
Fast and Accurate Flow�Insensitive Points�To Analysis�

Marc Shapiro and Susan Horwitz

Computer Sciences Department� University of Wisconsin�Madison

���� West Dayton Street� Madison� WI ��	�
 USA

Electronic mail� fmds� horwitzg�cswiscedu

Abstract

In order to analyze a program that involves pointers� it
is necessary to have �safe� information about what each
pointer points to� There are many di�erent approaches
to computing points�to information� This paper ad�
dresses techniques for �ow� and context�insensitive in�
terprocedural analysis of stack�based storage�

The paper makes two contributions to work in this
area	

� The 
rst contribution is a set of experiments that
explore the trade�o�s between techniques previ�
ously de
ned by Lars Andersen and Bjarne Steens�
gaard� The former has a cubic worst�case running
time� while the latter is essentially linear� How�
ever� the former may be much more precise than
the latter� We have found that in practice� Ander�
sen�s algorithm is consistently more precise than
Steensgaard�s� For small programs� there is very
little di�erence in the times required by the two
approaches� however� for larger programs� Ander�
sen�s algorithm can be much slower than Steens�
gaard�s�

� The second contribution is the de
nition of two
new algorithms� The 
rst algorithm can be tuned�
so that its worst�case time and space requirements�
as well as its accuracy range from those of Steens�
gaard to those of Andersen� We have experimented
with several versions of this algorithm� one version
provided a signi
cant increase in accuracy over
Steensgaard�s algorithm� while keeping the run�
ning time within a factor of two�

The second algorithm uses the 
rst as a subrou�
tine� Its worst�case time and space requirements
are a factor of logN �where N is the number of
variables in the program� worse than those of
Steensgaard�s algorithm� In practice� it appears to

� This work was supported in part by the National Science Foun�
dation under grant CCR��������� and by the Defense Advanced Re�
search Projects Agency under ARPA Order No	 ���
 �monitored by
the O�ce of Naval Research under contract N��������J�����	

run about ten times slower than Steensgaard�s al�
gorithm� however it is signi
cantly more accurate
than Steensgaard�s algorithm� and signi
cantly
faster than Andersen�s algorithm on large
programs�

� Introduction

In order to analyze a program that involves pointers�
it is necessary to have �safe� information about what
each pointer points to� In general� the more precise
the points�to information� the more precise the analysis�
For example� consider the following code segment	

��� x � ��
��� �p � ��
�	� write
x��

Data�ow�analysis problems like constant propaga�
tion� reaching de
nitions� and live variables all rely on
knowing which variables are de
ned at each statement�
In the example above� we need to know where variable
p might point in order to determine the e�ect of exe�
cuting statement �� For example� if precise information
has been computed� and it is known that p points to
x� then it can be determined that x has the constant
value � at statement �� Similarly� if it is known that p
does not point to x� then it can be determined that x
has the constant value � at statement �� By contrast�
if no points�to information is available� then it must be
assumed that p might or might not point to x� and the
value of x at statement � cannot be determined�

There has been a great deal of work on techniques for
computing points�to information� Some have addressed
tracking heap�allocated storage �e�g�	 �JM��� �HPR���
�Hen��� �Deu��� �CWZ��� �Deu��� �GH��� �SRW��� ��
while others have concentrated on stack�based storage�
The latter can be further classi
ed as �ow�sensitive or
�ow�insensitive� and as context�sensitive or context�
insensitive� Flow�sensitive analysis �e�g�	 �LR���
�CBC��� �EGH���� takes into account the order in which
statements are executed� while �ow�insensitive analysis
�e�g�	 �Wei��� �MCCH��� �And��� �Ste��b� �ZRL��� ��
assumes that statements can be executed in any or�
der� Similarly� context�sensitive analysis takes into ac�
count the fact that a function must return to the site
of the most recent call� while context�insensitive analy�
sis propagates information from a call site� through the



called function� and back to all call sites� �An interest�
ing pair of papers that address this issue are �WL��� and
�Ruf����� Flow and context sensitivity generally pro�
vide more precise results� but can also be more costly
in terms of time and�or space�

This paper addresses techniques for �ow� and
context�insensitive analysis of stack�based storage� Even
within this somewhat limited context there is a range of
approaches that trade precision for speed� At one end
is the algorithm de
ned by Andersen �And����� which
may require O�n�� time� where n is the size of the pro�
gram� At the other end is the algorithm de
ned by
Steensgaard�Ste��b�� which runs in almost linear time�
but which may produce less precise results than Ander�
sen�s analysis�

The 
rst contribution of this paper is a set of exper�
iments that explore the actual trade�o�s between An�
dersen�s and Steensgaard�s approaches� We have imple�
mented both algorithms and used them to analyze �� C
programs� ranging in size from ��� to ������ lines� The
results of this study are reported in Section ���� We
have found that Andersen�s algorithm is consistently
more precise than Steensgaard�s	 the average size of
a points�to set computed by Steensgaard�s algorithm
was more than twice the size computed by Andersen�s
algorithm in �� of the �� cases� For small programs
�up to about ����� lines�� there is very little di�erence
in the times required by the two approaches� however�
for larger programs� Andersen�s algorithm can be much
slower than Steensgaard�s �as much as ��� times as slow
in one case��

One can think of both Andersen�s and Steensgaard�s
approaches as building a graph �sometimes called a stor�
age shape graph�CWZ��� or an alias graph�MCCH����
that represents the points�to relationships among the
program�s variables� The important di�erence between
the two approaches has to do with the out�degree of
the graph� Andersen allows each node to have an ar�
bitrary number of out�edges� while Steensgaard allows
only one out�edge� Because of this restriction� a node
in Steensgaard�s graph may represent more than one
variable� while in Andersen�s graph� each node repre�
sents exactly one variable� The coarser granularity of
Steensgaard�s graphs leads to both the fast runtime of
his algorithm and its loss of precision�

Example	 Figure � shows the graphs that would be
built by the two approaches for an example program�
and the points�to information that each graph repre�
sents� Note that Steensgaard�s approach erroneously
determines that b might point to e� and that d might
point to c� �

The second contribution of this paper is the de
ni�
tion of two new algorithms for �ow�insensitive pointer
analysis� The 
rst algorithm takes two parameters that
make it tunable	 setting the parameters to one ex�
treme causes it to produce the same results �in the
same worst�case time� as Steensgaard�s algorithm� set�
ting the parameters to the other extreme causes it to
produce the same results �in the same worst�case time�
as Andersen�s algorithm� intermediate values produce
intermediate results� Experimental results �reported in

�Andersen also de�nes an algorithm that uses function in�lining
to achieve some context sensitivity	 Whenever we refer to Andersen�s
algorithm in this paper we mean his context�insensitive version	

Section ���� show that with one version of this algo�
rithm we can achieve a signi
cant increase in accuracy
over Steensgaard�s algorithm� while keeping the running
time within a factor of two�

Our second algorithm� which uses the 
rst as a sub�
routine� is also parameterized	 by the out�degree of the
nodes of the points�to graph� In the worst case� for
out�degree k� this algorithm uses O�k� N� space and
O�k� n ��k� n� k� n� logkN� time� where � is the �very
slowly growing� inverse Ackermann�s function that arises
in the context of fast union�
nd data structures�Tar����
N is the number of variables� and n is the size of the
program�� Thus� for a 
xed value of k� its asymptotic
complexity is slightly worse �by a factor of logN� than
that of Steensgaard�s algorithm� In theory� its accu�
racy may be no better than that of Steensgaard�s al�
gorithm� however� experimental evidence �reported in
Section ���� indicates that in practice this algorithm is
more accurate than Steensgaard�s �and more accurate
than our 
rst algorithm with the same k� � it can be
almost as precise as Andersen�s� Although on small pro�
grams it is slower than Andersen�s algorithm� on the �
examples for which Andersen�s algorithm took the most
time� our algorithm was considerably faster� Therefore�
at least when analyzing large programs� it may be the
algorithm of choice for fast and accurate points�to anal�
ysis�

� New Algorithms for Flow�Insensitive

Pointer Analysis

In this section we describe our new algorithms for �ow�
insensitive pointer analysis� The 
rst algorithm can be
viewed as an extension of Steensgaard�s algorithm in
which a variable�s points�to set is partitioned into mul�
tiple categories� While this algorithm is interesting in
its own right� it also forms the basis for the second al�
gorithm� which calls it as a subroutine� It is the second
algorithm that seems to hold the most promise for fast
and precise pointer analysis�

Due to space constraints� we are not able to give a
complete review of Steensgaard�s algorithm� or a com�
plete de
nition of our own 
rst algorithm� Instead of
including those details� we have taken a high�level ap�
proach	 we concentrate on explaining how our algo�
rithm avoids some of the imprecision of Steensgaard�s
algorithm� and we use examples to demonstrate how our
algorithm works� For those familiar with Steensgaard�s
explanation of his algorithm in terms of a non�standard
type�inference system� we have included an appendix
that de
nes our approach as an extension to that sys�
tem�

�These are the space and time requirements for building a data
structure that represents the points�to sets	 Additional space� O�N��
in the worst case� and additional time� O�N� log

k
N� in the worst

case� is needed to extract the actual sets	 Alternatively� the data
structure can be used to answer queries of the form �might x point
to y��� with no additional space requirements in O�log

k
N� time for

each query	 Similarly� the bounds given for Steensgaard�s algorithm�
O�n� space and O�n��n� n�� time� only account for building the data
structure	 Using his data structure� the actual points�to sets �of size
O�N�� in the worst case� can be extracted in worst�case time O�N���
while a query �might x point to y��� can be answered in constant
time	



Program

a � �b
b � �c
a � �d
d � �e

Steensgaard�s Graph

a �b� d�� �c� e��

Steensgaard�s Points�To Set

a� b
a� d
b� c
b� e
d� c
d � e

Andersen�s Graph

a b c� �

d e�
�

Andersen�s Points�To Set

a� b
a� d
b� c
d� e

Figure �	 Example of points�to analysis using Steensgaard�s and Andersen�s algorithms

��� Algorithm �� Multiple Categories� One

Run

����� Motivation

As discussed in the Introduction� one source of impre�
cision in Steensgaard�s analysis is that nodes in the
points�to graph are limited to out�degree at most one�
In particular� whenever two variables v and v� are both
in the points�to set of some variable x� the nodes that
represent v and v� are merged �using fast union�
nd
data structures�AHU����� This can lead to two kinds of
imprecision	

�� All points�to sets that contain v will also contain
v� �and vice versa��

�� Everything in the points�to set of v will also be
in the points�to set of v� �and vice versa��

Example	 Figure � �which gives an example pro�
gram� the graph that would be built by Steensgaard�s
algorithm� and the points�to information represented by
the graph� illustrates the 
rst kind of imprecision	 the
nodes that represent v and v� are merged because they
are both in the points�to set of x� this leads to having
v� as well as v in the points�to set of y�

Figure � illustrates the second kind of imprecision	
the nodes that represent b and d are merged because
they are both in the points�to set of a� this in turn
forces the nodes that represent c and e to be merged�
which leads to having e in the points�to set of b� and c
in the points�to set of d� �

����� Algorithm description

Our 
rst pointer�analysis algorithm permits a more pre�
cise analysis by allowing each node of the graph to have
out�degree k �where k is one of the algorithm�s param�
eters�� Each program variable is assigned to one of k
categories� if variables v and v� are both in the points�
to set of some variable x� the nodes that represent v

and v� are merged only if v and v� are in the same
category� The assignment of variables to categories is
the algorithm�s second parameter� Di�erent partition�
ings of variables into categories will� in general� lead
to di�erent results� Assigning all variables to the same
category yields Steensgaard�s algorithm� while assigning
each variable to a unique category yields an algorithm
that is equivalent to Andersen�s�

Example	 Figure � gives a program� four di�erent
assignments of variables to categories� the graphs that
would be built by our algorithm for each such assign�
ment� and the extra� �imprecise� points�to information
represented by the graphs� �

Figure � only shows the results of the analysis� it
does not provide insight into the details of the algo�
rithm� However� the details are not really new� the
basic approach is the same as Steensgaard�s	

� We use fast union�
nd data structures to represent
the nodes of the graph�

� We use the cjoin� �conditional�join� operation and
pending� sets to permit assignment statements to
be treated asymmetrically� without having to iter�
ate over the program statements�

����� Algorithm complexity

Like Steensgaard�s� our algorithm processes each pro�
gram statement once� The most expensive statements
are those that involve indirection� for example	 x � �y�
or �y � x�� Handling �y requires processing all of the
nodes two steps� away from y �i�e�� all of the nodes
that represent the points�to sets of the variables that

�We assume that multiple levels of indirection have been trans�
formed to single levels	 For example� x � ��y would be transformed
to t � �y� x � �t �and a di�erent temporary would be used for each
such transformation�	 These transformations will� of course� increase
the number of statements in the program	 However� since each new
statement is of constant size� and the number of new statements is
proportional to the number of indirections that appear in the pro�
gram� the increase in overall program size is linear	



Program

x � �v
x � �v�
y � �v

Steensgaard�s Graph

x �v� v���

y

�

�

Corresponding Points�To Set

x� v
x� v�
y � v
y � v� �� imprecise ��

Figure �	 Example illustrating one kind of imprecision in Steensgaard�s analysis�

Program

a � �b
a � �c
a � �d
c � �d

� Category �equivalent to Steensgaard�

a �b� c� d�� �
���

graph extra points�to pairs

b� b
b� c
b� d
c� b

c� c
d� b
d � c
d� d

� Categories	 fa� bg and fc� dg

a b�

�c� d�
� �
���

graph
extra points�to

pairs
c� c
d� c
d � d

� Categories	 fa� cg and fb� dg

a �b� d��

c

� �
�

graph extra points�to
pairs

c� b

� Categories	 fa� bg� fcg� and fdg

d a� b�

c

�
�

�

graph extra points�to
pairs

�� none ��

Figure �	 Examples of analysis using multiple categories�



are themselves in the points�to sets of y�� Given k cat�
egories� there are k� such nodes� Thus� at most k� n
nodes are processed� where n is the size of the program�
Processing a node involves some constant�time work� in
addition� in the course of processing the k� n nodes�
at most k� n Find and N Union operations are per�
formed� where N is the number of variables �and thus
the number of nodes in the graph before any Union op�
erations are performed�� The average cost of k� n Find

operations is O�k� n ��k� n� k� n��� where � is the in�
verse Ackermann�s function� This subsumes the cost
of the N Union operations �which each take constant
time�� as well as the constant�time costs of processing
the nodes� The total cost of the algorithm is therefore
O�k� n ��k� n� k� n���

����	 Motivation for the second algorithm

As illustrated by the examples in Figure �� the pre�
cision of this analysis depends both on the number of
categories and on the particular assignment of variables
to categories� There is no obvious way to assign vari�
ables to categories so as to maximize the precision of
the analysis� However� we can observe that di�erent
assignments of variables to categories may lead to the
computation of di�erent points�to sets� If a variable y
is in the points�to set of variable x only as the result of
some but not all such assignments� then we can be sure
that x cannot in fact point to y� This observation leads
to our second pointer�analysis algorithm� described in
the following section�

��� Algorithm �� Multiple Categories�

Multiple Runs

����� Algorithm description

The idea behind our second algorithm is to use mul�
tiple runs of the 
rst algorithm� each with a di�erent
assignment of variables to categories� The 
nal points�
to set for each variable x is computed by intersecting the
points�to sets computed for x by each run� There are
many interesting ways one might choose the number of
categories and the assignment of variables to categories
for each run� as well as the number of runs� The partic�
ular strategy we have chosen has the property that for
every pair of variables �x� y�� there is at least one run
in which x and y are assigned to di�erent categories�
the number of runs is as small as it can be given this
property�

The number of categories� k �which must be in the
range � to N � where N is the number of variables�� is
speci
ed as a parameter to the algorithm� The number
of runs is then set to R � dlogkNe� Each variable is
assigned a unique number in the range � to N ��� and
that number is written in base k �padded with leading
zeros if necessary to make the number R digits long��
On the nth run� the nth digit �counting from right to
left� is used to determine the variable�s category� Since
every variable has a unique number� every pair of vari�
ables must di�er on at least one digit� and thus there
must be some run on which they are assigned to di�er�
ent categories�

Example	 The program shown in Figure � has four
variables �a� b� c� and d�� If k is �� then R will also be
�� and the variable numbers in base k will be	

a ��
b ��
c ��
d ��

Thus� for the 
rst run� the categories will be	 fa� cg
and fb� dg� and for the second run� they will be	 fa�
bg and fc� dg� The graphs built by the 
rst algorithm
using those categories have been shown in Figure �� they
represent the following points�to sets	

a� b
a� c
a� d
c� b
c� d
d� d

a� b
a� c
a� d
c� c
c� d
d � c

Run � Run �

The intersection of these sets yields	

a� b
a� c
a� d
c� d

which is the same as the result of running the algorithm
with � categories �i�e�� is as precise as Andersen�s algo�
rithm�� �

����� Algorithm complexity

As argued in the previous section� each individual run
requires O�k� n ��k� n� k� n�� time in the worst case�
Therefore� the time required for all of the runs is
O�k�n��k�n� k�n� logkN�� which is slower than Steens�
gaard�s algorithm by a factor of k� logkN � Actually
extracting the points�to set for each variable x requires
intersecting the logkN sets computed for x by the indi�
vidual runs� For a single variable x� this requires worst�
case time O�N logkN�� because the sizes of x�s points�
to sets might be O�N� �e�g�� when x points to all N
variables�� Therefore� the worst�case time to extract all
points�to sets is O�N� logkN�� It is worth noting that
the points�to sets computed by each run are guaran�
teed to be no larger than the points�to sets computed
by Steensgaard�s algorithm �and in fact we would ex�
pect them to be smaller� since we are using k � � cat�
egories�� Thus� the time required by our algorithm to
extract points�to sets is no more than a factor of logkN
larger than the time required by Steensgaard�s�

Although in theory the results of our multiple�
category multiple�runs� analysis can be the same as
that of Steensgaard�s algorithm� we have found that
in practice they are signi
cantly better� Experimental
results are given in the next section�



� Experimental Results

��� Background to the Experiments

We have implemented the two algorithms described in
Section �� as well as Andersen�s algorithm� in order to
compare the running times and accuracies of Steens�
gaard�s algorithm� Andersen�s algorithm� and the new
algorithms proposed in this paper� �Using our 
rst al�
gorithm with a separate category for each variable pro�
duces the same results as Andersen�s algorithm� how�
ever� the approach is di�erent� and although the two ap�
proaches have the same asymptotic time requirements�
in practice� our algorithm is slower than Andersen�s�
Therefore� it would not have been fair to use an N �
category version of our algorithm to compare the run�
ning times of Andersen�s algorithm with those of the
other algorithms� We do� however� use the ��category
version of our algorithm as Steensgaard�s algorithm�
Because our implementation is more general� the ��
category version may actually be slightly slower than
a direct implementation of Steensgaard�s algorithm��

The three algorithms were implemented in C and
used with a front end that analyzes a C program and
generates the corresponding control��ow graph
�reported running times do not include the time for
the front�end since this was the same for all of the
algorithms�� The algorithms handle function calls via
pointers to functions as part of the analysis �i�e�� they
track the set of functions that might be pointed to by
the pointer variable and essentially include additional
calls as new elements are added to the set�� Each mal�
loc� site is treated as returning the address of a distinct
variable� Calls to library routines other than malloc
are treated like calls to functions with empty bodies��
Structures� unions� and arrays are all treated as single
objects� i�e�� an assignment to any 
eld �any array ele�
ment� is treated as an assignment to the object� �Recent
work by Steensgaard�Ste��a� has addressed extensions
to distinguish among the components of structured ob�
jects��

Tests were carried out on a Sparc ����� with ��� MB
of RAM� The study used �� C programs including Gnu
Unix utilities� Spec benchmarks� and programs used for
benchmarking by Landi�LRZ��� and by Austin�ABS����
The tables in Figures � and � give the number of lines
of preprocessed source code �with blank lines removed�
for each test program� The programs are divided into
the two tables according to the running times of Steens�
gaard�s and Andersen�s algorithms	 small� programs�
those for which both algorithms took less than one sec�
ond are included in Figure �� the rest of the programs
are included in Figure �� Experimental results for all
programs are reported below in our comparison of An�
dersen�s and Steensgaard�s algorithms� However� in the
interest of brevity� for the remainder of this section re�
sults are reported only for the �� programs for which
at least one of those algorithms required at least one
second�

�While this is not safe in general� it su�ces to compare the di�er�
ent pointer analyses	

��� Comparison of Andersen
s and Steens�

gaard
s Algorithms

The purpose of our 
rst set of experiments was to
compare the accuracies and running times of Ander�
sen�s and Steensgaard�s analyses� The results of these
experiments are shown in Figures �� �� �� and �� Figures
� and � list the test programs sorted by size� for each
program and for each of the two analyses� the 
gure in�
cludes the total size of the points�to sets �i�e�� the sum
of the sizes of all variables� points�to sets�� the average
size of a variable�s points�to set� and the time required
for the analysis�
 Figures � and � are graphs comparing
the relative precision of Steensgaard�s and Andersen�s
analyses� Each point is the ratio �Steensgaard � Ander�
sen� of the total size of the points�to sets computed for
one test program� The data is sorted along the x�axis
by test program size �points on the x�axis are labeled
with the 
rst � characters of the test�program names �
see Figures � and ��� There is one data point �for the
program patch� for which the ratio is actually about ���
to��� Letting the y�axis run from � to �� would make
the graph unreadable� instead� the outlier� data point
is represented by placing it at the top of the graph with
an up�arrow to indicate that it is o��scale� Similar data
points can be found in Figures �� ��� and ���

We found that for small programs �up to about �����
lines�� both Andersen�s and Steensgaard�s analyses are
very fast �usually less than one second�� For larger pro�
grams� Andersen�s algorithm occasionally takes a very
long time� while Steensgaard�s is more consistent� For
example� there are six test programs for which Ander�
sen�s algorithm takes more than ten times as long as
Steengaard�s� for two of them �espresso and li�� it takes
more than one hundred times as long�

In many cases� Andersen�s algorithm yields more
precise results� often by a large margin� For example�
for �� out of our �� programs� the total �and average�
sizes of the points�to sets computed by Andersen are less
than half of those computed by Steensgaard� Consider�
ing only the large� programs� the sizes of the points�to
sets computed by Andersen are less than half of those
computed by Steensgaard in �� out of �� cases� they are
less than one�
fth of those computed by Steensgaard in
�� out of �� cases�

��� Multiple Categories� One Run

The purpose of our next set of experiments was to
assess the accuracy and time requirements of the algo�
rithm described in Section ���� relative to Steensgaard�s
and Andersen�s algorithms� We tried four di�erent ver�
sions	 using �� �� �� and � categories� In each case�
variables were partitioned into categories by numbering
the variables from � to N�� and then using the number
modulo the number of categories� The results of these
experiments are shown in Figures � and ��

Figure � shows the precision of the four versions rel�
ative to those of Steensgaard and Andersen� In this

�The average sizes are computed using the variables identi�ed by
Steensgaard�s algorithm as having non�empty points�to sets	 In gen�
eral� this is a superset of the variables so identi�ed by Andersen�s
algorithm	 For one test program� ul� this disparity causes the average
size reported for Andersen�s algorithm to be less than one	



Test Program Lines Total Size Average Size Time
And� Steens� And� Steens� And� Steens�

di��di�h ��� �� ��� ���� ����� ���� ����
genetic ��� �� �� ��� ���� ���� ����
anagram ��� �� �� ���� ���� ���� ����
allroots ��� �� �� ���� ��� ���� ����
ul ��� � � ���� ��� ���� ����
ks ��� �� �� ���� ���� ���� ����
compress ��� �� � ��� ��� ���� ����
stanford ��� �� � ���� ���� ���� ����
clinpack ��� �� � ��� ���� ���� ����
travel ��� �� �� ���� ���� ���� ����
lex��� ��� �� �� ��� ��� ���� ����
sim ��� ��� ��� ���� ���� ���� ����
mway ��� �� �� ���� ���� ���� ����
pokerd ���� ��� ��� ��� ����� ���� ����
ft ���� ��� ��� ���� ���� ���� ����
ansitape ���� ��� ��� ���� ����� ���� ����
loader ���� ��� ���� ���� ����� ���� ����
gcc�main ���� ��� ���� ���� ����� ���� ����
voronoi ���� ��� �� ���� ���� ���� ����
ratfor ���� ��� ���� ���� ����� ���� ����
livc ���� ��� ��� ����� ���� ���� ����
struct�beauty ���� ��� ���� ���� ����� ���� ����
di��di� ���� ��� ��� ���� ��� ���� ����
xmodem ���� �� �� ���� ���� ���� ����
compiler ���� �� ��� ���� ���� ���� ����
learn�learn ���� � ��� ���� ���� ���� ����
gnugo ���� �� �� ���� ���� ���� ����
ML�parse ���� �� ��� ���� ���� ���� ����
dixie ���� ��� ��� ���� ���� ���� ����
eqntott ���� ��� ��� ���� ���� ���� ����
twig ���� ���� ���� ���� ����� ���� ����
arc ���� ��� ��� ���� ���� ���� ����
cdecl ���� ��� ���� ���� ����� ���� ����
patch ���� ��� ����� ���� ������ ���� ����
assembler ���� ��� ��� ���� ����� ���� ����
unzip ���� ��� ��� ���� ���� ���� ����

Figure �	 Information about the small� test programs	 number of lines of preprocessed code� plus total sizes of
points�to sets� average sizes of points�to sets� and running times for Andersen�s and Steensgaard�s algorithms�

graph� the value � represents the total size of the points�
to sets computed by Andersen�s analysis� and the value
� represents the total size of the points�to sets com�
puted by Steensgaard�s analysis� Values in between are
scaled linearly� Thus� for example� the value ��� means
that the total size of the points�to sets computed by
our algorithm was halfway between that of Andersen
and that of Steensgaard� Figure � shows the ratios of
the running times of Andersen�s algorithm and of our
four versions� to that of Steensgaard�s algorithm�

As expected� increasing the number of categories in�
creases both the accuracy and the running time of our
algorithm� It is worth noting that using � categories
rarely takes more than twice as long as using one cat�
egory �i�e�� Steensgaard�s algorithm�� and the precision
can be signi
cantly better	 for � of the �� cases� the
sizes of the points�to sets computed by the ��category
algorithm are at least ��! smaller than those computed
by Steensgaard�s algorithm� and for �� cases the sizes

are at least �! smaller� however� the precision is not as
good as Andersen�s�

��	 Multiple Categories� Several Runs

Next� we ran several sets of experiments to evaluate
the e"cacy of using more than one run of the algorithm
from Section ���� We compared four versions	 each used
� categories� and the number of runs ranged from � to ��
Variables were partitioned into categories by numbering
them in base � and using the nth digit on the nth run�
as described in Section ��� �except� of course� that for
these experiments� not all digits were used� since the
number of runs was less than log�N��

Results are shown in Figures �� and ��� As for the
previous experiments� we show the relative precision of
the results compared to Steensgaard and Andersen� as
well as the ratios of the running times�

The precision of the results usually improves signi
�



Test Program Lines Total Size Average Size Time
And� Steens� And� Steens� And� Steens�

triangle ���� ��� ���� ���� ����� ��� ���
football ���� ��� ��� ���� ���� ��� ���
lex ���� ��� ���� ���� ��� ��� ���
gcc�cpp ���� ���� ����� ����� ����� ��� ���
simulator ���� ��� ���� ���� ���� ��� ���
struct�structure ���� ��� ���� ���� ����� ��� ���
gzip ���� ���� ���� ���� ����� ��� ���
agrep ���� ��� ��� ���� ���� ��� ���
ML�typecheck ���� ���� ���� ����� ����� ��� ���
ptx ���� ���� ���� ���� ����� ��� ���
li ���� ������ ������ ������ ������ ����� ���
bc ���� ���� ����� ����� ����� ��� ���
ispell�freq ���� ��� ���� ���� ����� ��� ���
bison ���� �� ���� ���� ����� ��� ���
sc ���� ��� ����� ���� ����� ��� ���
grep ���� ���� ����� ���� ����� ��� ���
ispell�ispell ���� ��� ���� ���� ����� ��� ���
sed ���� ����� ����� ����� ����� ���� ���

nd ���� ����� ����� ����� ����� ���� ���
�ex ���� ���� ����� ���� ����� ����� ���
less ����� ��� ����� ���� ����� ��� ���
make ����� ����� ������ ����� ������ ����� ���
tar ����� ����� ����� ����� ���� ���� ���
espresso ����� ������ ������ ������ ����� ������ ����
screen ����� ������ ������ ������ ����� ����� ����

Figure �	 Information about the large� test programs	 number of lines of preprocessed code� plus total sizes of
points�to sets� average sizes of points�to sets� and running times for Andersen�s and Steensgaard�s algorithms�

0

2

4

6

8

10

12

d
i
f
f

g
e
n
e

a
n
a
g

a
l
l
r

u
l

k
s

c
o
m
p

s
t
a
n

c
l
i
n

t
r
a
v

l
e
x
3

s
i

m

m
w
a
y

p
o
k
e

f
t

a
n
s
i

l
o
a
d

g
c
c
.

v
o
r
o

r
a
t
f

l
i
v
c

s
t
r
u

d
i
f
f

x
m
o
d

c
o
m
p

l
e
a
r

g
n
u
g

M
L
-
p

d
i
x
i

e
q
n
t

t
w
i
g

a
r
c

c
d
e
c

p
a
t
c

a
s
s
e

u
n
z
i

Steensgaard

Figure �	 Ratios of sizes of points�to sets computed using Steensgaard�s algorithm to those computed using Andersen�s
algorithm �small� programs��



0

2

4

6

8

10

12

t
r
i
a

f
o
o
t

l
e
x

g
c
c
.

s
i

m
u

s
t
r
u

g
z
i
p

a
g
r
e

M
L
-
t

p
t
x
-

l
i

b
c

i
s
p
e

b
i
s
o

s
c

g
r
e
p

i
s
p
e

s
e
d
-

f
i
n
d

f
l
e
x

l
e
s
s

m
a
k
e

t
a
r
-

e
s
p
r

s
c
r
e

Steensgaard

Figure �	 Ratios of sizes of points�to sets computed using Steensgaard�s algorithm to those computed using Andersen�s
algorithm �large� programs��

0

0.2

0.4

0.6

0.8

1

t
r
i
a

f
o
o
t

l
e
x

g
c
c
.

s
i

m
u

s
t
r
u

g
z
i
p

a
g
r
e

M
L
-
t

p
t
x
-

l
i

b
c

i
s
p
e

b
i
s
o

s
c

g
r
e
p

i
s
p
e

s
e
d
-

f
i
n
d

f
l
e
x

l
e
s
s

m
a
k
e

t
a
r
-

e
s
p
r

s
c
r
e

2 categories
3 categories
5 categories
9 categories

Figure �	 Relative precision of points�to sets computed using multiple categories� ��Steensgaard ��Andersen�
intermediate values are scaled linearly�



0

2

4

6

8

10

t
r
i
a

f
o
o
t

l
e
x

g
c
c
.

s
i

m
u

s
t
r
u

g
z
i
p

a
g
r
e

M
L
-
t

p
t
x
-

l
i

b
c

i
s
p
e

b
i
s
o

s
c

g
r
e
p

i
s
p
e

s
e
d
-

f
i
n
d

f
l
e
x

l
e
s
s

m
a
k
e

t
a
r
-

e
s
p
r

s
c
r
e

Andersen
2 categories
3 categories
5 categories
9 categories

Figure �	 Ratios of the times required by Andersen�s algorithm and by our multiple�category algorithms to compute
points�to sets� to the times required by Steensgaard�s algorithm�

0

0.2

0.4

0.6

0.8

1

t
r
i
a

f
o
o
t

l
e
x

g
c
c
.

s
i

m
u

s
t
r
u

g
z
i
p

a
g
r
e

M
L
-
t

p
t
x
-

l
i

b
c

i
s
p
e

b
i
s
o

s
c

g
r
e
p

i
s
p
e

s
e
d
-

f
i
n
d

f
l
e
x

l
e
s
s

m
a
k
e

t
a
r
-

e
s
p
r

s
c
r
e

3 categories, 1 run 
3 categories, 2 runs
3 categories, 3 runs
3 categories, 4 runs

Figure ��	 Relative precision of points�to sets computed using � categories� varying the number of runs� ��Steens�
gaard ��Andersen� intermediate values are scaled linearly�



0

2

4

6

8

10

t
r
i
a

f
o
o
t

l
e
x

g
c
c
.

s
i

m
u

s
t
r
u

g
z
i
p

a
g
r
e

M
L
-
t

p
t
x
-

l
i

b
c

i
s
p
e

b
i
s
o

s
c

g
r
e
p

i
s
p
e

s
e
d
-

f
i
n
d

f
l
e
x

l
e
s
s

m
a
k
e

t
a
r
-

e
s
p
r

s
c
r
e

Andersen
3 categories, 1 run 
3 categories, 2 runs
3 categories, 3 runs
3 categories, 4 runs

Figure ��	 Ratios of the times required by Andersen�s algorithm and by di�erent versions of our ��category algorithm
�varying the number of runs� to compute points�to sets� to the times required by Steensgaard�s algorithm�

cantly each time an extra run is added	 Averaging over
the �� tests� the sizes of the points�to sets computed us�
ing three categories and two runs is ����! smaller than
the sizes computed using � categories and � run� using �
categories and � runs is ���! smaller than � categories
and � runs� and using � categories and � runs is ���!
smaller than � categories and � runs�

Our current implementation starts each run of the
algorithm from scratch� thus� doubling the number of
runs essentially doubles the running time� An area for
future work is to see how information from previous
runs could be used to speed up subsequent ones� for
example� a signi
cant amount of extra work can some�
times be avoided if it is known that a variable�s points�to
set is empty�

��� Multiple Categories� logN Runs

Our 
nal set of experiments compares the algorithm
described in Section ��� with those of Andersen and
Steensgaard� We tried three versions of our algorithm	
using �� �� and � categories� Results are shown in Fig�
ures �� and ���

For these test programs� using three categories tends
to take less overall time than other numbers of cate�
gories� However� increasing the number of categories
only takes slightly longer� and tends to give more precise
results� In many cases� the precision is much closer to
that of Andersen�s algorithm than Steensgaard�s	 Av�
eraging over the �� tests� the sizes of the points�to
sets computed using three categories and logN runs is
���� times the sizes computed by Andersen�s algorithm�
while the sizes computed by Steensgaard�s algorithm are

���� times the size of Andersen�s�
The running time of the current implementation of

our algorithm� in which each run starts from scratch� is
not very impressive for small programs �it is� of course�
always slower than Steensgaard�s algorithm� and is of�
ten slower than Andersen�s�� However� it is worth not�
ing that even this implementation is signi
cantly faster
than Andersen�s on the six test programs for which An�
dersen�s algorithm required the most time� without an
unreasonable loss of precision� This can be seen in Fig�
ure ���

Thus� this approach appears to hold a great deal of
promise� and may prove to be the algorithm of choice for
fast and accurate points�to analysis of large programs�



0

0.2

0.4

0.6

0.8

1

t
r
i
a

f
o
o
t

l
e
x

g
c
c
.

s
i

m
u

s
t
r
u

g
z
i
p

a
g
r
e

M
L
-
t

p
t
x
-

l
i

b
c

i
s
p
e

b
i
s
o

s
c

g
r
e
p

i
s
p
e

s
e
d
-

f
i
n
d

f
l
e
x

l
e
s
s

m
a
k
e

t
a
r
-

e
s
p
r

s
c
r
e

2 categories, log N runs
3 categories, log N runs
5 categories, log N runs

Figure ��	 Relative precision of points�to sets computed using multiple categories� logN runs� ��Steensgaard
��Andersen� intermediate values are scaled linearly�

0

2

4

6

8

10

12

14

16

18

20

22

24

t
r
i
a

f
o
o
t

l
e
x

g
c
c
.

s
i

m
u

s
t
r
u

g
z
i
p

a
g
r
e

M
L
-
t

p
t
x
-

l
i

b
c

i
s
p
e

b
i
s
o

s
c

g
r
e
p

i
s
p
e

s
e
d
-

f
i
n
d

f
l
e
x

l
e
s
s

m
a
k
e

t
a
r
-

e
s
p
r

s
c
r
e

Andersen
2 categories, log N runs
3 categories, log N runs
5 categories, log N runs

Figure ��	 Ratios of the times required by Andersen�s algorithm and by our multiple�categories� logN runs algorithm
to compute points�to sets� to the times required by Steensgaard�s algorithm�



Test Total Total Size Time Time Time
Program Points�To Points�To Ratio And� � Cat� Ratio

Andersen � Cat� �� Cat� logN Runs �� Cat�
logN Runs And� And�

li ������ ������ ���� ����� ���� ���

nd ����� ����� ���� ���� ���� ���
�ex ���� ���� ���� ����� ���� ���
make ����� ������ ���� ����� ���� ���
espresso ������ ������ ���� ������ ����� ���
screen ������ ������ ���� ����� ����� ���

Figure ��	 Precision and run times of Andersen�s algorithm� and our algorithm with � categories and logN runs�
for those benchmarks on which Andersen�s algorithm performed poorly�

A APPENDIX� Type�Inference Rules

In �Ste��b��Steensgaard explains his pointer�analysis al�
gorithm via a non�standard type�inference system� in
which types represent sets of locations �so the type in�
ferred for a variable de
nes its points�to set��

The types are de
ned by the following grammar	

� 		� � � �
� 		� � j ref���
� 		� � j lam��� � � � � �n���n�� � � � � �n�m�

The lambda types have to do with pointers to functions�
Our algorithm extends the way pointers to functions
are handled in the same way that it extends the way
pointers to non�functions are handled� thus� we have
not speci
cally discussed that aspect of the algorithm�

Steensgaard gives a set of typing rules� one for each
kind of statement� The statements of the program to be
analyzed induce typing constraints according to those
rules� and the results of the points�to analysis can be de�

ned as the minimal type environment consistent with
those constraints�

Our algorithm can be viewed in terms of an exten�
sion to Steensgaard�s type system in which the produc�
tion given above for alpha is replaced by the following	

� 		� � � 	
� 		� � � �� � � � � � �k
	 		� � � �� � � � � � �k�

where k is the number of categories for variables� and
k� is the number of categories for functions�

The typing rules are extended in a straightforward
way� Here are two typical examples �we follow Steens�
gaard in using an underscore as a don�t care� value�	

A � x 	 ref��� � �� � � � � � �n � � � � � �k� � �
A � y 	 �n

category�y� � n

welltyped�x � �y�

A � x 	 ref���
A � y 	 ref��ref����ref������ � ��ref��k��� �

	j 
 �� � � � k� 	 �j � �

welltyped�x � �y�



References

�ABS��� T� Austin� S� Breach� and G� Sohi� E�cient detection
of all pointer and array access errors� In SIGPLAN
Conference on Programming Languages Design and
Implementation� pages ��	
�	�� June �����

�AHU�� A�V� Aho� J�E� Hopcroft� and J�D� Ullman� The De�
sign and Analysis of Computer Algorithms� Addison�
Wesley� ����

�And��� L� O� Andersen� Program Analysis and Specialization
for the C Programming Language� PhD thesis� DIKU�
University of Copenhagen� May ����� �DIKU report
�������

�CBC��� J��D� Choi� M� Burke� and P� Carini� E�cient �ow�
sensitive interprocedural computation of pointer�
induced aliases and side�e�ects� In ACM Symposium
on Principles of Programming Languages� pages ���

���� �����

�CWZ�	� D�R� Chase� M� Wegman� and F� Zadeck� Analysis
of pointers and structures� In SIGPLAN Conference
on Programming Languages Design and Implemen�
tation� pages ���
��	� ���	�

�Deu�	� A� Deutsch� On determining lifetime and aliasing
of dynamically allocated data in higher�order func�
tional speci�cations� In ACM Symposium on Princi�
ples of Programming Languages� pages ��
���� Jan�
uary ���	�

�Deu��� A� Deutsch� Interprocedural may�alias analysis for
pointers� Beyond k�limiting� In SIGPLAN Confer�
ence on Programming Languages Design and Imple�
mentation� pages ��	
���� �����

�EGH��� M� Emami� R� Ghiya� and L� Hendren� Context�
sensitive interprocedural points�to analysis in the
presence of function pointers� In SIGPLAN Confer�
ence on Programming Languages Design and Imple�
mentation� �����

�GH��� R� Ghiya and L�J� Hendren� Is it a tree� a dag� or
a cyclic graph� A shape analysis for heap�directed
pointers in C� In ACM Symposium on Principles of
Programming Languages� ACM� New York� January
�����

�Hen�	� L� Hendren� Parallelizing Programs with Recursive
Data Structures� PhD thesis� Cornell University� Jan
���	�

�HPR��� S� Horwitz� P� Pfei�er� and T� Reps� Dependence
analysis for pointer variables� In SIGPLAN Confer�
ence on Programming Languages Design and Imple�
mentation� pages ��
�	� �����

�JM��� N�D� Jones and S�S� Muchnick� Flow analysis and
optimization of Lisp�like structures� In S�S� Much�
nick and N�D� Jones� editors� Program Flow Analysis�
Theory and Applications� chapter �� pages �	�
����
Prentice�Hall� �����

�LR��� W� Landi and B� Ryder� A safe approximate algo�
rithm for interprocedural pointer aliasing� In SIG�
PLAN Conference on Programming Languages De�
sign and Implementation� pages ���
���� June �����

�LRZ��� W� Landi� B� Ryder� and S� Zhang� Interproce�
dural modi�cation side e�ect analysis with pointer
aliasing� In SIGPLAN Conference on Programming
Languages Design and Implementation� pages ��
��
June �����

�MCCH��� M�Burke� P� Carini� J�D� Choi� and M� Hind� Flow�
insensitive interprocedural alias analysis in the pres�
ence of pointers� In K� Pingali� U� Banerjee�

D� Galernter� A� Nicolau� and D� Padua� editors� Lan�
guages and Compilers for Parallel Computing� Pro�
ceedings of the �th International Workshop� volume
��� of Lecture Notes in Computer Science� pages
���
��	� Ithaca� NY� August ����� Springer�Verlag�

�Ruf��� E� Ruf� Context�sensitive alias analysis reconsid�
ered� In SIGPLAN Conference on Programming
Languages Design and Implementation� pages ��
���
June �����

�SRW��� M� Sagiv� T� Reps� and R� Wilhelm� Solving shape�
analysis problems in languages with destructive up�
dating� In ACM Symposium on Principles of Pro�
gramming Languages� ACM� New York� January
�����

�Ste��a� B� Steensgaard� Points�to analysis by type inference
of programs with structures and unions� In Interna�
tional Conference on Compiler Construction� April
�����

�Ste��b� B� Steensgaard� Points�to analysis in almost linear
time� In ACM Symposium on Principles of Program�
ming Languages� pages ��
��� January �����

�Tar��� R� Tarjan� Data structures and network �ow algo�
rithms� volume CMBS�� of Regional Conference Se�
ries in Applied Mathematics� SIAM� �����

�Wei�	� W�E� Weihl� Interprocedural data �ow analysis in
the presence of pointers� procedure variables� and la�
bel variables� In ACM Symposium on Principles of
Programming Languages� pages ��
��� ���	�

�WL��� R� Wilson and M� Lam� E�cient context�sensitive
pointer analysis for C programs� In SIGPLAN Con�
ference on Programming Language Design and Im�
plementation� pages �
��� June �����

�ZRL��� S� Zhang� B� G� Ryder� and W� Landi� Program
decomposition for pointer�induced aliasing analysis�
Technical report� Rutgers University LCSR�TR�����
�����


