order� reference X�Ai� a�

Suppose we do iteration i
�

and then iteration i
�
�

Array element accessed in iteration i
�

� X�Ai
�

� a�

Array element accessed in iteration i
�

� X�Ai
�

� a�

We want these two accesses to be within a column of A� So

A � �i
�

� i
�
� �

�
BBBBB�
c

	
���

	
�

CCCCCA

Let A� � A with �rst row deleted� So we want to solve

A� �R � 	 where R is �reuse direction��

Solution� R is any vector in null space of A��

Spatial locality matrix� matrix containing a basis for null space of

A�

��

�
�

�
�

Example� for i�j�k ���A�i�j�k�k�j��k��j� ��

In what direction�s� can we move so we get accesses along �rst

dimension of A for the most part�

A� �
�

� 	

	 � �
�

A

Spatial locality matrix is
�

BB�

 	

	

	 �

�

CCA
��

�
�

�
�

Example from Assignment
� exploiting spatial locality in MVM

matrix accesses

for I � ��N

for J � ��N

Y�I� � Y�I�
 A�I�J��X�J�

Reference matrix is
�

�
 	

	

�

A�

Truncated matrix is
�

	

�

�

So spatial locality matrix is�
�

	
�

A�

��

�
�

�
�

Enhancing spatial locality� perform height reduction on locality

matrix

For our example� we get the transformation�
� 	

 	
�

A
�

�

	

�
A �

�
� 	

�

A

That is� we would permute the loops which is correct�

��

�
�

�
�

Read�only data reuse� add reuse directions to locality matrix

DO I � ��N

DO J � ��N

DO K � ��N

C�I�J� � C�I�J� � A�I�K�	B�K�J�

Consider reuse vector for reference A�I�K��

� � I�� I�� J�� J�� K�� K� � N

I�� J�� K�� �
I�� J�� K��

I� � I�

K� � K�

�� � I� � I�

�� � J� � J�

�� � K� �K�

��

�
�

�
�

Reuse vector is
�

BB�
�

�

�
CCA�

Considering all the references� we get the following locality matrix��
BB�
� �

 � �

� �

�
CCA

��

�
�

�
�

General Algorithm for Height Reduction

� Compute the locality matrix L which contains all vectors along

which we would like to exploit locality �dependences �

read�only data reuse � spatial locality�

� Determine a basis B for the null space of LT and use that BT

as the �rst few rows of the transformation�

� Call the completion algorithm to generate a complete

transformation�

� Do a pseudo�Hermite form decomposition of transformation

matrix and use the unimodular part as transformation�

Flexibility� if null space of LT has only the zero vector in it� it may

be good to drop some of the �less important� read�only reuse

vectors and spatial locality vectors from consideration�

��

�
�

�
�

In some codes� height reduction may fail since locality vectors span

entire space�

Example� MMM as shown in previous slide �actually even MVM if

we want to exploit locality in both matrix A and vectors x�y�

We can still exploit most of the locality provided we can tile loops�

Tiling is not always legal���

Solution� apply linear loop transformations to enable tiling�

�	

�
�

�
�

Linear loop transformations to enable tiling

�

�
�

�
�

In general� tiling is not legal�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

���� ��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

���� ��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�� ���� ���� �� ���� ��

I

J

1 2 3 54

1

2

3

4

5

Tiling is illegal!

D =
-1
 1

Tiling is legal if loops are fully permutable �all permutations of

loops are legal��

Tiling is legal if all entries in dependence matrix are non�negative�

� Can we always convert a perfectly nested loop into a fully

permutable loop nest�

� When we can� how do we do it�
��

�
�

�
�

Theorem� If all dependence vectors are distance vectors� we can

convert entire loop nest into a fully permutable loop nest�

Example� wavefront

Dependence matrix is
�

�

�

�
A�

Dependence matrix of transformed program must have all positive

entries�

So �rst row of transformation can be �
 	��

Second row of transformation �m
� �for any m � 	��

General idea� skew inner loops by outer loops su�ciently to make

all negative entries non�negative�
��

�
�

�
�

Transformation to make �rst row with negative entries into row

with non�negative entries

...

....

-k-n-m

...

...
first row
with negative entries...

....

row a

...

......
p3p1 ...

...
row b

(a) for each negative entry in the first row with negative entries,
 find the first positive number in the corresponding column

assume the rows for these positive entries are a,b etc as shown above

(b) skew the row with negative entries by appropriate multiples of
 rows a,b....
 For our example, multiple of row a = ceiling(n/p2)

multiple of row b = ceiling(max(m/p1,k/p3))

Transformation: I
0 0 ..0 ceiling(n/p2) 0 0 ceiling(max(m/p1,k/p3))0...0
 I

p2

��

�
�

�
�

General algorithm for making loop nest fully permutable�

If all entries in dependence matrix are non�negative� done�

Otherwise�

� Apply algorithm on previous slide to �rst row with

non�negative entries�

�� Generate new dependence matrix�

�� If no negative entries� done�

�� Otherwise� go step �
��

��

�
�

�
�

Result of tiling transformed wavefront

���� ���� �� ���� ��
��
��
��

��
��
��
��

���� ���� �� ���� ��
��
��
��

��
��
��
��

���� ���� �� ���� ���� ����

���� ���� �� ���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

���� ����

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

���� ����

���� �� ���� ���� ��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

���� ����

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

���� ��

���� �� ���� ���� ���� ����

I

J

1 2 3 54

1

2

3

4

5

I

J

1 2 3 54

1

2

3

4

5

1 1
1 0

Original loop Tiled fully permutable loop

Tiling generates a ��deep loop nest�

Not as nice as height reduction solution� but it will work �ne for

locality enhancement except at tile boundaries �but boundary

points small compared to number of interior points��

��

�
�

�
�

What happens with direction vectors�

In general� we cannot make loop nest fully permutable�

Example� D �
�

BB�
�

�
�

�
CCA

Best we can do is to make some of the loops fully permutable�

We try to make outermost loops fully permutable� so we would

interchange the second and third loops� and then tile the �rst two

loops only�

Idea� algorithm will �nd bands of fully permutable loop nests�

��

�
�

�
�

Example for general algorithm�

�
BBBBBBBB�
	
 	

� � �

�� �� �

� � ��

 � �

�
CCCCCCCCA

Begin �rst band of fully permutable loops with �rst loop�

Second row has �ve direction which cannot be knocked out� But we

can interchange �fth row with second row to continue band�

��

�
�

�
�

�
BBBBBBBB�
	
 	

 � �

�� �� �

� � ��

� � �

�
CCCCCCCCA

New second loop can be part of �rst fully permutable band�

Knock out �ve distances in third row by adding ��second row to

third row�

��

�
�

�
�

�
BBBBBBBB�
	
 	

 � �

	 � �

� � ��

� � �

�
CCCCCCCCA

Cannot make band any bigger� so terminate band� drop all satis�ed

dependences� and start second band�

In this case� all dependences are satis�ed� so last two loops form

second band of fully permutable loops�

�	

�
�

�
�

How do we determine transformation matrix for performing this

operations�

If you have n loops� start with T � In�n�

Every time you apply a transformation to the dependence matrix�

apply same transformation to T �

At the end� T is your transformation matrix�

Proof sketch� �U� � �U� �D�� � �U� � �U� � I�� �D

�

�
�

�
�

For the previous example� we get�
BBBBBBBB�

 	 	 	 	

	
 	 	 	

	 	
 	 	

	 	 	
 	

	 	 	 	

�

CCCCCCCCA

Interchange the second and �fth rows to get�
BBBBBBBB�

 	 	 	 	

	 	 	 	

	 	
 	 	

	 	 	
 	

	
 	 	 	
�

CCCCCCCCA

��

�
�

�
�

Add ��second row to third�

�
BBBBBBBB�

 	 	 	 	

	 	 	 	

	 	
 	 �

	 	 	
 	

	
 	 	 	
�

CCCCCCCCA

��

�
�

�
�

Conversion to fully permutable bands

� Compute dependence matrix D� Current�row � row
�

�� Begin new fully permutable band�

�� If all entries in D are non�negative� add all remaining loops to

current band and exit�

�� Otherwise� �nd �rst row r with one or more negative entries�

Each negative entry must be guarded by a positive entry above

it in its dependence vector� Add all loops between current�row

and row �r�
� to current band�

�� If row does not both positive and negative directions� �x it as

follows�

If all direction entries are negative� negate row�

At this point� all direction entries must be positive� and any

remaining negative entries must be distances� If there are

negative entries remaining� determine appropriate multiple of

��

�
�

�
�

guard rows to be added to that row �treating � guard entries

as
� to convert all negative entries in row r to strictly positive�

Update transformation matrix and add row r to current band�

Current�row � r�

Go to step ��

�� Otherwise� see if a row below current row without both positive

and negative directions can be interchanged legally with

current row�

If so� perform interchange� update transformation matrix and

go to step ��

Otherwise� terminate current fully permutable band� drop all

satis�ed dependence vectors� and go to step ��

��

�
�

�
�

Ye Grande Locality Enhancement Algorithm

� Compute locality matrix L�

�� Perform height reduction by �nding a basis for null space of

LT � If null space is too small� you have the option of dropping

less important locality vectors�

�� Compute resulting dependence matrix after height reduction�

If all entries are non�negative� declare loop nest to be fully

permutable�

�� Otherwise� apply algorithm to convert to bands of fully

permutable loop nests�

�� Perform pseudo�Hermite normal form decomposition of

resulting transformation matrix� and use unimodular extract to

perform code transformation�

�� Tile fully permutable bands choosing appropriate tile sizes�

��

�
�

�
�

Summary

� Height reduction can also be viewed as outer�loop

parallelization� if no dependences are carried by outer loops�

outer loops are parallel�

� First paper on transformation synthesis in this style� Leslie

Lamport �
���� on multiprocessor scheduling�

� Algorithm here is based on Wei Lis Cornell PhD thesis �Wei is

now a compiler hot�shot at Intel���

� A version of this algorithm was implemented by us in HPs

compiler product line�

� It is easy to combine height reduction and conversion to fully

permutable band form into a single transformation matrix

synthesis� but you can work it out for yourself�

��

