
An Implementation of Lazy Code Motion for

Machine SUIF

Laurent Rolaz

Swiss Federal Institute of Technology
Processor Architecture Laboratory

Lausanne
28th March 2003

1 Introduction

Optimizing compiler often attempts to eliminate redundant computations either by removing
instructions or by moving instructions to less frequently executed locations. The code remov-
ing optimization attempts to determine when two instructions compute the same value, and
then decides if one of the instructions can be eliminated. The code motion optimization rely
on data-flow analysis to determine the set of locations where each computation will produce
the same value and to select the ones that are expected to be least frequently executed.

Lazy Code Motion (LCM) is an algorithm developed by Knoop, Rüthing and Steffen
[3, 4]. It is a descendant of partial redundancy elimination that avoids unnecessary code
motion. Drechsler and Stadel present a variation of this technique that is more practical [2],
thus this version will be implemented. LCM operates at the global scope and can eliminate
redundancies in a single procedure. The base idea of this algorithm is to compute points in the
flow graph where the insertion of the evaluation of a term t will make all present evaluation
of t redundant. Then the algorithm eliminates all of the original evaluation. If the algorithm
attempts to insert an evaluation into a block that already contains an evaluation, neither the
insertion nor the deletion will be performed.

Section 2 will quickly present the partial redundancy elimination optimization. Then
section 3 will be a detailed description based on the implementation of the LCM algorithm
as a Machine SUIF optimization pass.

2 Partial Redundancy Elimination

Partial redundancy elimination (PRE) is an optimization introduced by Morel and Renvoise
[5] that combines common subexpresssion elimination (CSE) with loop invariant code motion.
Partially redundant expression are redundant along some execution paths, but not necessar-
ily all. In general, PRE moves code upward in the procedure to the earliest point where
the computation would produce that same value without lengthening any path through the
program.

1

3 DESCRIPTION OF THE ALGORITHM 2

vr$4 <- ADD a,bvr$1 <- ADD a,1
vr$2 <- ADD vr$2,c

BGE a,b

vr$4 <- ADD a,b
RET vr$4

vr$4 <- ADD a,bvr$1 <- ADD a,1
vr$2 <- ADD vr$2,c
vr$4 <- ADD a,b

BGE a,b

RET vr$4

(a) (b)

Figure 1: Program improved by partial redundancy elimination. (a) shows a partially re-
dundant computation of the term ��� a,b in the last block. (b) moves it upward to a less
frequently executed point.

3 Description of the Algorithm

Computing the point at which to insert evaluation of a term t is a two-step process. First
the algorithm computes the earliest points in the flow graph where evaluations of t can be
inserted without violating safety or profitability. In fact, the algorithm guarantees the minimal
number of evaluations of t on all paths. Then the insertion points are pushed later on each
path until the last points where the insertions can occur without increasing the number of
executed evaluations. The second step avoids unnecessary code motion. This features is
important when code motion interacts with register allocation and other optimization. Each
replacement affects register allocation because it has the potential of shortening the live range
of a term’s operands and lengthening the live range of its target temporary.

3.1 Boolean Properties Associated with Terms

For each term, boolean properties are defined. Some of these properties are computed locally
in a block, and other properties depend on interactions of different blocks and are called
global.

3.1.1 Local Properties

The local properties are transparency, availability and anticipability.

Transparency A term is said to be transparent in a block B it its operands are not modified
by the execution of all the instructions in B:
���� LazyCodeMotion :: Transp(CfgNode *BB , Instr *T) {

// check each instruction in BB and see if one of the operands of T

// are modified by the current instruction

��� (InstrHandle h = start(BB); h != end(BB); ++h) {

Instr * instr = *h;

�� (UsesInstr(T, instr))

���	�
 �����; // T is modified by instr

} // end for

���	�
 ��	�; // no modification detected

}

3 DESCRIPTION OF THE ALGORITHM 3

Local Availability A term t is said to be locally available in a block B if there is at least
one evaluation of t in the block B, and if the instructions appearing in the block after
the last evaluation of t do not modify its operands:
���� LazyCodeMotion ::Comp(CfgNode *BB , Instr *T) {

// check each instruction in BB from end to start

��� (InstrHandle h = last(BB); h != end(BB); --h) {

Instr * instr = *h;

// found a computation of T

�� (SameTerm(instr , T))

���	�
 ��	�;

// T is modified before a computation of T was found

�� (UsesInstrSR(T, instr))

���	�
 �����;

} // end for

���	�
 �����; // no computation detected

}

Local availability of a term grants that the last evaluation of this term in the block will
deliver the same result as would an evaluation of this term placed at the end of the
block.

Local Anticipability A term t may be locally anticipated in a block B if there is at least
one evaluation of t in B, and if the instructions appearing in B before the first evaluation
of t do not modify its operands:
���� LazyCodeMotion :: Antloc(CfgNode *BB , Instr *T) {

// check each instruction in BB from start to end

��� (InstrHandle h = start(BB); h != end(BB); ++h) {

Instr * instr = *h;

// found a computation of T

�� (SameTerm(instr , T))

���	�
 ��	�;

// T is modified before a computation of T was found

�� (UsesInstrSR(T, instr))

���	�
 �����;

} // end for

���	�
 �����; // no computation detected

}

Local anticipability of a term grants that the first evaluation of this term in the block
will deliver the same result as would an evaluation of this term placed at the beginning
of the block.

3.1.2 Global Properties

The meaning of availability and anticipability can be extended to a complete program. The
availability of a term at a given point implies that an evaluation of this term placed at this
point would deliver the same results as the last computation of this term made before this
point. Similarly, the anticipability of a term at a given point implies that an evaluation of
this term placed at this point would deliver the same results as the first evaluation of this
term made after this point. In practice, we will concentrate on points which are block entries
or exists.

Because of these two insertion points, we have to refine the properties of availability and
anticipability. The global properties are availability on entry of a block (AVIN), anticipability
on entry of a block (ANTIN), availability on exit of a block (AVOUT), and anticipability on exit

3 DESCRIPTION OF THE ALGORITHM 4

of a block (ANTOUT). The relations between global and local properties are easily expressed in
the form of systems of boolean equations. There are many approaches to solve these systems.
The algorithm implemented in our pass is based on an iterative approach that use work list.
For more practical informations see [6].

Global Availability A term t is available on entry to a block B if it is available on exit
from each predecessor of B. A term is available on exit from a block B if it is locally
available or if it is available on entry of the block and transparent in this block:

AVINB(t) =




false if B is the entry block∏
Pi∈Pred(B)

AVOUTPi(t) otherwise

AVOUTB(t) = COMPB(t) + TRANSPB(t) · AVINB(t)

���� LazyCodeMotion ::Avin(CfgNode *B, Instr *T) {

�� (preds_size(B) == 0)

���	�
 �����; // it’s the entry block

��� (�
� i = 0; i < m; ++i) {

��(! Avout(get_pred(B, i), T))

���	�
 �����;

} // end for

���	�
 ��	�;

}

���� LazyCodeMotion :: Avout(CfgNode *B, Instr *T) {

// the Avout list of Basic Block

�����
 set <CfgNode *> AvoutSet;

....

// find B in Avout

���	�
 (AvoutSet.find(B) != AvoutSet.end ());

}

Global Anticipability A term t may be anticipated on exit of a block B if it can be antic-
ipated on entry of each successor of the block:

ANTOUTB(t) =




false if B is an exit block∏
Si∈Succ(B)

ANTINSi(t) otherwise

ANTINB(t) = ANTLOCB(t) + TRANSPB(t) · ANTOUTB(t)

���� LazyCodeMotion :: Antout(CfgNode *B, Instr *T) {

�� (succs_size(B) == 0)

���	�
 �����; // it’s one exit block

��� (�
� i = 0; i < m; ++i) {

��(! Antin(get_succ(B, i), T))

���	�
 �����;

} // end for

���	�
 ��	�;

���� LazyCodeMotion :: Antin(CfgNode *B, Instr *T) {

// the Antin list of Basic Block

�����
 set <CfgNode *> AntinSet;

3 DESCRIPTION OF THE ALGORITHM 5

....

// find B in Antin

������ (AntinSet.find(B) != AntinSet.end ());

}

3.2 Computing the Earliest Points of Insertion

Lazy Code Motion need first to determine the earliest points in the procedure at which
evaluations of a term t can be inserted to make all current evaluations of t redundant. These
point must satisfy the conditions of safety and profitability.

According to the algorithm’s version of Drechsler and Stadel, insertions are considered on
the edges of the procedure flow graph. This simply means that an evaluation of t is made if
that edge is traversed. Edges are noted (P,B), where P is one of the predecessor of B.

Consider an arbitrary edge (P,B) and a term t. Under what conditions would it be the
earliest point at which to insert an evaluation of t ?

• t should be anticipated at the beginning of S.

• t should not be available at the end of P . If it is available at the end of P , then
there is no profitable point in inserting a new evaluation, since it would only create two
consecutive evaluations of t.

• There should be one of two reasons that the evaluation cannot be placed earlier:

– Either t is not transparent in the preceding block P or t is not anticipated at the
end of P . An earliest insertion would not be safe.

– There is a path out of P that does not contain an evaluation of t. An earliest
insertion would not be profitable.

We can directly translate these conditions into equations:

EARLIEST(P,B)(t) =
{

ANTINB(t) · AVOUTP (t) if P is the entry
ANTINB(t) · AVOUTP (t) · (TRANSPP (t) + ANTOUTP (t)) otherwise

������ �		� LazyCodeMotion :: Earliest(CfgNode *P, CfgNode *S, Instr

*T) {

�
 ((! Avout(P, T)) && (Antin(S, T)))

������ (get_number(P) == 0) || (! Transp(P, T)) || (! Antout(P, T));

����

������
����;

3.3 Computing the Latest Point of Insertion

Inserting evaluations of each term t on the edges described by EARLIEST makes all evaluations
of t at the beginning of blocks redundant. The intuition behind this transformation is to move
up evaluations as far as possible while maintaining safety. In fact EARLIEST gives an optimal
solution in term of number of evaluations performed. However life-times of temporaries are not
taken into account and the transformation is far from optimal when taking into consideration
the length of time that values might stay in registers.

3 DESCRIPTION OF THE ALGORITHM 6

The idea to solve this problem is to delay as far as possible the insertion of an evaluation
of t while maintaining computational optimality. In other words, we need to find the latest
efficient points.

Consider a block P , a term t and all paths from the entry block E to P (noted E � P).
Under what conditions would be an insertion of an evaluation of t delayed ? If each of the paths
E � P contains an edge where EARLIEST is true and there are no following instructions that
evaluate t or destroy the transparency of t (kill t), then the insertion can be delayed until after
P . The delayed insertion can occur just before a block B that either contains an evaluation
of t or has an entering edge coming from an original evaluation of t. In those cases, delay the
insertion just before block B. I hope that this intuition is clear because I always have trouble
meeting myself there, anyway see [2, 4] for more details. Here are the equation to summarize
these ideas:

LATERINB(t) =




false if P is the entry∏
Pi∈Pred(B)

LATER(P,B)(t) otherwise

LATER(P,B)(t) = (LATERINP (t) · ANTLOCP (t)) + EARLIEST(P,B)(t)

A solution to this equations system can be found with an iterative algorithm that use work
list. For more practical informations see [6]:
������ ���� LazyCodeMotion :: Laterin(CfgNode *BB , Instr *T) {

// the LATERIN list of Basic Block

��	��
 set <CfgNode *> LaterinSet;

....

// find BB in Laterin

������ (LaterinSet.find(BB) != LaterinSet.end ());

}

An intuition behind LATERIN is that an evaluation of a term t can be be moved through a
block B without losing any benefit if LATERINB(t) is true.
������ ���� LazyCodeMotion :: Later(CfgNode *P, CfgNode *B, Instr

*T) {

�
 (Earliest(P, B, T))

������ ����;

����

������ (Laterin(P, T)) && (! Antloc(P, T));

}

3.4 Optimal Insertions and Deletions

Now, we need to compute two last things for a term t, first the final points of insertion and
then the points where evaluations are deleted. We delay the insertion of evaluations of t to the
the last possible point. That would be a point where an edge (P,B) satisfies the conditions for
delay (LATER(P,B)(t)) but the block at the head of the edge P does not (LATERINB(t)) because
one of the other edges does not have a clear backward path to occurrences of EARLIEST.

INSERT(P,B)(t) = LATER(P,B)(t) · LATERINB(t)

DELETE(B)(t) =
{

false if P is the entry
ANTLOCB(t) · LATERINB(t) otherwise

The implementation is straightforward:

3 DESCRIPTION OF THE ALGORITHM 7

// the Insert predicate

������ ���� LazyCodeMotion :: Insert(CfgNode *P, CfgNode *B, Instr

*T) {

���	�� Later(P, B, T) && (! Laterin(B, T));

}

// the Delete predicate

������ ���� LazyCodeMotion :: Delete(CfgNode *B, Instr *T) {

���	�� (! B->get_number () == 0) && Antloc(B, T) && (! Laterin(B, T));

}

We can now implement a function to perform insertion end deletion of evaluation of a term
t. The pass does not need to look at all blocks to see if INSERT is true, since t is anticipated
at a block P at the head of an edge (P,B) where the insertion will occur:
// computing insertion and deletion points

���� LazyCodeMotion :: Lazy_Update(Instr *T) {

���� updated =
����;

// create a register to store the evaluation of T

Opnd evalT = get_dst(new_instr_eval(T));

// iterate over each BB

�� (��� i = 0 , nb_BB = size(unit_cfg); i < nb_BB ; ++i) {

CfgNode *B = get_node(unit_cfg , i);

// T can be anticipated into B

�
 (Antin(B, T)) {

// eval of T needn’t to be delayed

�
 (! Laterin(B, T)) {

// iterate overs each predecessors

�� (��� j = 0 , nb_preds = preds_size(B); j < nb_preds ; ++j) {

CfgNode *P = get_pred(B, j);

// the later point of insertion

�
 (Later(P, B, T)) {

updated = ��	�;

// perform insertion

�
 (succs_size(P) == 1) {

append(P, new_instr_eval(T));

} ���� {

CfgNode * new_node = insert_empty_node(unit_cfg , P, B);

append(new_node , new_instr_eval(T));

} // end if

} // end if

} // end for

// delete redundant evaluation of T

�
 (Antloc(B, T)) {

updated = ��	�;

// get each instruction of block B, find T, and replace evaluation

�� (InstrHandle hI = start(B); hI != end(B); ++hI) {

Instr * instr = *hI;

�
 (SameTerm(instr , T))

replace(B, hI , new_instr_alm(get_dst(instr) ,suifvm ::MOV , clone(evalT)));

} // end for

} // end if

} // end if

} // end if

// seach evaluation of T and replace the dst with evalT

....

} // end for

���	�� updated;

}

At last we implement the main function that perform the Lazy Code Motion transforma-
tion on a procedure in CFG form. Note the call to the function local CSE that perform a

REFERENCES 8

simple local Common Sub-Expression elimination inside a block. It is done to simplify the
work of LCM. The implementation of this local CSE won’t be explain but you can see [1] for
many details. Here is the full implementation of the main function that perform LCM:
���� LazyCodeMotion :: Lazy_Code_Motion () {

���� updated = �����;

// iterate over each instruction

��� (CfgNodeHandle hBB = start(unit_cfg); hBB != end(unit_cfg); ++ hBB) {

CfgNode *BB = * hBB;

// perform local CSE in each BB

local_CSE(BB);

// begin the lazy code motion process (LCM)

// we have to take each Term in the program and apply LCM

��� (InstrHandle hI = start(BB); hI != end(BB); ++hI) {

Instr * instr = *hI;

// optimize only arithmetical Instructions and Loads

	� (! is_binary_exp(instr) && ! is_ldc(instr) &&

! reads_memory(instr))
���	�
�;

	� (IsUpdatedTerm(instr))
���	�
�;

// call Lazy code motion algorithm

updated |= Lazy_Update(instr);

} // end for

} // end for

���
�� updated;

}

One of the problem of the code transformed by LCM is that the function Lazy Update
may insert many useless copy operations. It would be a good idea to perform a simple local
copy propagation after a full transformation of LCM (after a call to Lazy Code Motion()):
��	� LazyCodeMotion :: do_opt_unit(OptUnit *unit) {

....

���� updated = �����;

�� {

updated = Lazy_Code_Motion ();

	�� iter = 0;

// perform a local copy propagation

��� (CfgNodeHandle hBB = start(unit_cfg); hBB != end(unit_cfg); ++ hBB) {

CfgNode *BB = * hBB;

iter = 0;

��	�� (local_copy_prop(BB) && iter < MAX_COPY_PROP_ITER)

iter ++;

} ��	�� (updated);

....

The local copy propagation algorithm won’t be explain but you can see [1] for more details.
Like the constant propagation, the copy propagation optimization let dead code in the code.
Thus it is a good idea to perform a dead code elimination after LCM.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[2] Karl-Heinz Drechsler and Manfred P. Stadel. A variation of knoop, ru¨thing, and steffen’s
lazy code motion. ACM SIGPLAN Notices, 28(5):29–38, 1993.

[3] J. Knoop, O. Ruething, and B. Steffen. Lazy code motion. In Proceedings of the ACM SIG-
PLAN ’92 Conference on Programming Language Design and Implementation, volume 27,
pages 224–234, San Francisco, CA, June 1992.

REFERENCES 9

[4] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion: Theory and
practice. ACM Transactions on Programming Languages and Systems, 16(4):1117–1155,
July 1994.

[5] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Communications of the ACM, 22(2):96–103, 1979.

[6] Robert Morgan. Building an optimizing compiler. Digital Press, 1998.

