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Abstract

Pointer information is a prerequisite for most program aysss,
and the quality of this information can greatly affect thgiecision
and performance. Inclusion-basede( Andersen-style) pointer
analysis is an important point in the space of pointer anedys
offering a potential sweet-spot in the trade-off betweegcision
and performance. However, current techniques for incluiased
pointer analysis can have difficulties delivering on thisquial.

We introduce and evaluate two novel techniques for inchisio

based pointer analysis—one lazy, one e&gehat significantly
improve upon the current state-of-the-art without impagtpre-
cision. These techniques focus on the problem of onlines cjesl
tection, a critical optimization for scaling such analyséssing

a suite of six open-source C programs, which range in size fro
169K to 2.17M LOC, we compare our techniques against the best

three current inclusion-based analyses—described bytkeiand
Tardieu [11], by Pearceet al.[22], and by Berndl et al. [4]. The
combination of our two techniques results in an algorithmolh

is on average3.2x faster than Heintze and Tardieu’s algorithm,

6.4 x faster than Pearce et al.’s algorithm, ar2d.6 x faster than
Berndlet al's algorithm.

We also investigate the use of different data structurespoer
sent points-to sets, examining the impact on both perfocmand

memory consumption. We compare a sparse-bitmap implementa
tion used in the GCC compiler with a BDD-based implementatio

and we find that the BDD implementation is on averagesbwer
than using sparse bitmaps but uses:518ss memory.

1. Introduction

Pointer information is a prerequisite for most program ysed, in-

cluding modern whole-program analyses such as prograrficeeri
tion and program understanding. The precision and perfocsaf

these client analyses depend heavily on the precision gfdimter

information that they’re given [24]. Unfortunately, preeipointer
analysis is NP-hard [14]—any practical pointer analysistrap-

proximate the exact solution. There are a humber of difteapn

proximations that can be made, each with its own trade-dff&en

precision and performance [12].

1Hence the reference to Aesop’s fable 'The Ant and the Gragsio[1].
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The most precise analyses are flow-sensitive—respectingato
flow dependencies—and context-sensitive—respectingeimas-
tics of function calls. Despite a great deal of work on bothvflo
sensitive and context-sensitive algorithms [6, 8, 13, 1527, 28,
29, 30], none has been shown to scale to programs with nglixdn
lines of code, and most have difficulty scaling to 100,00@e4diof
code.

If flow- and context-sensitivity aren’t feasible for largeop
grams, we're left to consider flow- and context-insensitvely-
ses. The most precise member of this class is inclusiondbase
Andersen-style) pointer analysis [2], which is closelyatetl to
computing the dynamic transitive closure of a graph. Iricluson-
straints are generated from the program code and used ttwons
a constraint graph with nodes to represent each program vari-
able and edges to represent inclusion constraints betweerati-
ables. Indirect constraints—those involving pointer éemences—
can't be represented, since points-to information isrtiayailable.
Points-to information is gathered by computing the travesitlo-
sure of the graph; as more information is gained, new edges ar
added to the constraint graph to represent the indirecticonts.
The transitive closure of the final graph yields the pointsalu-
tion. The exact algorithm is explained in Section 3.

Inclusion-based pointer analysis has a complexi®@t®); the
key to making it scalable is to reduce the input sizee-maken
smaller—while maintaining soundness. The primary methsetiu
to reducen is online cycle detection: the analysis looks for cycles
in the constraint graph and collapses their componentssinggle
nodes. Because the algorithm computes the transitive relpsil
nodes in the same cycle are guaranteed to have identicabgoin
sets and can safely be collapsed together. The method u§ied to
and collapse cycles during the analysis has a significaraétgmn
the algorithm’s performance.

In this paper we introduce a new inclusion-based pointelana
ysis algorithm that employs a novel method of detecting eycl
calledLazy Cycle Detectio(LCD). Rather than aggressively seek-
ing out cycles in the constraint graph, LCD piggybacks on top
of the transitive closure computation, identifying potehtycles
based on their effect—identical points-to sets. This laatyre sig-
nificantly reduces the overhead of online cycle detection.

We also introduce a second method for detecting cyclesccalle
Hybrid Cycle Detectior(HCD). Hybrid Cycle Detection offloads
work to a linear-time offline analysis—a static analysis e @nior
to the actual pointer analysis. The actual pointer analgstien
able to detect cycles without performing any graph traveidais,
HCD eagerly pays a small up-front cost to avoid a large amofint
later work. While HCD can be used on its own, its true powes lie
in the fact that it can easily be combined with other inclosiased
pointer analyses to significantly improve their performanc

We compare our new techniques against a diverse group of
inclusion-based pointer analyses representing the dustere-



of-the-art. This group includes algorithms due to Heintzel a
Tardieu [11] (HT), Pearcet al. [22] (PKH), and Berndkt al. [4]
(BLQ). All of these algorithms are explained in Section 2.

This paper makes the following contributions to inclushmsed
pointer analysis:

¢ We introduce Lazy Cycle Detection, which recognizes that th
effects of cycles—identical points-to sets—can be useceto d
tect them with extremely low overhead. On average LCD is
faster than all three current state-of-the-art includiased
analyses: 1.05 faster than HT, 2.&% faster than PKH, and
6.8x faster than BLQ.

We introduce Hybrid Cycle Detection, which dramatically re
duces the overhead of online cycle detection by carefulty pa
titioning the task into offline and online analyses. On agera
HCD improves the performance of HT by %2PKH by 5x,
BLQ by 1.1x, and LCD by 3.%. HCD is the first ever tech-
nique for cycle detection that has been shown to be pradtical
BDD-based program analyses like BLQ.

We provide the first empirical comparison of the three curren
state-of-the-art inclusion-based pointer analysis dtgors,
namely, HT, PKH, and BLQ. We find that HT is the fastest—
1.9x faster than PKH and 6:5faster than BLQ.

We demonstrate that an algorithm that combines Lazy Cy-
cle Detection and Hybrid Cycle Detection (LCD+HCD) is the
fastest of the algorithms that we studied and can easilg $oal
programs consisting of over a million lines of code. Itis an a
erage3.2x faster than HT6.4x faster than PKH, an@0.6x
faster than BLQ.

We investigate the memory consumption of the various analy-
ses, and experiment with two different data structuresdpr r
resenting points-to sets: sparse bitmaps as currentlyingbd
GCC compiler, and a BDD-based representation. For the algo-
rithms that we study, we find that the BDD-based represemtati

is an average of 2 slower than sparse bitmaps, but uses&.5
less memory.

The rest of this paper is organized as follows. In Section 2 we
place our technigues in the context of prior work. Sectiorr@ p
vides background about inclusion-based pointer analgsistion 4
describes our two new techniques for detecting cycles, awd S
tion 5 presents our experimental evaluation.

2. Related Work

Inclusion-based pointer analysis is described by Andensdns
Ph.D. thesis [2], in which he formulates the problem in teohs
type theory. The algorithm presented in the thesis solvesrth
clusion constraints in a fairly naive manner by repeatetdsaiing
through a constraint vector. Cycle detection is not mesetibhere
have been several significant updates since that time.
Faehndriclet al.[9] represent the constraints using a graph and
formulate the problem as computing the dynamic transitiosuwre
of that graph. This work introduces a method for partial ali
cycle detection and demonstrates that cycle detectionitisadr
for scalability. A depth-first search of the graph is perfedmpon
every edge insertion, but the search is artificially retgddor the
sake of performance, making cycle detection incomplete.
Heintze and Tardieu introduce a new algorithm for computing
the dynamic transitive closure [11]. As new inclusion edges
added to the constraint graph from the indirect constrathisir
corresponding new transitive edges are not added to thé girap
stead, the constraint graph retains its pre-transitivenfand dur-
ing the analysis, indirect constraints are resolved viahahility
queries on the graph. Cycle detection is performed as aeffdet

of these queries. The main drawback to this technique isaidav
able redundant work—it is impossible to know whether a raach
bility query will encounter a newly-added inclusion edgesérted
earlier due to some other indirect constraint) until aftecdm-
pletes, which means that potentially redundant queries stils
be carried out on the off-chance that a new edge will be ercoun
tered. Heintze and Tardieu report excellent results, airadya C
program with 1.3M LOC in less than a second, but these rearéts
for a field-based implementation. A field-based analysat$reach
field of a struct as its own variable—assignments: tf, y. f, and
(xz).f are all treated as assignments to a varighlevhich tends
to decrease both the size of the input to the pointer anadysishe
number of dereferenced variables (an important indicétpedor-
mance). Field-based analysis is unsound for C programsyhihel
such an analysis is appropriate for the work described bytei
and Tardieu (the client is a dependency analysis that i fiskl-
based), it is inappropriate for many others. For the resnltbis
paper, we use a field-insensitive version of their algorjtarhich

is dramatically slower than the field-based veréion

Pearcest al.have proposed two different approaches to inclusion-
based analysis, both of which differ from Heintze and Tardie
that they maintain the explicit transitive closure of thenstoaint
graph. They originally proposed an analysis [21] that usetbee
efficient algorithm for online cycle detection than thatr@éduced
by Faehndrictet al. [9]. In order to avoid cycle detection at every
edge insertion, the algorithm dynamically maintains a togie
cal ordering of the constraint graph. Only a newly-inserelge
that violates the current ordering could possibly creatgcies so
only in this case are cycle detection and topological resong
performed. This algorithm proved to still have too much bead,
so Pearcet al. later proposed a new and more efficient algorithm
[22]. Rather than detect cycles at every edge insertionettiee
constraint graph is periodically swept to detect and cskapny
cycles that have formed since the last sweep. It is this gkgor
that we evaluate in this paper.

Berndl et al. [4] describe a field-sensitive inclusion-based
pointer analysis for Java that uses BDDs [5] to represerit thet
constraint graph and the points-to solution. BDDs have legén-
sively used in model checking as a way to represent largehgriap
a very compact form that allows for fast manipulation. Béetdl.
were one of the first to use BDDs for pointer analysis. Theyeisl
they describe is specific to the Java language; it also doleandle
indirect calls because it depends on a prior analysis tatagithe
complete call-graph. The version of the algorithm that we uns
this paper is a field-insensitive analysis for C programs dogs
handle indirect function calls.

Because Andersen-style analysis was previously considere
be non-scalable, other algorithms, including Steensémaehr-
linear time analysis [25] and Das’ One-Level Flow analysi§ [
have been proposed to improve performance by sacrificing eve
more precision. While Steensgaard’s analysis has muctegriea
precision than inclusion-based analysis, Das reportsah&t pro-
grams One-Level Flow analysis has precision very closeabdh
inclusion-based analysis. This precision is based on thenas-
tion that multi-level pointers are less frequent and lesgartant
than single-level pointers, which Das’ experiments int#ida usu-
ally (though not always) true for C, but which may not be trae f
other languages such as Java and C++. In addition, for treeafak
performance Das conservatively unifies non-equivalenialibes,
much like Steensgaard’s analysis; this unification makeficult

270 ensure that the performance difference is in fact due thl-fie
insensitivity, we also benchmarked a field-based versioouwfHT im-
plementation. We observed comparable performance to épatrted by
Heintze and Tardieu [11].



Constraint Type | Program Code | Constraint | Meaning
Base| a = &b a D {b} loc(b) € pts(a)
Simple | a =10 alb pts(a) 2 pts(b)
Complex | a=x*b a 2D *b Vv € pts(b) : pts(a) 2 pts(v)
Complex | xa =10 *xa Db Vv € pts(a) : pts(v) D pts(b)
Table 1. Constraint Types

to trace dependency chains among variables. Dependengyscha
are very useful for understanding the results of programyana
ses such as program verification and program understanaliy,
also for automatic tools such as Broadway [10]. Inclusiesdul
pointer analysis is a better choice than either Steensgaamelly-

sis or One-Level Flowif it can be made to run in reasonable time
even on large programs with millions of lines of code; thishs
challenge that we address in this paper.

In the other direction of increasing precision, there hagerb
several attempts to scale a context-sensitive versionabdision-
based pointer analysis. One of the fastest of these attamtite
the algorithm by Whaleyet al. [28], which uses BDDs to scale
a context-sensitive, flow-insensitive pointer analysis Java to
almost 700K LOC (measuring bytecode rather than sourcs)line
However, Whaleyet al’s algorithm is only context-sensitive for
top-level variables, meaning that all variables in the heeagreated
context-insensitively; also, its efficiency depends higao certain
characteristics of the Java language—attempts to use the sa
technique for analyzing programs in C have shown greatlyced
performance [3].

Nystromet al. [20] present a context-sensitive algorithm based
on the insight that inlining all function calls makes a comte
insensitive analysis equivalent to a context-sensitivalysis of
the original program. Of course, inlining all function cktan
increase the program size exponentially, but intelligexurtstics
can make exponential growth extremely unlikely. An impotta
building block of this approach is context-insensitive lirsion-
based analysis—it is used while inlining the functions alsd éor
analyzing the resulting program. Nystrozh al. manage to scale
the context-sensitive analysis to a C program with 200K LDtz
new techniques described in this paper could be used to theate
algorithm even further.

3. Background
Inclusion-based pointer analysis is a set-constraint Iprob A

linear pass through the program code generates three types o

constraints—base simple andcomplex{11]. We eliminate nested
pointer dereferences by introducing auxiliary variables aon-
straints, leaving only one pointer dereference per coimstieable 1
demonstrates the three types of constraints, how they aieede
from the program code, and what the constraints mean. Faii-a va
ablev, pts(v) represents’s points-to set andbc(v) represents the
memory location denoted hy.

Following the example of prior work in this area [9, 11, 22, 4]
we solve the set-constraint problem by computing the dynami
transitive closure of a constraint graph. The constraiapQiG
has one node for each program variable. For each simpleraortst
a 2 b, G has a directed edge— a. Each node also has a points-to
set associated with it, initialized using the base constisafor each
base constraint O {b}, nodea’s points-to set contain®c(b). The
complex constraints are not explicitly represented in tla@ly; they
are maintained in a separate list.

To solve the constraints we compute the transitive closfire o
G by propagating points-to information along its edges. As we
update the points-to sets, we must also add new edges tceapre

letG =<V, E >
WV
while W # () do
n < SELECTFROM(WW)
for eachv € pts(n) do
for each constrainta O *n do
if v— a ¢ E then
E — EU{v—a}
W — WU {v}
for each constraint«n O b do
if b — v ¢ Ethen
E— FEU{b— v}
W — W u{b}
foreachn — z € E do
pts(z) « pts(z) U pts(n)
if pts(z) changedhen
W —Wu{z}

Figure 1. Dynamic Transitive Closure

the complex constraints. For each constrain© b and each
loc(v) € pts(b), we add a new edge — a. Similarly, for each
constraintra 2 b and eacloc(v) € pts(a), we add a new edge
b— .

Figure 1 shows a basic worklist algorithm that maintains the
explicit transitive closure of7. The worklist is initialized with all
nodes inG that have a non-empty points-to set. For each nede
taken off the worklist, we proceed in two steps:

1. For eacHoc(v) € pts(n): for each constraint O *n add an
edgev — a, and for each constraint: O b add an edgé — wv.
Any node that has had a new outgoing edge added is inserted
into the worklist.

2. For each outgoing edge — v, propagatepts(n) to nodew,
i.e.pts(v) := pts(v) U pts(n). Any node whose points-to set
has been modified is inserted into the worklist.

The algorithm is presented as it is for clarity of exposition
various optimizations are possible to improve its perfaroga

4. Our Solutions

The algorithm shown in Figure 1 computes the dynamic trivesit
closure of the constraint graph but makes no attempt to deyec
cles. The particular method used for detecting cycles wilarge
part determine the efficiency of the analysis—in fact, withcycle
detection our larger benchmarks run out of memory before-com
pleting, even on a machine with 2GB of memory. When perform-
ing online cycle detection, there is a tension between niziimg

the overhead caused by repeatedly sweeping the constrajit,g
and yet still finding cycles in a timely manner. We now pregeiat
new approaches for online cycle detection that balanceehiion

in different ways.



letG =<V, E >
R—10
W<V
while W # 0 do
n <« SELECFFROM(W)
for eachv € pts(n) do
for each constrainta O *n do
if v - a ¢ Ethen
E — EU{v—a}
W —Wu{v}
for each constraint«n O b do
if b — v ¢ Ethen
E — EU{b— v}
W — W U {b}
foreachn — z € £ do
if pts(z) = pts(n) An — z ¢ Rthen
DETECT-AND-COLLAPSECYCLES(z)
R— RU{n— z}
pts(z) < pts(z) U pts(n)
if pts(z) changedhen
W —Wu{z}

Figure 2. Lazy Cycle Detection

4.1 Lazy Cycle Detection

Cycles inthe constraint graph can be collapsed becauss imotte
same cycle are guaranteed to have identical points-to\Wetsise
this fact to create a heuristic for cycle detection: befomppgating
points-to information across an edge of the constraint lgrage
check to see if the source and destination already have pqums-
to sets; if so then we use a depth-first search to check forsilpes
cycle.

This technique is lazy because rather than trying to dejetts
when they are created.e. when the final edge is inserted that
completes the cycle, it waits until the effect of the cyclelesitical
points-to sets—becomes evident. The advantage of thigitpo
is that we only attempt to detect cycles when we are likely to
find them. A potential disadvantage is that cycles may becti=de
well after they are formed, since we must wait for the potots-
information to propagate all the way around the cycle befoee
can detect it.

The accuracy of this technique depends upon the assumption
that two nodes usually have identical points-to sets ontabse
they are in the same cycle; otherwise it would waste timengryi
to detect non-existent cycles. One additional refinemenedes-
sary to bolster this assumption and make the techniquewvediat
precise: we never trigger cycle detection on the same edige.tw
We thus avoid making repeated cycle detection attemptsviimep
nodes with identical points-to sets that are not in a cydhes addi-
tional restriction implies that Lazy Cycle Detection is@meplete—
it is not guaranteed to find all cycles in the constraint graph

The Lazy Cycle Detection algorithm is shown in Figure 2.
Before we propagate a points-to set from one node to another,
we check to see if two conditions are met: (1) the points-ts se
are identical; and (2) we haven't triggered a search on ttigee
previously. If the conditions are met, then we trigger cytgéection
rooted at the destination node. If there exists a cycle, legse
together all the nodes involved; otherwise we remembereithie
so that we won't repeat the attempt later.

4.2 Hybrid Cycle Detection

Cycle detection can be done offline, in a static analysisrgdgo
the actual pointer analysis, such as with Offline Variablbssitu-
tion described by Rountest al.[23]. However, many cycles don’t

a=&c;

d=c
SEOEO
xa = b;

(a) Program

TS =0

d ;) C \_/

boxa (c) Offline Constraint Graph
*a Db

(b) Constraints

Figure 3. HCD Offline Analysis Example: (a) Program code; (b)
constraints generated from the program code; (c) the oftiore
straint graph corresponding to the constraints. Note thandb
are in a cycle together; from this we can infer that in the ramli
constraint graphb will be in a cycle with all the variables in’s
points-to set.

exist in the initial constraint graph and only appear as ndges
are added during the pointer analysis itself, thus the needri-
line cycle detection techniques, such as Lazy Cycle Deteclihe
drawback to online cycle detection is that it requires traivey the
constraint graph multiple times searching for cycles; ¢trepeated
traversals can become extremely expensive. Hybrid Cyctedde
tion (HCD) is so-called because it combines both offline amithe
analyses to detect cycles, thereby getting the best of botlus—
detecting cycles created online during the pointer anglygithout
requiring any traversal of the constraint graph.

We now describe the HCD offline analysis, which is a linear-
time static analysis done prior to the actual pointer angly&/e
build an offline version of the constraint graph, with one exdor
each program variable plus an additioreflnode for each variable
dereferenced in the constraints (e«g). There is a directed edge
for each simple and complex constraiat2 b yields edge — a,

a D *byields edgexb — a, andxa D b yields edgeéh — xa. Base
constraints are ignored. Figure 3 illustrates this pracess

Once the graph is built we detect strongly-connected compo-
nents (SCCs) using Tarjan’s linear-time algorithm [26]y/ASCCs
containing only non-ref nodes can be collapsed immediaB&yCs
containing ref nodes are more problematic: a ref node infffia®
constraint graph is a stand-in for a variable’s unknown {ssfo
set, e.g. the ref noden stands for whateven's points-to set will
be when the pointer analysis is complete. An SCC containiref a
node such asn actually means that's points-to set is part of the
SCC; but since we don't yet know what that points-to set wél] b
we can't collapse that SCC. The offline analysis knows whanfi+v
ables’ points-to sets will be part of an SCC, while the onknal-
ysis (.e.the pointer analysis) knows the variables’ actual poiats-t
sets. The purpose of Hybrid Cycle Detection is to bridge giais.
Figure 4 shows how the online analysis is affected when an SCC
contains a ref node in the offline constraint graph.

We finish the offline analysis by looking for SCCs in the offline
constraint graph that consist of more than one node and kbt a
contain at least one ref node. Because there are no constedin
the formxp O xq, no ref node can have a reflexive edge and any
non-trivial SCC containing a ref node must also contain a-redn
node. For each SCC of interest we select one non-ref hoded
for each ref nodea in the same SCC, we store the tugle b) in
a list L. This tuple signifies to the online analysis tlé points-



a— {c}

(a) Points-to Info

O G
o 0

(b) Before edges added  (c) After edges added

Figure 4. HCD Online Analysis Example: (a) The initial points-to
information from the constraints in Figure 3; (b) the onlicen-
straint graph before any edges are added; (c) the onlingreorts
graph after the edges are added due to the complex constiaint
Figure 3. Note that andb are now in a cycle together.

letG =<V, E >
W —V
while W # () do
n < SELECTFROM(WW)
if (n,a) € Lthen
for eachv € pts(n) do
COLLAPSHEv,a)
W —WuU{a}
for eachv € pts(n) do
for each constrainta 2O *n do
if v — a ¢ E then
E — EU{v—a}
W — W u{v}
for each constraintn O b do
if b — v ¢ Ethen
E — EU{b— v}
W — Wu{b}
foreachn — z € E do
pts(z) < pts(z) U pts(n)
if pts(z) changedhen
W —Wu{z}

Figure 5. Hybrid Cycle Detection

to set belongs in an SCC with and therefore everything ia's
points-to set can safely be collapsed with

The online analysis is shown in Figure 5. The algorithm is
similar to the basic algorithm shown in Figure 1, except when
processing node we first check for a tuple of the forn{n, a). If
one is found then we preemptively collapse together roaled all
members of:’s points-to set, knowing that they belong to the same
cycle. For simplicity’s sake the pseudo-code ignores sooveas
optimizations.

Hybrid Cycle Detection is not guaranteed to find all cycles in
the online constraint graph, only those that can be infefireih
the offline version of the graph. Those cycles that it does, find
however, are discovered at the earliest possible opptytamd
without requiring any traversal of the constraint graphadidition,
while HCD can be used on its own as shown in Figure 5, it can also
be easily combined with other algorithms such as HT, PKH, BLQ
and LCD to enhance their performance.

5. Evaluation
5.1 Methodology

To compare the various inclusion-based pointer analysesnple-
ment field-insensitive versions of five main algorithms: iie¢ and
Tardieu (HT), Berndét al. (BLQ), Pearceet al. (PKH), Lazy Cycle
Detection (LCD), and Hybrid Cycle Detection (HCD). We alewp i
plement four additional algorithms by integrating HCD withur

of the main algorithms: HT+HCD, PKH+HCD, BLQ+HCD, and
LCD+HCD. The algorithms are written in C++ and handle all as-
pects of the C language except for varargs. They use as mamy co
mon components as possible to provide a fair comparisontheayd
have all been highly optimized. The source code is availabla
the authors upon request. Some highlights of the implertienta
include:

e |Indirect function calls are handled as described by Pedrce e
al [22]. Function parameters are numbered contiguously-sta
ing immediately after their corresponding function vakegland
when resolving indirect calls they are accessed as offséieat
function variable.

e Cycles are detected using Nuutid al’s [19] variant of Tar-
jan’s algorithm, and they are collapsed using a union-firtd da
structure with both union-by-rank and path compressiomiseu
tics.

e BLQ uses the incrementalization optimization described by
Berndlet al. [4]. We use the BuDDy BDD library [16] to im-
plement BDDs.

e LCD and HCD are both worklist algorithms—we use the work-
list strategy LRF suggested by Peare al. [21], to priori-
tize the worklist. We also divide the worklist into two sexts,
currentandnext as described by Nielscet al.[18]; items are
selected fromcurrent and pushed ontoext and the two are
swapped whercturrent becomes empty. For our benchmarks,
the divided worklist yields significantly better perforntarthan
a single worklist.

e Aside from BLQ, all the algorithms use sparse bitmaps to im-
plement both the constraint graph and the points-to sets. Th
sparse bitmap implementation is taken from the GCC 4.1.1
compiler.

e We also experiment with the use of BDDs to represent the
points-to sets. Unlike BLQ, which stores the entire potots-
solution in a single BDD, we give each variable its own BDD
to store its individual points-to set. For exampleg it~ {b, c}
andd — {c,e}, BLQ would have a single BDD represent-
ing the set of tupleq(a, b), (a,¢), (d,c), (d,e)}. Instead, we
give a a BDD representing the sdb,c} and we gived a
BDD representing the sdi, e}. The use of BDDs instead of
sparse bitmaps was a simple modification that required mini-
mal changes to the code.

The benchmarks for our experiments are described in Table 2.
Emacs is a text editor; Ghostscript is a postscript viewemG
is an image manipulation program; Insight is a GUI overlaid o
top of the gdb debugger; Wine is a Windows emulator; and Linux
is the Linux operating system kernel. The constraint geoera
is separate from the constraint solvers: we generate @mistr
from the benchmarks using the CIL C front-end [17], ignoramy
assignments involving types too small to hold a pointerekl
library calls are summarized using hand-crafted functiorbs
We pre-process the resulting constraint files using a vaigén

3Least Recently Fired—the node processed furthest back in time is given
priority.



Name LOC | Original Constraints | Reduced Constraints Base | Simple | Complex
Emacs-21.48 169K 83,213 21,460 4,088 | 11,095 6,277
Ghostscript-8.15 242K 169,312 67,310|| 12,154 | 25,880 29,276
Gimp-2.2.8 554K 411,783 96,483 || 17,083 | 43,878 35,5622
Insight-6.5| 603K 243,404 85,375 || 13,198 | 35,382 36,795
Wine-0.9.21| 1,338K 713,065 171,237|| 39,166 | 62,499 69,572
Linux-2.4.26 | 2,172K 574,788 203,733|| 25,678 | 77,936| 100,119

Table 2. Benchmarks: For each benchmark we show the number of linesdef (computed as the number of non-blank, non-commerst line
in the source files), the original number of constraints gateel using CIL, the reduced number of constraints aftergopie-processed, and

a break-down of the forms of the reduced constraints.
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Figure 6. Performance (in seconds) of our new combined algo-
rithm (LCD+HCD) versus three state-of-the art inclusiaaséd al-
gorithms. Note that the Y-axis is log-scale.

Offline Variable Substitution [23], which reduces the numbé
constraints by 60—77%. This pre-processing step takesHassa
second for Emacs and Ghostscript, and between 1 and 3 séoonds
Gimp, Insight, Wine, and Linux. The results reported aretfiese
reduced constraint files; they include everything from negdn
the constraint file from disk, creating the initial constitagraph,
and solving that graph.

We run the experiments on a dual-core 1.83 GHz processor with

2 GB of memory, using the Ubuntu 6.10 Linux distribution. Tigb
the processor is dual-core, the executables themselvesrayle-
threaded. All executables are compiled using gcc-4.1.1tlad-
O3’ optimization flag. We repeat each experiment three tiemes
report the smallest time; all the experiments have very lasance
in performance.

5.2 Time and Memory Consumption

Table 3 shows the performance of the various algorithms. The

times for HCD’s offline analysis are shown separately andimot
cluded in the times for the various algorithms using HCD—ytéue
small enough to be essentially negligible. Table 4 showsrtem-
ory consumption of the algorithms. Figure 6 graphically panes
(using a log-scale) the performance of our combined algorit
LCD+HCD—the fastest of all the algorithms—against the entr
state-of-the-art algorithms. Note that all these numbemewgath-
ered using the sparse-bitmap implementations of the algosi
(except for BLQ).

BLQ’s memory allocation is fairly constant across all thedte
marks. We allocate an initial pool of memory for the BDDs, gthi

Normalized Time

o &
O @("\\Q @Q

e
& & (OIS

Figure 7. Performance comparison of individual benchmarks,
where performance is normalized against LCD. HCD runs out of
memory for Wine, so there is no HCD bar for that benchmark.

size. While we can decrease the initial pool size for the Emnal
benchmarks without decreasing performance, there is noveas
to calculate what the correct pool size might be for a spelodich-
mark, so for all the benchmarks we use the smallest pool bate t
doesn’t impair the performance of our largest benchmark.

It is interesting to note the vast difference in analysisetibe-
tween Wine and Linux for all algorithms other than BLQ. While
Wine has 32.5K fewer constraints than Linux, it takes 1.3x7.
longer to be analyzed, depending on the algorithm used. dikis
crepancy points out the danger in using the size of the Initgaut
to predict performance when other factors can have at Isastiah
impact. Wine is a case in point: while its initial constragmaph is
smaller than that of Linux, its final constraint graph at thel ef
the analysis is an order-of-magnitude larger than that ofixj due
mostly to Wine's larger average points-to set size. BLQ dtes
display this same behavior, due to its radically differemalgsis
mechanism using BDDs and its lack of cycle detection.

Comparing HT, PKH, BLQ, LCD, andHCD. Figure 7 compares
the performance of the main algorithms by normalizing thees
for HT, PKH, BLQ, and HCD by that of LCD. Focusing on the
current state-of-the-art algorithms, HT is clearly thedat being
1.9x faster than PKH and 66 faster than BLQ. LCD is on
average 1.0%5 faster than HT and uses k2ess memory. HCD
runs out of memory for Wine, but excluding that benchmarlsit i
on average 1.8 slower than HT and 1:9 faster than PKH, using

dominates the memory usage and is independent of benchmarkl.4x more memory than HT.



Emacs Ghostscript  Gimp  Insight Wine Linux
HCD-Offline 0.05 0.17 0.26 0.23 0.51 0.6p
HT 1.66 12.03  59.00 42.49 1,388.51 393.80
PKH 2.05 20.05 9230 117.88 1,946.16 1,181)59
BLQ 4.74 121.60 167.56 265.94 5,117.64 5,144/29
LCD 3.07 15.23  39.50 39.02 1,157.10 327.65
HCD 0.46 4955 59.70 73.92 OOM 659.74
HT+HCD 0.46 729 1194 14.82 643.89 102.77
PKH+HCD 0.46 10.52  17.12 21.91 838.08 114.45
BLQ+HCD 5.81 115.00 173.46 257.05 4,211.71 4,581)91
LCD+HCD 0.56 7.99 1250 15.97 492.40 86.74

Emacs Ghostscript Gimp Insight Wine Linux
HT 17.7 84.9 279.0 2315 1,867.2 901].3
PKH 17.6 83.9 2695 194.7 1,448.3 8407
BLQ 215.6 216.1 216.2 216.1 216.2 216.2
LCD 14.3 74.6  269.0 184.4 1,465.1 83011

HCD 18.1 138.7 416.1 290.5 OOM 1,301.5
HT+HCD 12.4 80.8 253.9 186.5 1,391.4 8425
PKH+HCD 13.9 79.1 264.6 186.0 1,430.2 8075
BLQ+HCD 215.8 216.2 216.2 216.2 216.2 216.2
LCD+HCD 13.9 735 263.9 183.6 1,406.4 8079

Table 3. Performance (in seconds), using bitmaps for points-ta $é&tte that the HCD-Offline analysis is reported separately ot
included in the times for those algorithms using HCD. The H&@brithm runs out of memory on the Wine benchmark.

Table 4. Memory consumption (in megabytes), using bitmaps for geiatsets..

Effectsof HCD. Figure 8 normalizes the performance of the main
algorithms by that of their HCD-enhanced counterparts. @n a
erage adding HCD increases HT performance by3iacreases
PKH performance by &, increases BLQ performance by k1
and increases LCD performance by 8.2HCD also leads to a
small decrease in memory consumption for all the algoritems
cept BLQ—it decreases memory consumption byx<ifér HT, by
1.1x for PKH, and by 1.0% for LCD. Most of the memory used
by these algorithms comes from the representation of ptirgsts.
HCD improves performance by finding and collapsing cyclestmu
earlier than normal, but it doesn’t actually find many moreley
than were already detected without using HCD, so it doesgrt s
nificantly reduce the number of points-to sets that need todie-
tained. HCD doesn'timprove BLQ's performance by much beeau
even though no extra effort is required to find cycles, therstiil
some overhead involved in collapsing those cycles. Alse pir-
formance of BLQ depends on the sizes of the BDD representatio
of the constraint and points-to graphs, and because of tpefies
of BDDs, removing edges from the constraint graph can piatiént
increase the size of the constraint graph BDD.

While neither LCD nor HCD is by itself the fastest algorithm,
the combination of the two, LCD+HCD, yields the fastest algo
rithm among all those studied: It3s2 x faster than HT6.4 x faster
than PKH, an®0.6x faster than BLQ.

5.3 Understanding the Results

There are a number of factors that determine the relativioper
mance of these algorithms, but three of the most importastt ar
(1) the number of nodes collapsed due to strongly-connexied
ponents; (2) the number of nodes searched during the depth-fi
traversals of the constraint graph; and (3) the number gbgro
gations of points-to information across the edges of thestraimt
graph.

109 gHr

o PKH
= BLQ
m LCD

Normalized Time

Figure 8. Performance comparison of the individual benchmarks,
where the performance of each main algorithm is normalized
against its respective HCD-enhanced counterpart.

The number of nodes collapsed is important because it reduce
both the number of nodes and the number of edges in the cionistra
graph; the more nodes that are collapsed, the smaller te amol
the more efficient the algorithm.

The depth-first searches are pure overhead due to cycle-detec
tion. As long as roughly as many cycles are being detectexah th
the fewer nodes that are searched the better.

The number of points-to information propagations is an impo
tant metric because propagation is one of the most expeogem-
tions in the analysis. Itis strongly influenced by both thenber of
cycles collapsed and by how quickly they are collapsed. Wcec



Emacs Ghostscript Gimp Insight Wine  Linux
HT 3.44 18.55 46.98 65.00 1,551.89 419.38
PKH 4.23 19.55 81.53 96.50 1,172.15 801.13
LCD 4.96 19.34 47.29 64.57 1,213.43 380.26
HCD 3.96 2465 49.11 65.01 731.20 267.69
HT+HCD 2.58 15.65 33.69 42.33 737.37 209.90
PKH+HCD 3.06 1470 33.71 43.20 74435 17243
LCD+HCD 3.09 13.69 33.04 43.17 625.82 183.97

Table 5. Performance (in seconds), using BDDs for points-to sets.

Emacs Ghostscript Gimp Insight Wine Linux
HT 331 49.3 100.7 100.0 811.2 274|3
PKH 33.2 33.6 50.4 66.8 226.4 182/1
LCD 33.2 33.2 40.1 339 2511 735
HCD 33.1 37.1 36.8 37.0 239.6 65.8
HT+HCD 331 37.8 51.2 53.9 410.6 1007
PKH+HCD 33.1 33.2 36.0 33.2 103.9 452
LCD+HCD 33.1 33.2 33.2 33.2 173.6 4216

Table 6. Memory consumption (in megabytes), using BDDs for poiotséits.

is not detected quickly, then points-to information couédrbdun-
dantly circulated around the cycle a number of times.

We now examine these three quantities to help explain the per
formance results seen in the previous section. Due to iisabyl
different analysis mechanism, we don't include BLQ in thiam-
ination.*

Nodes Collapsed. PKH is the only algorithm guaranteed to detect
all strongly-connected components in the constraint grapkw-
ever, HT and LCD both do a very good job of finding and col-
lapsing cycles—for each benchmark they detect and collapse
99% of the nodes collapsed by PKH. HCD by itself doesn’t do as
well, collapsing only 46—74% of the nodes collapsed by PKRsT
deficiency is primarily responsible for HCD's greater meynoon-
sumption, though it is offset somewhat by the fact that HC Bsaict
need to search the graph to collapse nodes.

Nodes Searched. HCD is, of course, the most efficient algorithm
in terms of searching the constraint graph, since it doesggtrch
at all. HT is the next most efficient algorithm, because ityonl
searches the subset of the graph necessary for resolviirgdnd
constraints. PKH searches 2.&s many nodes as HT, as it period-
ically searches the entire graph for cycles. LCD is the leffisient,
searching & as many nodes as HT.

Propagations. LCD has the fewest propagations, showing that
its greater effort at searching for cycles pays off by findihgse
cycles earlier than HT or PKH. HT has k&s many propagations,
and PKH has 2.2 as many. Since they both find as many cycles as
LCD (as shown by the number of nodes collapsed), this difieze

is due to the relative amount of time it takes for each of the
algorithms to find cycles. HCD has the most propagationsx 5.2

Effects of HCD. The main benefit of combining HCD with the
other algorithms is that it helps these algorithms find cycleich
sooner than they would on their own. While it does little torense

the number of nodes collapsed or decrease the number of nodes
searched, it greatly decreases the number of propagatiecayse
cycles are collapsed before the points-to information helsaace

to propagate around the cycles. The addition of HCD decsahse
number of propagations by ¥Ofor HT and by 7.4 for both PKH

and LCD.

Discussion Despite its lazy nature, LCD searches more nodes
than either HT or PKH, and it propagates less points-to mgion
than either as well. It appears that being more aggressiye @
which naturally leads to the question: could we do betterdindp
even more aggressive? However, past experience has shatwn th
we must carefully balance the work we do—too much aggression
can lead to overhead that overwhelms any benefits it may geovi
This point is shown in both Faehndrigh al’s algorithm [9] and
Pearceet al’s original algorithm [21]. Both of these algorithms
are very aggressive in seeking out cycles, and both are ar ord
of magnitude slower than any of the algorithms evaluatedis t
paper.

5.4 Representing Points-to Sets

Table 4 shows that the memory consumption of all the algmsth
that use sparse bitmaps is extremely high. Profiling revies
the majority of this memory usage comes from the bit-map rep-
resentation of points-to sets. BLQ, on the other hand, usles r
tively little memory even for the largest benchmarks, dudtso
use of BDDs. It is thus natural to wonder how the other algo-

as many as LCD. HCD finds cycles as soon as they are formed, Sorithms would compare—in terms of both analysis time and mem-

finds substantially fewer cycles than the other algorithms.

41t is difficult to find statistics to directly explain BLQ's prmance rela-
tive to HT, PKH, LCD, and HCD. It doesn’t use cycle detectien,it adds

orders of magnitude more edges to the constraint graph—opiagation

of points-to information is done simultaneously acrosdtadl edges using
BDD operations, and the performance of the algorithm is doeerto how

well the BDDs compress the constraint and points-to graipéas anything

else.

points-to sets. Unlike BLQ, which stores the entire pototso-
lution in a single BDD, we store each variable’s points-to ise

its own BDD. For example, ifa — {b,c} andd — {c,e},
BLQ would use a single BDD to represent the set of tuples
{(a,b), (a,c), (d,c), (d,e)}. Instead, we use a BDD to represent
a’s points-to set{b, c}, and we use a separate BDD to represent
d’s points-to set{c, e}. With this design, BDDs can be substituted
for sparse bitmaps with minimal changes to the code.
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Figure 9. Performances of the BDD-based implementations nor-
malized by their bitmap-based counterparts, averagedallvére
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Figure 10. Memory consumption of the bitmap-based implemen-
tations normalized by their BDD-based counterparts, ajegaver
all the benchmarks.
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Tables 5 and 6 show the performance and memory consump-

tion of the modified algorithms. Figure 9 graphically shows t
performance cost of the modified algorithms by normalizimgnt

by their bitmap-based counterparts, and Figure 10 showséme-

ory savings by normalizing the bitmap-based algorithmsHmjrt
BDD-based counterparts. As with BLQ, we allocate an injtiadl

of memory for the BDDs that is independent of the benchmark
size, which is why memory consumption actually increasesif®
smallest benchmark, Emacs, and never goes lower than 33{faMB
any benchmark.

On average, the use of BDDs increases running time ky 2
while it decreases memory usage by>6.9Jost of the extra time
comes from a single functiomdd allsat, which is used to extract
all the elements of a set contained in a given BDD. This fuamcis
used when iterating through a variable’s points-to setevadding
new edges according to the complex constraints. Howevén bo
PKH and HCD are actually faster on all benchmarks except for
Emacs (Figure 9 shows that they are slower on average, kut thi
is solely because of Emacs). These are the two algorithnts tha
propagate the most points-to information across consteaiges.

BDDs make this operation much faster than using sparse pgma
and this advantage makes up for the extra time taken byaliddt.
When BDDs are used, HCD is less effective in improving per-
formance than it was when using bitmaps because HCD desrease
the number of propagations required, but using BDDs already
makes propagation a fairly cheap operation. However, witiDB,
HCD'’s effect on memory consumption is much more noticeable,
since the constraint graph represents a much larger propat
the memory usage.

6. Conclusion

We have significantly improved upon the current state-efdrt

in inclusion-based pointer analysis by introducing twoeldech-
nigues:Lazy Cycle DetectioLCD) andHybrid Cycle Detection
(HCD). As their names suggest, both techniques improvefthe e
ciency and effectiveness of online cycle detection, whelriti-

cal to the scalability of all inclusion-based pointer asaly. Lazy
Cycle Detection detects cycles based on their effects ontptd
sets, piggybacking on top of the transitive closure comtjriahat

is inherent to this type of analysis. Its lazy nature yieldsghly
efficient algorithm. Hybrid Cycle Detection takes a diffierep-
proach, paying a tiny up-front cost to perform an offline sai
that allows the subsequent online analysis to detect cydtésut
ever having to traverse the constraint graph. Hybrid Cya¢ed-
tion can be used to enhance other algorithms for inclusaset
pointer analysis, significantly improving their perfornsanOur re-
sults show that the combination of LCD and HCD is on average th
most efficient of all the algorithms we studied. On our suitein
large open source C benchmarks, which range in size from 169K
to 2.17M lines of code, the LCD+HCD algorithm is an average of
3.2x faster than the Heintze and Tardieu algorithénix faster
than the Pearcet al. algorithm, and20.6 x faster than the Berndl
et al. algorithm.

We have also investigated the use of different data strestur
to represent points-to sets, examining the impact on botfope
mance and memory consumption. In particular, we have cogdpar
the sparse-bitmap implementation used in the GCC opercsour
compiler with a BDD-based implementation, and we have found
that the BDD implementation is on average 2lower but uses
5.5x less memory.

Many program analyses that require pointer informationt sac
rifice precision in the pointer analysis for the sake of reaste
performance. This performance is the attraction of analgseh as
Steensgaard’s near-linear-time analysis [25] and Das*-iCavel
Flow analysis [7]. However, the precision of subsequentm
analysis is often limited by the precision of the pointerommfa-
tion used [24], so it behooves an analysis to use the mosisprec
pointer information that it can reasonably acquire. Ourknoas
made inclusion-based pointer analysis a reasonable cewérefor
applications with millions of lines of code.
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