Fast and Accurate Flow-Insensitive Points-To Analysis*

Marc Shapiro and Susan Horwitz
Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison, WI 53706 USA
Electronic mail: {mds, horwitz}Qcs.wisc.edu

Abstract

In order to analyze a program that involves pointers, it
is necessary to have (safe) information about what each
pointer points to. There are many different approaches
to computing points-to information. This paper ad-
dresses techniques for flow- and context-insensitive in-
terprocedural analysis of stack-based storage.

The paper makes two contributions to work in this
area:

e The first contribution is a set of experiments that
explore the trade-offs between techniques previ-
ously defined by Lars Andersen and Bjarne Steens-
gaard. The former has a cubic worst-case running
time, while the latter is essentially linear. How-
ever, the former may be much more precise than
the latter. We have found that in practice, Ander-
sen’s algorithm is consistently more precise than
Steensgaard’s. For small programs, there is very
little difference in the times required by the two
approaches; however, for larger programs, Ander-
sen’s algorithm can be much slower than Steens-
gaard’s.

e The second contribution is the definition of two
new algorithms. The first algorithm can be “tuned”
so that its worst-case time and space requirements,
as well as its accuracy range from those of Steens-
gaard to those of Andersen. We have experimented
with several versions of this algorithm; one version
provided a significant increase in accuracy over
Steensgaard’s algorithm, while keeping the run-
ning time within a factor of two.

The second algorithm uses the first as a subrou-
tine. Its worst-case time and space requirements
are a factor of log N (where N is the number of
variables in the program) worse than those of
Steensgaard’s algorithm. In practice, it appears to

* This work was supported in part by the National Science Foun-
dation under grant CCR-8958530, and by the Defense Advanced Re-
search Projects Agency under ARPA Order No. 8856 (monitored by
the Office of Naval Research under contract N00014-92-J-1937).

run about ten times slower than Steensgaard’s al-
gorithm; however it is significantly more accurate
than Steensgaard’s algorithm, and significantly
faster than Andersen’s algorithm on large
programs.

1 Introduction

In order to analyze a program that involves pointers,
it is necessary to have (safe) information about what
each pointer points to. In general, the more precise
the points-to information, the more precise the analysis.
For example, consider the following code segment:

[1] x = 0;
[2] *xp = 1;
[3] write(x);

Dataflow-analysis problems like constant propaga-
tion, reaching definitions, and live variables all rely on
knowing which variables are defined at each statement.
In the example above, we need to know where variable
p might point in order to determine the effect of exe-
cuting statement 2. For example, if precise information
has been computed, and it is known that p points to
x, then it can be determined that z has the constant
value 1 at statement 3. Similarly, if it is known that p
does not point to x, then it can be determined that z
has the constant value 0 at statement 3. By contrast,
if no points-to information is available, then it must be
assumed that p might or might not point to x, and the
value of z at statement 3 cannot be determined.

There has been a great deal of work on techniques for
computing points-to information. Some have addressed
tracking heap-allocated storage (e.g.: [JM81] [HPR89]
[Hen90] [Deud0] [CWZI0] [Deudd] [GHI6] [SRWI6]),
while others have concentrated on stack-based storage.
The latter can be further classified as flow-sensitive or
flow-insensitive, and as context-sensitive or context-
insensitive. Flow-sensitive analysis (e.g.: [LR92]
[CBC93] [EGH94]) takes into account the order in which
statements are executed, while flow-insensitive analysis
(e.g.: [Wei80] [MCCH94] [And94] [Ste96b] [ZRLIG]),
assumes that statements can be executed in any or-
der. Similarly, context-sensitive analysis takes into ac-
count the fact that a function must return to the site
of the most recent call, while context-insensitive analy-
sis propagates information from a call site, through the

called function, and back to all call sites. (An interest-
ing pair of papers that address this issue are [WL95] and
[Ruf95].) Flow and context sensitivity generally pro-
vide more precise results, but can also be more costly
in terms of time and/or space.

This paper addresses techniques for flow- and
context-insensitive analysis of stack-based storage. Even
within this somewhat limited context there is a range of
approaches that trade precision for speed. At one end
is the algorithm defined by Andersen [And94],> which
may require O(n?) time, where n is the size of the pro-
gram. At the other end is the algorithm defined by
Steensgaard[Ste96b], which runs in almost linear time,
but which may produce less precise results than Ander-
sen’s analysis.

The first contribution of this paper is a set of exper-
iments that explore the actual trade-offs between An-
dersen’s and Steensgaard’s approaches. We have imple-
mented both algorithms and used them to analyze 61 C
programs, ranging in size from 300 to 24,300 lines. The
results of this study are reported in Section 3.2. We
have found that Andersen’s algorithm is consistently
more precise than Steensgaard’s: the average size of
a points-to set computed by Steensgaard’s algorithm
was more than twice the size computed by Andersen’s
algorithm in 38 of the 61 cases. For small programs
(up to about 3,000 lines), there is very little difference
in the times required by the two approaches; however,
for larger programs, Andersen’s algorithm can be much
slower than Steensgaard’s (as much as 150 times as slow
in one case).

One can think of both Andersen’s and Steensgaard’s
approaches as building a graph (sometimes called a stor-
age shape graph[CWZ90] or an alias graphMCCH94])
that represents the points-to relationships among the
program’s variables. The important difference between
the two approaches has to do with the out-degree of
the graph; Andersen allows each node to have an ar-
bitrary number of out-edges, while Steensgaard allows
only one out-edge. Because of this restriction, a node
in Steensgaard’s graph may represent more than one
variable, while in Andersen’s graph, each node repre-
sents exactly one variable. The coarser granularity of
Steensgaard’s graphs leads to both the fast runtime of
his algorithm and its loss of precision.

Example: Figure 1 shows the graphs that would be
built by the two approaches for an example program,
and the points-to information that each graph repre-
sents. Note that Steensgaard’s approach erroneously
determines that b might point to e, and that d might
point to c¢. O

The second contribution of this paper is the defini-
tion of two new algorithms for flow-insensitive pointer
analysis. The first algorithm takes two parameters that
make it tunable: setting the parameters to one ex-
treme causes it to produce the same results (in the
same worst-case time) as Steensgaard’s algorithm; set-
ting the parameters to the other extreme causes it to
produce the same results (in the same worst-case time)
as Andersen’s algorithm; intermediate values produce
intermediate results. Experimental results (reported in

2Andersen also defines an algorithm that uses function in-lining
to achieve some context sensitivity. Whenever we refer to Andersen’s
algorithm in this paper we mean his context-insensitive version.

Section 3.3) show that with one version of this algo-
rithm we can achieve a significant increase in accuracy
over Steensgaard’s algorithm, while keeping the running
time within a factor of two.

Our second algorithm, which uses the first as a sub-
routine, is also parameterized: by the out-degree of the
nodes of the points-to graph. In the worst case, for
out-degree k, this algorithm uses O(k? N) space and
O(k? n a(k®n, k? n) log, N) time, where a is the (very
slowly growing) inverse Ackermann’s function that arises
in the context of fast union/find data structures[Tar83],
N is the number of variables, and n is the size of the
program.? Thus, for a fixed value of k, its asymptotic
complexity is slightly worse (by a factor of log N) than
that of Steensgaard’s algorithm. In theory, its accu-
racy may be no better than that of Steensgaard’s al-
gorithm; however, experimental evidence (reported in
Section 3.4) indicates that in practice this algorithm is
more accurate than Steensgaard’s (and more accurate
than our first algorithm with the same k) — it can be
almost as precise as Andersen’s. Although on small pro-
grams it is slower than Andersen’s algorithm, on the 6
examples for which Andersen’s algorithm took the most
time, our algorithm was considerably faster. Therefore,
at least when analyzing large programs, it may be the
algorithm of choice for fast and accurate points-to anal-
ysis.

2 New Algorithms for Flow-Insensitive
Pointer Analysis

In this section we describe our new algorithms for flow-
insensitive pointer analysis. The first algorithm can be
viewed as an extension of Steensgaard’s algorithm in
which a variable’s points-to set is partitioned into mul-
tiple categories. While this algorithm is interesting in
its own right, it also forms the basis for the second al-
gorithm, which calls it as a subroutine. It is the second
algorithm that seems to hold the most promise for fast
and precise pointer analysis.

Due to space constraints, we are not able to give a
complete review of Steensgaard’s algorithm, or a com-
plete definition of our own first algorithm. Instead of
including those details, we have taken a high-level ap-
proach: we concentrate on explaining how our algo-
rithm avoids some of the imprecision of Steensgaard’s
algorithm, and we use examples to demonstrate how our
algorithm works. For those familiar with Steensgaard’s
explanation of his algorithm in terms of a non-standard
type-inference system, we have included an appendix
that defines our approach as an extension to that sys-
tem.

3These are the space and time requirements for building a data
structure that represents the points-to sets. Additional space, O(Nz)
in the worst case, and additional time, O(I\f2 logy, N) in the worst
case, is needed to extract the actual sets. Alternatively, the data
structure can be used to answer queries of the form “might = point
to y?”, with no additional space requirements in O(log;, N) time for
each query. Similarly, the bounds given for Steensgaard’s algorithm,
O(n) space and O(n a(n, n)) time, only account for building the data
structure. Using his data structure, the actual points-to sets (of size
O(N?) in the worst case) can be extracted in worst-case time O(N?),
while a query “might @ point to y?”, can be answered in constant
time.

Steensgaard’s Graph

Steensgaard’s Points-To Set

a—b
Program a—d
a = &b . o b—e
b:&c a g (bv d) g (Cv 6) b—>6
a = &d d—c
d = &e d—e

Andersen’s Graph

Andersen’s Points-To Set

a—b
a—d
a > b > b—=ec
d—e
Y
d > €

Figure 1: Example of points-to analysis using Steensgaard’s and Andersen’s algorithms

2.1 Algorithm 1: Multiple Categories, One
Run

2.1.1 Motivation

As discussed in the Introduction, one source of impre-
cision in Steensgaard’s analysis is that nodes in the
points-to graph are limited to out-degree at most one.
In particular, whenever two variables v; and v are both
in the points-to set of some variable x, the nodes that
represent v; and vy are merged (using fast union-find
data structures]AHUT74]). This can lead to two kinds of
imprecision:

1. All points-to sets that contain v; will also contain
vo (and vice versa).

2. Everything in the points-to set of v; will also be
in the points-to set of vo (and vice versa).

Example: Figure 2 (which gives an example pro-
gram, the graph that would be built by Steensgaard’s
algorithm, and the points-to information represented by
the graph) illustrates the first kind of imprecision: the
nodes that represent v; and v» are merged because they
are both in the points-to set of z; this leads to having
ve as well as v; in the points-to set of y.

Figure 1 illustrates the second kind of imprecision:
the nodes that represent b and d are merged because
they are both in the points-to set of a; this in turn
forces the nodes that represent ¢ and e to be merged,
which leads to having e in the points-to set of b, and ¢
in the points-to set of d. O

2.1.2 Algorithm description

Our first pointer-analysis algorithm permits a more pre-
cise analysis by allowing each node of the graph to have
out-degree k (where k is one of the algorithm’s param-
eters). Each program variable is assigned to one of k
categories; if variables v; and vy are both in the points-
to set of some variable z, the nodes that represent v,

and vy are merged only if v; and vy are in the same
category. The assignment of variables to categories is
the algorithm’s second parameter. Different partition-
ings of variables into categories will, in general, lead
to different results. Assigning all variables to the same
category yields Steensgaard’s algorithm, while assigning
each variable to a unique category yields an algorithm
that is equivalent to Andersen’s.

Example: Figure 3 gives a program, four different
assignments of variables to categories, the graphs that
would be built by our algorithm for each such assign-
ment, and the “extra” (imprecise) points-to information
represented by the graphs. O

Figure 3 only shows the results of the analysis; it
does not provide insight into the details of the algo-
rithm. However, the details are not really new; the
basic approach is the same as Steensgaard’s:

e We use fast union-find data structures to represent
the nodes of the graph.

e We use the “cjoin” (conditional-join) operation and
“pending” sets to permit assignment statements to
be treated asymmetrically, without having to iter-
ate over the program statements.

2.1.3 Algorithm complexity

Like Steensgaard’s, our algorithm processes each pro-
gram statement once. The most expensive statements
are those that involve indirection; for example: z = *y,
or *y = z.* Handling *y requires processing all of the
nodes “two steps” away from y (i.e., all of the nodes
that represent the points-to sets of the variables that

4We assume that multiple levels of indirection have been trans-
formed to single levels. For example, z = **y would be transformed
to t1 = *y; @ = *t1 (and a different temporary would be used for each
such transformation). These transformations will, of course, increase
the number of statements in the program. However, since each new
statement is of constant size, and the number of new statements is
proportional to the number of indirections that appear in the pro-
gram, the increase in overall program size is linear.

Program Steensgaard’s Graph Corresponding Points-To Set

&
A

r = &
= o (v1, va) T — U1
z = &va T — Uy

Yy = &y y—u
y — ve /* imprecise! */
)

Figure 2: Example illustrating one kind of imprecision in Steensgaard’s analysis.

1 Category (equivalent to Steensgaard)

Program graph extra points-to pairs

a = &b a b—b c—c

(b, ¢, d)
a = &c b—c d—b
a=&d b—d d—c
c=&d c—b d—d

Y

2 Categories: {a, b} and {c, d} 2 Categories: {a, ¢} and {b, d}
graph extra points-to graph extra innts—to

a > b pairs a o (b, d) pairs

c—c c—b

d—c
Y d—d Y I
c

e

3 Categories: {a, b}, {c}, and {d}

graph extra points-to
pairs
d |« a > b
—— none ——

| Y
c

Figure 3: Examples of analysis using multiple categories.

are themselves in the points-to sets of y). Given k cat-
egories, there are k2 such nodes. Thus, at most k2 n
nodes are processed, where 7 is the size of the program.
Processing a node involves some constant-time work; in
addition, in the course of processing the k2 n nodes,
at most k% n Find and N Union operations are per-
formed, where N is the number of variables (and thus
the number of nodes in the graph before any Union op-
erations are performed). The average cost of k? n Find
operations is O(k? n a(k® n, k* n)), where « is the in-
verse Ackermann’s function. This subsumes the cost
of the N Union operations (which each take constant
time), as well as the constant-time costs of processing
the nodes. The total cost of the algorithm is therefore
O(k* n a(k? n, k? n)).

2.1.4 Motivation for the second algorithm

As illustrated by the examples in Figure 3, the pre-
cision of this analysis depends both on the number of
categories and on the particular assignment of variables
to categories. There is no obvious way to assign vari-
ables to categories so as to maximize the precision of
the analysis. However, we can observe that different
assignments of variables to categories may lead to the
computation of different points-to sets. If a variable y
is in the points-to set of variable x only as the result of
some but not all such assignments, then we can be sure
that = cannot in fact point to y. This observation leads
to our second pointer-analysis algorithm, described in
the following section.

2.2 Algorithm 2: Multiple Categories,
Multiple Runs

2.2.1

The idea behind our second algorithm is to use mul-
tiple runs of the first algorithm, each with a different
assignment of variables to categories. The final points-
to set for each variable z is computed by intersecting the
points-to sets computed for z by each run. There are
many interesting ways one might choose the number of
categories and the assignment of variables to categories
for each run, as well as the number of runs. The partic-
ular strategy we have chosen has the property that for
every pair of variables (z, y), there is at least one run
in which and y are assigned to different categories;
the number of runs is as small as it can be given this
property.

The number of categories, k (which must be in the
range 2 to N, where N is the number of variables), is
specified as a parameter to the algorithm. The number
of runs is then set to R = [log, N|. Each variable is
assigned a unique number in the range 0 to N-1, and
that number is written in base k (padded with leading
zeros if necessary to make the number R digits long).
On the n** run, the n'* digit (counting from right to
left) is used to determine the variable’s category. Since
every variable has a unique number, every pair of vari-
ables must differ on at least one digit, and thus there
must be some run on which they are assigned to differ-
ent, categories.

Algorithm description

Example: The program shown in Figure 3 has four
variables (a, b, ¢, and d). If k is 2, then R will also be
2, and the variable numbers in base k will be:

QO SQ
—
o

Thus, for the first run, the categories will be: {a, ¢}
and {b, d}, and for the second run, they will be: {a,
b} and {¢, d}. The graphs built by the first algorithm
using those categories have been shown in Figure 3; they
represent the following points-to sets:

Run 1 Run 2
i3e e
a—d a—d
c—b c—c
c—d c—d
d—d d—c

The intersection of these sets yields:

[SIESJE =Y~
Lild
QUL OS>

which is the same as the result of running the algorithm
with 4 categories (i.e., is as precise as Andersen’s algo-
rithm). O

2.2.2 Algorithm complexity

As argued in the previous section, each individual run
requires O(k? n a(k? n, k? n)) time in the worst case.
Therefore, the time required for all of the runs is
O(k*na(k?n, k*n) log;, N), which is slower than Steens-
gaard’s algorithm by a factor of k2 log, N. Actually
extracting the points-to set for each variable z requires
intersecting the log; N sets computed for = by the indi-
vidual runs. For a single variable z, this requires worst-
case time O(N log;, N), because the sizes of z’s points-
to sets might be O(N) (e.g., when z points to all N
variables). Therefore, the worst-case time to extract all
points-to sets is O(N? log;, N). It is worth noting that
the points-to sets computed by each run are guaran-
teed to be no larger than the points-to sets computed
by Steensgaard’s algorithm (and in fact we would ex-
pect them to be smaller, since we are using k£ > 1 cat-
egories). Thus, the time required by our algorithm to
extract points-to sets is no more than a factor of log;, N
larger than the time required by Steensgaard’s.

Although in theory the results of our “multiple-
category multiple-runs” analysis can be the same as
that of Steensgaard’s algorithm, we have found that
in practice they are significantly better. Experimental
results are given in the next section.

3 Experimental Results

3.1 Background to the Experiments

We have implemented the two algorithms described in
Section 2, as well as Andersen’s algorithm, in order to
compare the running times and accuracies of Steens-
gaard’s algorithm, Andersen’s algorithm, and the new
algorithms proposed in this paper. (Using our first al-
gorithm with a separate category for each variable pro-
duces the same results as Andersen’s algorithm; how-
ever, the approach is different, and although the two ap-
proaches have the same asymptotic time requirements,
in practice, our algorithm is slower than Andersen’s.
Therefore, it would not have been fair to use an N-
category version of our algorithm to compare the run-
ning times of Andersen’s algorithm with those of the
other algorithms. We do, however, use the 1-category
version of our algorithm as Steensgaard’s algorithm.
Because our implementation is more general, the 1-
category version may actually be slightly slower than
a direct implementation of Steensgaard’s algorithm.)

The three algorithms were implemented in C and
used with a front end that analyzes a C program and
generates the corresponding control-flow graph
(reported running times do not include the time for
the front-end since this was the same for all of the
algorithms). The algorithms handle function calls via
pointers to functions as part of the analysis (i.e., they
track the set of functions that might be pointed to by
the pointer variable and essentially include additional
calls as new elements are added to the set). Each “mal-
loc” site is treated as returning the address of a distinct
variable. Calls to library routines other than malloc
are treated like calls to functions with empty bodies®.
Structures, unions, and arrays are all treated as single
objects; i.e., an assignment to any field (any array ele-
ment) is treated as an assignment to the object. (Recent
work by Steensgaard[Ste96a] has addressed extensions
to dis)tinguish among the components of structured ob-
jects.

Tests were carried out on a Sparc 20/71 with 256 MB
of RAM. The study used 61 C programs including Gnu
Unix utilities, Spec benchmarks, and programs used for
benchmarking by Landi[LRZ93] and by Austin[ABS94].
The tables in Figures 4 and 5 give the number of lines
of preprocessed source code (with blank lines removed)
for each test program. The programs are divided into
the two tables according to the running times of Steens-
gaard’s and Andersen’s algorithms: “small” programs,
those for which both algorithms took less than one sec-
ond are included in Figure 4; the rest of the programs
are included in Figure 5. Experimental results for all
programs are reported below in our comparison of An-
dersen’s and Steensgaard’s algorithms. However, in the
interest of brevity, for the remainder of this section re-
sults are reported only for the 25 programs for which
at least one of those algorithms required at least one
second.

5While this is not safe in general, it suffices to compare the differ-
ent pointer analyses.

3.2 Comparison of Andersen’s and Steens-
gaard’s Algorithms

The purpose of our first set of experiments was to
compare the accuracies and running times of Ander-
sen’s and Steensgaard’s analyses. The results of these
experiments are shown in Figures 4, 5, 6, and 7. Figures
4 and 5 list the test programs sorted by size; for each
program and for each of the two analyses, the figure in-
cludes the total size of the points-to sets (i.e., the sum
of the sizes of all variables’ points-to sets), the average
size of a variable’s points-to set, and the time required
for the analysis.® Figures 6 and 7 are graphs comparing
the relative precision of Steensgaard’s and Andersen’s
analyses. Each point is the ratio (Steensgaard / Ander-
sen) of the total size of the points-to sets computed for
one test program. The data is sorted along the x-axis
by test program size (points on the x-axis are labeled
with the first 4 characters of the test-program names —
see Figures 4 and 5). There is one data point (for the
program patch) for which the ratio is actually about 70-
to-1. Letting the y-axis run from 0 to 70 would make
the graph unreadable; instead, the “outlier” data point
is represented by placing it at the top of the graph with
an up-arrow to indicate that it is off-scale. Similar data
points can be found in Figures 9, 11, and 13.

We found that for small programs (up to about 3,000
lines), both Andersen’s and Steensgaard’s analyses are
very fast (usually less than one second). For larger pro-
grams, Andersen’s algorithm occasionally takes a very
long time, while Steensgaard’s is more consistent. For
example, there are six test programs for which Ander-
sen’s algorithm takes more than ten times as long as
Steengaard’s; for two of them (espresso and li), it takes
more than one hundred times as long.

In many cases, Andersen’s algorithm yields more
precise results, often by a large margin. For example,
for 37 out of our 61 programs, the total (and average)
sizes of the points-to sets computed by Andersen are less
than half of those computed by Steensgaard. Consider-
ing only the “large” programs, the sizes of the points-to
sets computed by Andersen are less than half of those
computed by Steensgaard in 21 out of 25 cases; they are
less than one-fifth of those computed by Steensgaard in
11 out of 25 cases.

3.3 Multiple Categories, One Run

The purpose of our next set of experiments was to
assess the accuracy and time requirements of the algo-
rithm described in Section 2.1, relative to Steensgaard’s
and Andersen’s algorithms. We tried four different ver-
sions: using 2, 3, 5, and 9 categories. In each case,
variables were partitioned into categories by numbering
the variables from 0 to N —1 and then using the number
modulo the number of categories. The results of these
experiments are shown in Figures 8 and 9.

Figure 8 shows the precision of the four versions rel-
ative to those of Steensgaard and Andersen. In this

SThe average sizes are computed using the variables identified by
Steensgaard’s algorithm as having non-empty points-to sets. In gen-
eral, this is a superset of the variables so identified by Andersen’s
algorithm. For one test program, ul, this disparity causes the average
size reported for Andersen’s algorithm to be less than one.

Test Program | Lines Total Size Average Size Time
And. | Steens. || And. | Steens. || And. | Steens.
diff difth 303 38 167 || 2.38 10.44 | 0.07 0.08
genetic 336 24 82 1.6 5.47 || 0.07 0.12
anagram 344 32 50 || 1.19 1.85 | 0.07 0.08
allroots 427 11 14 || 1.57 2.0 || 0.03 0.05
ul 451 8 91 0.89 1.0 | 0.10 0.18
ks 574 87 92 || 1.74 1.84 | 0.10 0.15
compress 657 14 1 1.0 1.0 | 0.13 0.20
stanford 665 34 41 1.26 1.52 || 0.17 0.15
clinpack 695 27 4 1.5 244 || 0.15 0.15
travel 725 22 39 || 2.75 4.88 || 0.05 0.10
lex315 747 36 36 4.5 4.5 || 0.17 0.15
sim 748 145 282 || 1.04 2.03 || 048 0.23
mway 806 33 43 || 1.14 1.48 || 0.17 0.27
pokerd 1099 112 729 2.0 13.02 || 0.27 0.28
ft 1185 140 197 || 1.92 2.70 || 0.15 0.18
ansitape 1222 109 389 || 2.95 10.51 || 0.22 0.28
loader 1255 212 1544 || 1.91 13.91 || 0.18 0.25
gcc.main 1285 386 2330 || 4.02 24.27 || 0.38 0.35
voronoi 1394 129 13 || 1.04 1.05 | 0.17 0.28
ratfor 1531 523 6006 || 4.89 56.13 || 0.50 0.42
live 1674 112 156 || 37.33 52.0 || 0.63 0.83
struct.beauty 1701 653 5286 || 7.02 56.84 || 0.48 0.43
diff. diff 1761 127 144 || 1.59 1.8 | 0.60 0.60
xmodem 1809 70 82 || 2.59 3.04 || 0.32 0.40
compiler 1908 94 106 | 3.62 4.08 || 0.35 0.40
learn.learn 1954 7 259 1.60 5.51 || 0.37 0.50
gnugo 1963 37 42 || 1.19 1.35 | 0.33 0.60
ML-parse 2019 94 102 || 1.81 1.96 || 0.12 0.12
dixie 2439 156 377 || 1.97 7.30 || 0.38 0.43
eqntott 2470 313 617 || 1.87 3.69 || 0.82 0.70
twig 2555 || 1428 3141 | 7.80 17.16 || 0.93 0.80
arc 2574 204 228 || 1.25 14.0 || 0.63 0.77
cdecl 2577 280 2030 || 4.06 29.42 || 0.42 0.53
patch 2746 292 | 20701 1.86 | 131.85 | 0.58 0.83
assembler 2994 281 294 || 1.32 13.84 || 0.52 0.68
unzip 3261 108 316 || 1.61 4.72 || 0.33 0.43

Figure 4: Information about the “small” test programs: number of lines of preprocessed code, plus total sizes of
points-to sets, average sizes of points-to sets, and running times for Andersen’s and Steensgaard’s algorithms.

graph, the value 0 represents the total size of the points-
to sets computed by Andersen’s analysis, and the value
1 represents the total size of the points-to sets com-
puted by Steensgaard’s analysis. Values in between are
scaled linearly. Thus, for example, the value 0.5 means
that the total size of the points-to sets computed by
our algorithm was halfway between that of Andersen
and that of Steensgaard. Figure 9 shows the ratios of
the running times of Andersen’s algorithm and of our
four versions, to that of Steensgaard’s algorithm.

As expected, increasing the number of categories in-
creases both the accuracy and the running time of our
algorithm. It is worth noting that using 3 categories
rarely takes more than twice as long as using one cat-
egory (i.e., Steensgaard’s algorithm), and the precision
can be significantly better: for 5 of the 25 cases, the
sizes of the points-to sets computed by the 3-category
algorithm are at least 25% smaller than those computed
by Steensgaard’s algorithm, and for 17 cases the sizes

are at least 5% smaller; however, the precision is not as
good as Andersen’s.

3.4 Multiple Categories, Several Runs

Next, we ran several sets of experiments to evaluate
the efficacy of using more than one run of the algorithm
from Section 2.1. We compared four versions: each used
3 categories, and the number of runs ranged from 1 to 4.
Variables were partitioned into categories by numbering
them in base 3 and using the n* digit on the n** run,
as described in Section 2.2 (except, of course, that for
these experiments, not all digits were used, since the
number of runs was less than logs V).

Results are shown in Figures 10 and 11. As for the
previous experiments, we show the relative precision of
the results compared to Steensgaard and Andersen, as
well as the ratios of the running times.

The precision of the results usually improves signifi-

Test Program | Lines Total Size Average Size Time
And. | Steens. And. | Steens. And. | Steens.
triangle 1968 862 4716 4.01 21.93 2.9 0.8
football 2075 120 207 1.82 3.14 1.1 1.7
lex 2645 628 1928 3.02 9.2 1.1 1.0
gee.cpp 4061 5090 16386 13.47 43.35 4.9 1.3
simulator 4239 604 1299 2.50 5.37 1.1 1.0
struct.structure 4457 619 4485 2.11 15.31 3.1 1.5
gzip 4584 1000 8507 2.96 25.17 1.7 1.1
agrep 4906 600 868 3.77 5.46 1.0 1.3
ML-typecheck 4997 5679 8870 30.86 48.21 4.0 0.5
ptx 5001 1295 6638 3.94 20.18 2.5 1.6
li 6054 || 163614 | 437744 || 171.14 | 457.89 738.5 4.7
bc 6745 7241 32586 18.57 83.55 5.5 1.6
ispell.freq 6830 449 3290 2.25 16.45 0.9 1.2
bison 7271 78 9375 1.72 20.51 3.1 3.2
sc 7378 190 13333 3.23 22.56 3.1 2.6
grep 7433 3771 13506 8.16 29.23 5.8 2.5
ispell.ispell 7700 476 3921 2.14 17.66 3.8 2.0
sed 8022 17997 | 40345 23.25 52.13 18.1 2.4
find 8824 16510 | 44699 31.33 84.82 40.0 3.4
flex 9488 3573 15298 891 38.15 353.9 3.0
less 12152 308 | 27666 7.11 63.75 1.9 1.5
make 15564 62528 | 346541 74.70 | 414.03 250.8 6.1
tar 18585 11980 | 36964 17.41 53.7 23.2 3.6
espresso 22050 || 210847 | 276218 || 109.53 143.4 || 1373.6 10.2
screen 24300 || 118643 | 724673 || 106.89 652.8 514.5 10.1

Figure 5: Information about the “large” test programs: number of lines of preprocessed code, plus total sizes of
points-to sets, average sizes of points-to sets, and running times for Andersen’s and Steensgaard’s algorithms.

12IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
X
Steensgaard X< x
X
10 ~ o
8 o X B
X X
X
6 x o
X
4 4 " -
X X X
X
X
2 A X X o
% x X X X
X x x X X_X_X___X
0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
dgaaukcsctlsmpfalgvrlsdxclgMdetacpau
ienl lsotlreiwotnocoaitimoenlLigwrdasnhn
fnal maiaxmak sacrtvrfomau-xnicetsz
fegr pnnyv3 y e id.ofcufdprgpitg ccei

Figure 6: Ratios of sizes of points-to sets computed using Steensgaard’s algorithm to those computed using Andersen’s
algorithm (“small” programs).

12 1 1 | I 1 1 1 1 1 1 1 1 1 Il 1 1 1 1 1 1 1 1 1 1 1
Steensgaard X
10 ~ o
X
x X
8_ -
X X
X

6 - X L

X X

X
X
X
4 L
X
x X X
X X
2 x * .
X
x X «

0 T

t f 1l g s s gaMpl b ibsgis f f I mtes

r oec i tz gl 1t ics i cr s e i | e aas c

i ox cmor i r - X p s e pdnes ko rpor

a t . uup et - e o p e - dx s e - 1 e

Figure 7: Ratios of sizes of points-to sets computed using Steensgaard’s algorithm to those computed using Andersen’s
algorithm (“large” programs).

l 1 Py 1 1 1 1 1 1 1 1 ‘ 1 1 1 (I) 1 1 1 1 1 1 1 1 1 1
© . ¥ . ¢ 3 :
A o 2 o
o
o . ° t o)
L] A A
A A [0} L]
0.8 N . o a B
L] A
° ° A A R
A A A
o
L] 8 A o]
0.6 ° o
a ®
o e © °
© A A A
0.4 : & ‘e R -
4 .
A A A
A A ‘ .
A . - 2 categories ©
0.2 - 2 3 categories e B
' N 5 categories 2
9 categories 4
[]
A
A
0 T
t f 1l gs s gaMp Il b ibsgis f f I mtes
r oec i tzglL1tics icr s e i | e aa s c
i ox cmor i r - X p s e pdnes ko r pr
a t . u up et - e o pe - dx s e - r1 e

Figure 8: Relative precision of points-to sets computed using multiple categories. 1=Steensgaard 0=Andersen;
intermediate values are scaled linearly.

10 1 1 1 1 1 1 1 1 1 1] 1 1 1 1 1 1 1]] 1] 1]]
R 1 R 1 1
Andersen +
2 categories ©
3 categories ®
. 5 categories 2
8 o a - o
N 9 categories 4
- +
+ A
a
N
A +
6 . . . L
A
. N
A A A
4 4 a A a a -
N + A
+ & . + IN -
A A s A A
A
R A A A &
A A A +
2] e @ A% S e ° LN a o & L
) +
o} * ° ° 6 ® o e [] ® o ° L4
o o © o A o o o [}
| 0 9°80°0°0 g0 e "°%o%800° %8
+
+ +
0 T
t f 1l gssgaMplIl b ibsgis f f I mtes
r oec itz gltiocs icr s e i | e aasc
i ox ¢cmor i r - X p s e pdnes k r pr
a t . uup e t - e o pe - dx s e - r e

Figure 9: Ratios of the times required by Andersen’s algorithm and by our multiple-category algorithms to compute
points-to sets, to the times required by Steensgaard’s algorithm.

l 1 Py 1
’ L]
b ¢ ° ° %
¥ ¥
. © . ° %
° < v
08 1 v v v . L
v \4
b4 [] o v
L[]
v
° v
° 3 v &
0.6 o
o e
L] v o
< © 3
v v v
¥
0.4 ¥ v b o
° v
g v
v &
M b4
0.2 + 4 3 categories, 1 run . o
v 3 categories, 2 runs v
o * 3 categories, 3 runs v
¥ v v 3 categories, 4runs ©
. <@ »
O T
t f 1l gs s gaMpl b ibsgis ff f I mtes
r oec i tzglt ics icr s ei | e awasc
i ox ¢cmor i r - X p s e pdnes ko pr
a t . uup et - e o pe - dx s e - r1 e

Figure 10: Relative precision of points-to sets computed using 3 categories, varying the number of runs. 1=Steens-
gaard 0=Andersen; intermediate values are scaled linearly.

10 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 i i 1] 1 i
Andersen =+
3 categories, 1 run .
3 categories, 2runs v
IS 3 categories, 3 runs v
g - 3 categories, 4 runs ¢ L
& & +
. 4 < o v
&
& +
&
<
6 Y v © v ¢ o @ r
o v o
<
v © o v L 4 S
o &
v v vV v v v
o v
4 - v v 7 M v v v |
R 4 v v M v
v + v
\4
v v v v VY v .
v v v \4 v v v v
° + o Vv : !
L]
2 A o ® . .« ® i e . r
e © o + b . ° ¢ . o *
hd ® °
+ N . +
”””””””””” ;’"""””’;"F"""”””””"””””””
+
0 T
t f 1l gssgaMpl bibsgis f f I mtes
r oecitzgltics icrseileaasc
i ox cmor i r - X p s e pdnes ko rpr
a t . uu p et - e o pe - dx s e - 1 e

Figure 11: Ratios of the times required by Andersen’s algorithm and by different versions of our 3-category algorithm
(varying the number of runs) to compute points-to sets, to the times required by Steensgaard’s algorithm.

cantly each time an extra run is added: Averaging over
the 25 tests, the sizes of the points-to sets computed us-
ing three categories and two runs is 12.1% smaller than
the sizes computed using 3 categories and 1 run; using 3
categories and 3 runs is 8.7% smaller than 3 categories
and 2 runs, and using 3 categories and 4 runs is 6.3%
smaller than 3 categories and 3 runs.

Our current implementation starts each run of the
algorithm from scratch; thus, doubling the number of
runs essentially doubles the running time. An area for
future work is to see how information from previous
runs could be used to speed up subsequent ones; for
example, a significant amount of extra work can some-
times be avoided if it is known that a variable’s points-to
set is empty.

3.5 Multiple Categories, log N Runs

Our final set of experiments compares the algorithm
described in Section 2.2 with those of Andersen and
Steensgaard. We tried three versions of our algorithm:
using 2, 3, and 5 categories. Results are shown in Fig-
ures 12 and 13.

For these test programs, using three categories tends
to take less overall time than other numbers of cate-
gories. However, increasing the number of categories
only takes slightly longer, and tends to give more precise
results. In many cases, the precision is much closer to
that of Andersen’s algorithm than Steensgaard’s: Av-
eraging over the 25 tests, the sizes of the points-to
sets computed using three categories and log N runs is
2.67 times the sizes computed by Andersen’s algorithm,
while the sizes computed by Steensgaard’s algorithm are

4.75 times the size of Andersen’s.

The running time of the current implementation of
our algorithm, in which each run starts from scratch, is
not very impressive for small programs (it is, of course,
always slower than Steensgaard’s algorithm, and is of-
ten slower than Andersen’s). However, it is worth not-
ing that even this implementation is significantly faster
than Andersen’s on the six test programs for which An-
dersen’s algorithm required the most time, without an
unreasonable loss of precision. This can be seen in Fig-
ure 14.

Thus, this approach appears to hold a great deal of
promise, and may prove to be the algorithm of choice for
fast and accurate points-to analysis of large programs.

l 1
u
B 2 categories, log Nruns ~ * "
* 3 categories, logNruns O -
5 categories, logNruns = -
*
0.8 * *
L *
[]
* o
"
0.6 - " W
o]
a * - . o
0.4 ~ L] H
g *
y o * * - «
0.2 - 8 5
o O =
| | | | n n []
*
u
¥ ™ [=
O T
t f 1 gs s gaMp Il b ibwsgis f f I mtes
r oec i tzglL1t ics icr s e i | e aa s c
i ox cmor i r - X p s e pdnes ko r pr
a t . u upe-t - e o pe - dxs e - e
Figure 12: Relative precision of points-to sets computed using multiple categories, log N runs.
O0=Andersen; intermediate values are scaled linearly.
1 1 1 1 1 1 1 1 1 1] 1 1 1 1 1 1 1 1] 1] 1]]
24 T S T
Andersen +
22 2 categories, log N runs *
3 categories, logNruns O
5 categories, logNruns = n
20
o
18 o
*
16
14
| |
] L] L *
12 x + ™ "
m O [
104 o© x X x x " * * i % o omoxox ¥ * . -
* B o x ¥ y O o Y o g o "]
8 - " "
u S | N =
6 - [m] O - +
| |
41 4 + +
2 + *
Lo + + - + Lot - =+
T il T
0 T
t f 1l g s s gaMpl b ibsgis f f I mtes
r oec i tz gl 1t ics i cr s e i | e aas c
i ox cmor i r - X p s e pdnes ko rpor
a t . u up et - e o p e - dx s e - r e

Figure 13: Ratios of the times required by Andersen’s algorithm and by our multiple-categories, log N runs algorithm

to compute points-to sets, to the times required by Steensgaard’s algorithm.

1=Steensgaard

Test Total Total Size Time Time Time
Program || Points-To | Points-To Ratio | And. 3 Cat, Ratio
Andersen 3 Cat, (3 Cat/ log N Runs | (3 Cat/

log N Runs | And) And)
i 163614 431415 2.64 | 7385 29.8 .04
find 16510 21121 1.28 41.0 28.9 .72
flex 3573 8796 2.46 | 353.9 354 .10
make 62528 316873 5.07 | 250.8 63.2 .24
espresso 210847 250028 1.19 | 1373.6 191.5 .14
screen 118643 686037 5.78 | 514.5 107.5 21

Figure 14: Precision and run times of Andersen’s algorithm, and our algorithm with 3 categories and log N runs,

for those benchmarks on which Andersen’s algorithm performed poorly.

A APPENDIX: Type-Inference Rules

In [Ste96b],Steensgaard explains his pointer-analysis al-
gorithm via a non-standard type-inference system, in
which types represent sets of locations (so the type in-
ferred for a variable defines its points-to set).

The types are defined by the following grammar:

a =T XA
T u=1|ref(a)
=1 |lam(ai, ..., 0n)(Qnt1y- -y Qngm)

The lambda types have to do with pointers to functions.
Our algorithm extends the way pointers to functions
are handled in the same way that it extends the way
pointers to non-functions are handled; thus, we have
not specifically discussed that aspect of the algorithm.

Steensgaard gives a set of typing rules, one for each
kind of statement. The statements of the program to be
analyzed induce typing constraints according to those
rules, and the results of the points-to analysis can be de-
fined as the minimal type environment consistent with
those constraints.

Our algorithm can be viewed in terms of an exten-
sion to Steensgaard’s type system in which the produc-
tion given above for alpha is replaced by the following:

a u=fX7y
B =T X Ty X X Tg
Y= A1 X Ag X oo X Ap

where k is the number of categories for variables, and
k' is the number of categories for functions.

The typing rules are extended in a straightforward
way. Here are two typical examples (we follow Steens-
gaard in using an underscore as a “don’t care” value):

AbFz: ref((Th X Ta X o+ X T X »++ X Tg) X)
y:
category(y) =n
welltyped(x = &y)

AbFz: ref(a)
Aty :ref((ref(ar)xref(az)x---xref(ax))x_-)
Vie[l...k]l:a; <a
welltyped(x = *y)

References

[ABS94]

[AHUT74]

[And94]

[CBC93

[CWZ790]

[Deu90]

[Deu94]

[EGH94]

[GH96]

[Hen90]

[HPRS9]

[IM81]

[LR92]

[LRZ93]

[MCCH94]

T. Austin, S. Breach, and G. Sohi. Efficient detection
of all pointer and array access errors. In SIGPLAN
Conference on Programming Languages Design and
Implementation, pages 290-301, June 1994.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994. (DIKU report
94/19).

J.-D. Choi, M. Burke, and P. Carini. Efficient flow-
sensitive interprocedural computation of pointer-
induced aliases and side-effects. In ACM Symposium
on Principles of Programming Languages, pages 232—
245, 1993.

D.R. Chase, M. Wegman, and F. Zadeck. Analysis
of pointers and structures. In SIGPLAN Conference
on Programming Languages Design and Implemen-
tation, pages 296-310, 1990.

A. Deutsch. On determining lifetime and aliasing
of dynamically allocated data in higher-order func-
tional specifications. In ACM Symposium on Princi-
ples of Programming Languages, pages 157-168, Jan-
uary 1990.

A. Deutsch. Interprocedural may-alias analysis for
pointers: Beyond k-limiting. In SIGPLAN Confer-
ence on Programming Languages Design and Imple-
mentation, pages 230241, 1994.

M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the
presence of function pointers. In SIGPLAN Confer-
ence on Programming Languages Design and Imple-
mentation, 1994.

R. Ghiya and L.J. Hendren. Is it a tree, a dag, or
a cyclic graph? A shape analysis for heap-directed
pointers in C. In ACM Symposium on Principles of
Programming Languages. ACM, New York, January
1996.

L. Hendren. Parallelizing Programs with Recursive
Data Structures. PhD thesis, Cornell University, Jan
1990.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence
analysis for pointer variables. In SIGPLAN Confer-
ence on Programming Languages Design and Imple-
mentation, pages 28—-40, 1989.

N.D. Jones and S.S. Muchnick. Flow analysis and
optimization of Lisp-like structures. In S.S. Much-
nick and N.D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 4, pages 102-131.
Prentice-Hall, 1981.

W. Landi and B. Ryder. A safe approximate algo-
rithm for interprocedural pointer aliasing. In SIG-
PLAN Conference on Programming Languages De-
sign and Implementation, pages 235-248, June 1992.

W. Landi, B. Ryder, and S. Zhang. Interproce-
dural modification side effect analysis with pointer
aliasing. In SIGPLAN Conference on Programming
Languages Design and Implementation, pages 5667,
June 1993.

M.Burke, P. Carini, J.D. Choi, and M. Hind. Flow-
insensitive interprocedural alias analysis in the pres-
ence of pointers. In K. Pingali, U. Banerjee,

[Ruf95]

[SRW96]

[Ste96al)

[Ste96b]

[Tar83]

[Weig0]

[WL95]

[ZR1.96]

D. Galernter, A. Nicolau, and D. Padua, editors, Lan-
guages and Compilers for Parallel Computing: Pro-
ceedings of the Tth International Workshop, volume
892 of Lecture Notes in Computer Science, pages
234-250, Ithaca, NY, August 1994. Springer-Verlag.

E. Ruf. Context-sensitive alias analysis reconsid-
ered. In SIGPLAN Conference on Programming
Languages Design and Implementation, pages 13-22,
June 1995.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive up-
dating. In ACM Symposium on Principles of Pro-
gramming Languages. ACM, New York, January
1996.

B. Steensgaard. Points-to analysis by type inference
of programs with structures and unions. In Interna-
tional Conference on Compiler Construction, April
1996.

B. Steensgaard. Points-to analysis in almost linear
time. In ACM Symposium on Principles of Program-
ming Languages, pages 32-41, January 1996.

R. Tarjan. Data structures and network flow algo-
rithms. volume CMBS44 of Regional Conference Se-
ries in Applied Mathematics. STAM, 1983.

W.E. Weihl. Interprocedural data flow analysis in
the presence of pointers, procedure variables, and la-
bel variables. In ACM Symposium on Principles of
Programming Languages, pages 8394, 1980.

R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In SIGPLAN Con-
ference on Programming Language Design and Im-
plementation, pages 1-12, June 1995.

S. Zhang, B. G. Ryder, and W. Landi. Program
decomposition for pointer-induced aliasing analysis.
Technical report, Rutgers University LCSR-TR-259,
1996.

