
Parametric Shape Analysis via 3-Valued Logic

Mooly Sagiv*

Tel-Aviv Univ.
Thomas Reps+

Univ. of Wisconsin

Reinhard Wilhelm*

Univ. des Saarlandes

Abstract

We present a family of abstract-interpretation algorithms that
are capable of determining “shape invariants” of programs
that perform destructive updating on dynamically allocated
storage. The main idea is to represent the stores that can pas-

sibly arise during execution using three-valued logical struc-
tures.

Questions about properties of stores can be answered by
evaluating predicate-logic formulae using Kleene’s semantics
of three-valued logic:

l If a formula evaluates to true, then the formula holds in
every store represented by the three-valued structure.

l If a formula evaluates to false, then the formula does
not hold in any store represented by the three-valued
structure.

l If a formula evaluates to unknown, then we do not know
if this formula always holds, never holds, or sometimes
holds and sometimes does not hold in the stores repre-
sented by the three-valued structure.

Three-valued logical structures are thus a conservative repre-
sentation of memory stores.

The approach described is a parametric framework: It pro-
vides the basis for generating a family of shape-analysis al-
gorithms by varying the vocabulary used in the three-valued
logic.

1 Introduction

Data structures built using pointers can be characterized by
invariants describing their “shape” at stable states, i.e., in be-
tween operations on them. These invariants are usually not
preserved by the execution of individual program statements,
and it is challenging to prove that invariants are reestab-
lished once a sequence of operations is finished [9]. In
the past two decades, many “shape-analysis” algorithms have
been developed that can automatically identify shape invari-
ants in some programs that manipulate heap-allocated stor-
age [ll, 12, 15, 10, 2, 21, 1, 16, 22, 191. A common feature of
these algorithms is that they represent heap cells by “shape-
nodes” and sets of “indistinguishable” run-time locations by
a single shape-node, often called a summary-node [2]. One

*Supported in part by the U.S.-Israel BSF under grant 96-00337.
Address: Dept. of Camp. Sci.; Tel-Aviv Univ.; Tel-Aviv 69978; Israel.
E-mail: sagivOmath.tau.ac.il.

‘Supported in part by the NSF under grants CCR-9625667 and CCR-
9619219, by the U.S.-Israel BSF under grant 96-00337, by grants from
Rockwell and IBM. and bv a Vilas Associate Award from the Univ. of
Wisconsin. Address: C&p. Sci. Dept.; Univ. of Wisconsin; 1210 W.
Daytod St.; Madison, WI 53706; USA. E-mail: repsQcs.wisc.edu.

*Supported in part by a DAAD-NSF Collaborative Research Grant.
Address: Fachbereich 14 Informatik; Univ. des Saarlandes; 66123
Saarbriicken; Germany. E-mail: wilhelmQcs.uni-sb.de.

Permission to make digital or hard copies of all or parl ufthis work for

personal or classroom me is granted withwt fee procided that copies

are not made or distrihutcd for profit or cnrnmercinl advantage IIKI that

copies bear this notice and the full citation on the first page. To copy

otherwise. to republid~, to post on sewers or to redistribute tn lists,

requires prior specific permission anJ!or a fee.

POPL 99 San Antonio Texas USA
Copyright ACM 1999 l-581 13-095-3/99/01...$5.00

way of looking at these algorithms is that “shape graphs” are
indirect representations of store invariants.

1.1 Main Results

This paper presents a parametric framework for shape analy-
sis. Different instantiations of the framework allow the usage
patterns of different kinds of data structures in a program to
be observed, or allow the usage patterns of data structures
to be observed with different levels of precision and efficiency.
The ideal is to have a fully automatic method-a yacc for
shape analysis, so to speak. The “designer” of a shape-analysis
algorithm would supply only the specification, and the shape-
analysis algorithm would be created automatically from this
specification. This can be achieved by means of the methods
presented in this paper.

Moreover, the framework allows us to create algorithms
that are more precise than the above-cited algorithms. In
particular, by tracking which run-time locations are reachable
from which program variables, it is often possible to deter-
mine precise shape information for programs that manipulate
several (possibly cyclic) data structures. Other static-analysis
techniques (including ones that are not based on shape graphs
[14, 6, 8, 4, 51) yield very imprecise information on these pro-
grams.

1.1.1 The Use of Logic for Shape Analysis

In our shape-analysis framework, predicate-logic formulae play
many roles: expressing both the concrete and abstract seman-
tics of the programming language, expressing properties of
store elements (e.g., may-aliases, must-aliases), and express-
ing properties of stores (e.g., data-structure invariants). For
instance, the predicate Z(V) expresses whether pointer variable
x points to heap cell u; the binary predicate n(ui, vz) express
whether the n-component of heap cell ~1 points to heap cell uz;
to specify the effect of the statement “x = x->n” on variable
x (part of the concrete semantics), we write the formula

z’(v) = 3?Ji : Z(Vl) A n(w1, v). (1)
This indicates that after this statement, variable x points to
a heap cell that was formerly pointed to by x->n. To express
the property “program variables x and y are not may-aliases”,
we write the formula

vu : +r(‘u) A y(v)). (2)

1.1.2 Shape Analysis via Three-Valued Logic

We use Kleene’s three-valued logic [13] (which has a third
truth value that signifies “unknown”) to create a shape-analysis
algorithm automatically from a specification. Kleene’s logic is
useful for shape analysis because we only have-partial infor-
mation about summary nodes: For these nodes, predicates
may have the value unknown. One of the nice properties of
Kleene’s three-valued logic is that the interpretations of for-
mulae in two-valued and three-valued logic coincide on true
and false. This comes in handy for shape analysis, where we
wish to relate the concrete (two-valued) world and the ab-
stract (three-valued) world: The advantage of using logic is
that it allows us to make a statement about both the concrete

105

and abstract worlds via the same formula-the same syntac-
tic expression can be interpreted either as statement about
the two-valued world or the three-valued world.

In this paper, shape graphs are represented as “three-valued
logical structures” that provide truth values for every formula.
Therefore, by evaluating formulae, one obtains simple algo-
rithms for: (i) executing statements abstractly, and (ii) (con-
servatively) extracting store properties from a shape graph.
For example, formula (2) evaluates to true for an abstract
store in which x and y do not point to the same shape-node.
In this case, we know that z and y cannot be aliases. For-
mula (2) evaluates to false for an abstract store in which z
and y point to the same non-summary node. In this case,
we know that x and y are aliases. However, the formula can
evaluate to unknown when both x and y point to a summary-
node. In this case, the analysis does not know if x and y can
be aliases.

In Sections 2 and 4, we show how these mechanisms can be
exploited to create a parametric framework for shape-analysis.
This technique suffices to explain the algorithms of [ll, 10, 2,
211.

1.1.3 Materialization of New Nodes from Summary Nodes

One of the magical aspects of [19] is “materialization”, in
which a transfer function splits a summary-node into two sep-
arate nodes. (This operation is also discussed in [2, 161.) This
turns out to be important for maintaining accuracy in the
analysis of loops that advance pointers through data struc-
tures. The parametric framework provides insight into the
workings of materialization. It shows that the essence of ma-
terialization involves a step (called focus, discussed in Sec-
tion 5.1) that forces the values of certain formulae from un-
known to true or false. This has the effect of converting a
shape graph into one with finer distinctions.

In [19], it was observed that node materialization is com-
plicated because various kinds of shape-graph properties are
interdependent. For instance, the connections between heap
cells constrain the sets of potential aliases, and vice versa. In
this paper, we introduce a mechanism for expressing (three-
valued) constraints on shape graphs, which we use to capture
such dependences between properties.

1.2 Limitations

The results reported in the paper are limited in the following
ways:

l The framework creates intraprocedural shape-analysis
algorithms, not interprocedural ones. Methods for han-
dling procedures are presented in [2, 1, 191. Because
these are instances of the framework, their methods for
handling procedures should generalize to the parametric
case.

l The number of possible shape-nodes that may arise dur-
ing abstract interpretation is potentially exponential in
the size of the specification. We do not know how severe
this problem is in practice. However, it is possible to de-
fine a widening operator that converts a shape graph into
a more compact, but possibly less precise, shape graph
by collapsing more nodes into summary nodes. This can
be used to make a shape-analysis algorithm polynomial,
at the cost of making the results less accurate.

l The number of shape graphs may be quite large (as
in [ll, lo]). This problem was avoided in [15, 2, 16, 191
by keeping a single merged shape graph at every point.

/* reverse.c */
#include “1ist.h”
List reversetlist x> {

List y, t;

/* 1ist.h */
assert (acyclic-list (x1 > ;

typedef struct node {
y=NuLL;

struct node *n;
while (x != NULL) {

int data;
t = y;

} *List;
y = x;
x = x->n;

(a)

y-h = t;

1
return y;

1
(b)

Figure 1: (a) Declaration of a linked-list data type in C. (b) A
C function that uses destructive updating to reverse the list
pointed to by parameter x.

This measure has not been employed in this paper in
order to simplify the presentation.

1.3 Organization of the Paper

We explain our work by presenting two versions of the shape-
analysis framework. The first version is used to introduce
many of the key ideas, but in a simplified setting: Section 2
provides an overview of the simplified version and presents an
example of it in action; Section 4 gives the technical details.
Section 3 presents technical details of how three-valued logic is
used to define abstractions of concrete stores (which is needed
for Section 4 and subsequent sections). Section 5 defines the
more elaborate version of the shape-analysis framework. Due
to space constraints, some aspects of the abstract semantics
are omitted (see [18]). Section 6 contains a short account of
related work.

2 An Overview of the Parametric Framework

Figure l(a) shows the declaration of a linked-list data type in
C, and Figure l(b) shows a C program that reverses a list via
destructive updating. The analysis of the shapes of the data
structures that arise at the different points in the reverse
program will serve as the subject of the examples given in the
remainder of the paper. The reverse program allows us to
demonstrate many aspects of the shape-analysis framework in
a nontrivial, but still relatively digestible, fashion.

2.1 Representing Stores via Three-Valued Structures

In Section 1, we couched the discussion in terms of shape-
graphs for the convenience of readers who are familiar with
previous work. Formally, we do not work with shape-graphs;
instead, the abstractions of stores will be what logicians call
three-valued logical structures, denoted by (U, L). There is a
vocabulary of predicate symbols (with given arities); each log-
ical structure has a universe of individuals U, and L maps each
possible tuple ~(2~1, . . . , uk) of an arity-k predicate symbol p,
where ui E U, to the value 0, 1, or l/2, (i.e., false, true, and
unknown, respectively). Logical structures are used to pro-
vide a uniform representation of stores: Individuals represent
abstractions of memory locations; pointers from the stack into
the heap are represented by unary “pointed-to-by-variable-x”
predicates; and pointer-valued fields of data structures are rep-
resented by binary “pointer-component-points-to” predicates.

106

S Structure
Graphical
Representation

unary predicates:
indiv. x y t sm is

so binary predicates:

q
unary predicates:

binary predicates:

unary predicates:

Figure 2: The three-valued logical structures that describe all
possible acyclic inputs to reverse.

Assuming that reverse is invoked on acyclic lists, the
three-valued structures that describe all possible inputs to
reverse are shown in Figure 2. The following graphical no-
tation is used for three-valued logical structures: Individuals
of the universe are represented by circles with names inside.
Summary nodes (i.e., nodes for which the value of predicate
sm is l/2) are represented by double circles. Other unary
predicates with value 1 (l/2) and binary pointer-component-
points-to predicates are represented by solid (dotted) arrows.

Thus, in structure S2, pointer variable x points to element ~1,
whose n field may point to a location represented by element
u. u is a summary node, i.e., it may represent more than one
location. Possibly there is an n field in one of these locations
that points to another location represented by u.

S2 corresponds to stores in which program variable x points
to an acyclic list of two or more elements:

l The abstract element u1 represents the head of the list,
and u represents all the tail elements.

a The unary predicates x, y, and t are used to characterize
the list elements pointed to by program variables x, y,
and t, respectively.

l The unary predicate sm indicates whether abstract el-
ements are - “summary elements”, i.e., represent more
than one concrete list element in a given store. Thus,
sm(ul) = 0 because u1 represents a unique list element,
the list head. In contrast, sm(u) = l/2, because u repre-
sents a single list element when the input list has exactly
two elements, and more than one list element when the
input list is of length three or more.

The unaxy predicate is is explained in Section 2.2.

The binary predicate n represents the n fields of list el-
ements. The value of n(u1, u) is l/2 because there are
list elements represented by u that are not immediate
n-successors of 741.

The structures SO and S1 represent the simpler cases of lists
of length zero and one, respectively.

2.2 Conservative Extraction of Store Properties

Three-valued structures offer a systematic way to answer ques-
tions about properties of stores:

Observation 2.1 [Property-Extraction Principle]. Ques-
tions about properties of stores can be answered by evaluating
formulae using Kleene’s semantics of three-valued logic:

l If a formula evaluates to 1, then the formula holds in
every store represented by the three-valued structure.

l If a formula evaluates to 0, then the formula never holds
in any store represented by the three-valued structure.

l If a formula evaluates to l/2, then we do not know if this
formula always holds, never holds, or sometimes holds
and sometimes does not hold.

In Section 3.3, we give the Embedding Theorem (Theo-
rem 3.7), which states that the three-valued Kleene interpre-
tation in S of every formula is consistent with the formula’s
two-valued interpretation in every concrete store that S rep-
resents.

Now consider the formula

p(v) def 3vl,v2 : n(vl,v) A n(v2,v) A 211 # v2, (3)
which expresses the property “Do two or more different cells
point to v. 7” Formula q(v) evaluates to l/2 in 5% for v c+ u,
v1 t+ u, and 212 C) ~1, because n(u, u) A n(u,, u) A u # UI =
l/2 A l/2 A 1, which equals l/2. The intuition is that because
the values of n(u,u) and n(u1,u) are unknown, we do not
know whether or not two different cells point to u.

This uncertainty implies that the tail of the list pointed to
by x might be shared (and the list could be cyclic, as well).
In fact, neither of these conditions ever holds in the concrete
stores that arise in the reverse program.

To avoid this imprecision, our abstract structures have an
extra “instrumentation predicate”, is(v), that represents the
truth values of formula (3) for the elements of concrete struc-
tures that v represents. In particular, is(u) = 0 in SZ. This
fact implies that S2 can only represent acyclic, unshared lists
even though formula (3) evaluates to l/2 on u.

The preceding discussion illustrates the following principle:

Observation 2.2 [Instrumentation Principle]. Suppose
S is a three-valued structure that represents concrete store Sb .
By explicitly “storing” in S the values that a formula cp has
in 9, we can maintain finer distinctions in S than can be
obtained by evaluating cp in S. 0

2.3 Simple Abstract Interpretation of Program Statements

Our main tool for expressing the semantics of program state-
ments is based on the Property-Extraction Principle:

Observation 2.3 [Expressing Semantics of Statements
via Logical Formulae]. Suppose a structure S represents a
set of stores that arise before statement st. A structure that
represents the corresponding set of stores that arise after st
can be obtained by extmcting a suitable collection of properties
from S (i.e., by evaluating a suitable collection of formulae
that capture the semantics of st). 0

Figure 3 illustrates the first two iterations of an abstract
interpretation of reverse on the structure S2 from Figure 2.
The value of a predicate p(v) after a statement executes is
obtained by evaluating a predicate-update formula p’(v). The
appropriate predicate-update formulae for each statement are
shown in the second column of Figure 3. Figure 3 lists a
predicate-update formula p’(v) only if predicate p is affected

107

st1: y = NULL; y’(v) = 0

st2: t = y; t’(v) = Y(V)

stg: y = x; Y’(V) = 4u)

st4: x = x->n; z’(v) = 3Vl : Z(Q) A n(w1, v)

12’(Ol,212) = (n(v1,vz) A -y(w)) v (Y(W) A t(v2))

sts: y-al = t;
is’(w) =

is(v) A 3Vl,D2 : Ul # 212 An(v1,v) A7qv2,v)

A -y(w) A -y(vz) >
V (t(v) A 3~1 : n(w , v) A ‘y(w))

:..-.
4 :;

@. x s*
,_. ._,

stz: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = dV>

st4: x = x->n; z’(v) = 3Vl : z(q) A n(v1, v)
I

n v1,v2) = (?z(Vl, v2) A -y(v1)) v (y(w) A t(v2))

sts: y-al = t;
is’(v) =

is(v) A 3~1,212 :
(

VI #aAn(vl,v)An(w,v)
A-y(w) A -7y(v2) >

V (t(v) A 31 : n(w,~) A -y(w))

st2: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = 4V)

st4: x = x->n; z’(w) = 3Vl : 2?(Q) A n(m, tJ)

n’(m, ~2) = (n(vl, ~2) A my) V (y(w) A t(w))

st5: y-h = t;
is’(v) =

is(v) A 3~1, v2 :
(

~1 # ~2 An(w,v) An(vz,v)

A ly(m) A T&Z) >
V (t(v) A 3~1 : n(w,v) A l!/(w))

iS

via
I

‘igure 3: The first three iterations of the abstract interpretation of reverse (7 I the simplified framework described in Section 4).

statement 1 formula structure that arises just after statement
_. . .

In this example, reverse is applied to structure Sz from Figure 2, which represents lists of length two or more.

by the execution of the statement. The shape-analysis al- are traversed. As we will see, this allows us to determine the
gorithm illustrated in Figure 3 is essentially that of Chase et correct shape descriptors for the data structures used in the
al. [2]. reverse program.

Unfortunately, there is also bad news: The method de-
scribed above and illustrated in Figure 3 can be very impre-
cise. For instance, statement st4 sets x to x->n; i.e., it makes
x point to the next element in the list. In the abstract inter-
pretation, the following things occur:

l In the first abstract execution of st4, z'(u) is set to l/2
because z(ui) A n(ul,u) = 1 A l/2 = l/2. In other
words, x may point to one of the cells represented by the
summary node u (see the structure Ss).

l This eventually leads to the situation that occurs after
the third abstract execution of st5, which produces struc-
ture Sis. Structure $5 indicates that “x, y, and t may
all point to the same (possibly shared) list”.

In Section 5, we show how it is possible to go beyond the
simplified approach described above by “materializing” new
non-summary nodes from summary nodes as data structures

3 Three-Valued Logic and Embedding

This section defines a three-valued first-order logic with equal-
ity and transitive closure.

We say that the values 0 and 1 are definite values and that
l/2 is an indefinite value, and define a partial order C on truth
values to reflect information content: Ii & 1s denotes that Ii
has more definite information than 12:

Definition 3.1 For 11,12 E {0,1/2, l}, we define the infor-
mation order on truth values as follows: 11 C 12 if 11 = 12 or
12 = I/2. The symbol U denotes the least-upper bound opera-
tion with respect to 5. El

Kleene’s semantics of three-valued logic is monotonic in the
information order (see Definition 3.4).

108

Does pointer variable x point to element v? Cl Does element v represent more than one

Table 1: The core predicates that correspond to the List data-
type declaration from Figure l(a).

3.1 First-Order Formulae with Transitive Closure

Let P = {pi,... ,p,} be a finite set of predicate symbols.
We write first-order formulae over P using the logical con-
nectives A, V, 1, and the quantifiers V and 3. The sym-
bol = denotes the equality predicate. The operator ‘TC’
denotes transitive closure on formulae. We also use several
shorthand notations: For a binary predicate p, P+(v~,v~) is
a shorthand for (TC VI, us : p(v1,va))(vs, ~4); cpl =S 92 is a
shorthand for (-cpr V ~2); and (pi * ‘ps is a shorthand for

(91 * 92) A ($72 * cpl).
Formally, the syntax of first-order formulae with equality

and transitive closure is defined as follows:

Definition 3.2 A formula offer a vocabulary
P= {Pl,... ,Pn} is defined inductively, as follows:

Atomic Formulae The logical-literals 0, 1, and l/2 are
atomic formulae with no free variables.

For every predicate symbol p E P of arity k, p(vl, . . . , vk)
is an atomic formula with free variables ~1, . . . , vk .

The formula (~1 = va) is an atomic formula with free
variables v1 and vs.

Logical Connectives If (~1 and cp2 are formulae whose sets
of free variables are VI and Vz, respectively, then (cpl A
(p2), (cpl Vqa), and (-rrpi) are formulae with free variables
VI U Va, VI U Va, and VI, respectively.

Quantiflers If cp is a formula with free variables VI, ~2,. . . , vk,
then (3vl : cp) and (Vvi : cp) are both formulae with free
variables us, vs, . . . , vk.

Transitive Closure If cp is a formula with free variables V
such that VI, va E V and ‘us, 214 # V, then (TC VI, v2 :
(P)(Q, ~4) is a formula with free variables (V-{VI, v2))U

(213,214).

A formula is closed when it has no free variables. •I

In our application, the set of predicates P is partitioned
into two disjoint sets: the “core-predicates”, C, and the
Ynstrumentation-predicates”, Z. The core-predicates are part
of the programming-language semantics. In contrast, the in-
strumentation predicates are introduced in order to improve
the precision of the analysis (as described by Observation 2.2).

Example 3.3 Table 1 contains the core-predicates for the
List data-type declaration from Figure l(a) and the reverse
program of Figure l(b). 0

Table 2 lists some interesting instrumentation predicates,
and Table 3 lists their defining formulae.

.

.

The sharing predicate is was introduced in [2] and also
used in [19] to capture list and tree data structures.

The reachability-from-x predicate rr was mentioned in [19,
p.381. It drastically improves the precision of shape anal-
ysis, even for programs that manipulate simple list and
tree data structures, since it keeps separate the abstract
representations of data structures that are disjoint in the
concrete world.

1 Pred. I Intended Meaning I Puruose I Ref.]
qq--

TX(v)

44
Cf.6 (v>

Cb.f (v)

Do two or more fields of
heap elements point to v?
Is v (transitively)
reachable from
pointer variable x?
Is v reachable from some
pointer variable (i.e., is v
a non-garbage element)?
Is v on a directed cycle?
Does a field-f dereference
from v, followed by a
field-b dereference, yield v?
Does a field-b dereference
from v, followed by a
field-f dereference, yield v?

lists *and
trees
separating WI
disjoint data
structures
compile-time
garbage
collection
ref. counting [ll]
doubly-linked [7],
lists [I61

doubly-linked [7],
lists [16]

Table 2: Examples of instrumentation predicates.

def
@J(V) = 3v1,v2 : n(v1,v)An(v2,v) Au1 # v2

def
cp,,(v) = z(v)V% : Z(Q) An+(vl,v)

(p,(v) dzf // (z(v) V 3vi : z(w) A n+(vl,v))

xEPVor

cpc(v) tsf n+(z), v)

def

(4)

(5)

(6)

(7)

(~c~,~ (v) = VW, v2 : f (v, ~1) A b(vl, 212) =S v2 = 2, (8)

(pcb.f (v> ef VW, 212 : b(v, VI) A f (VI, v2) * ~2 = 2, (9)

Table 3: Formulae that define the meaning of the instrumen-
tation predicates listed in Table 2.

.

.

The reachability predicate r identifies non-garbage cells.
This is useful for determining when compile-time garbage
collection can be performed.

The cyclicity predicate c was introduced by Jones and
Muchnick [ll] to aid in determining when reference count-
ing would be sufficient.

. The special cyclic&y predicates cf.b and c&f are used to
capture doubly-linked lists, in which forward and back-
ward field dereferences cancel each other. This idea was
introduced in [7] and also used in (161.

3.2 Kleene’s Three-Valued Semantics

In this section, we define Kleene’s three-valued semantics for
first-order formulae with transitive closure.

Definition 3.4 A three-valued interpretation of the Zan-
guage of formulae over P is a three-valued logical struc-
ture S = (U’,L’), where Us is a set of individuals and
L’ maps each predicate symbol p of arity k to a truth-valued
function:

LS : P -+ (US)” -+ (0, 1,1/2}.
An assignment Z is a function that maps free variables to

individuals (i.e., an assignment has the functionality
2: {v1,v2,...} + Us). An assignment that is defined on
all free variables of a formula cp is called complete for cp. In
the sequel, we assume that euery assignment 2 that arises in
connection with the discussion of some formula cp is complete

for cp.
The meaning of a formula cp, denoted by [&(Z), yields

a truth value in (0, 1,1/2}. The meaning of cp is defined in-
ductively as follows:

109

Atomic For a logical-literal 1 E {O,l, l/2}, [l]:(Z) = I
(where 1 E (0, &l/2}).

For an atomic foTTHLla p(vl, . . . , a),

[p(Vl,... ,vk)]@) = ~%‘)(%‘I), . . . > z(d)

For an atomic formula (WI = vz),

0 Z(w) # Z(v2)

[Vl = vz];(z) = 1
Z(w) = Z(v2)

A ‘qm)(z(v,)) = 0

l/2 otherwise

Logical Connectives For logical formulae ‘pl and ~2

ha A (~2lt(z) = min(8vlI~(~h h&(~))

BP1 v cp21m = mMcpll~(~), Ff213sW)

8%13s(~) = 1 - Mm

Quantifiers If cp is a logical formula,

pw : &(Z) = p$. I&qw I-t UI)

pw : &(a = mys [&(GJ1 e 4

Transitive Closure For (TC 211,212 : (p)(vs, v4),

[(TC 211,212 : (P)(w4)p:(z) =

We say that S and Z potentially satisfy cp (denoted by
S, 2 k cp) if [q]:(Z) = l/2 or [&(Z) = 1. Finally, we write
S + cp if for every 2: S, 2 k cp. 0

The only nonstandard part of Definition 3.4 is the meaning
of equality (denoted by the symbol ‘=‘). The predicate =
is defined in terms of the sm predicate and the “identically-
equal” relation on individuals (denoted by the symbol ‘=‘):’

l Non-identical individuals ui and u2 are unequal (i.e., if
ui # uz then ui # uz).

l A non-summary individual must be equal to itself (i.e.,
if sm(u) = 0, then u = u).

. In all other cases, we throw up our hands and return
l/2.

Three-valued logic retains a number of properties that are
familiar from two-valued logic, such as commutativity and as-
sociativity of A and V, distributivity of A over V and vice
versa, De Morgan laws, etc.

3.3 The Embedding Theorem

In this section, we formulate the Embedding Theorem, which
gives us a tool to relate two- and three-valued interpretations.
We define the embedding ordering on structures as follows:

Definition 3.5 Let S = (U’,L’) and S’ = (Us’,“‘) be two

structures. Let f: Us -+ Us’ be surjectiwe. We say that f
embeds S in S’ (denoted by S Cf S’) if(i) for every predicate
symbol p of an’ty k and all ~1,. . . , u& E Us,

&)(ul, , ‘ilk) & b%)(f (u1), . . . , f (uk)) (10)

‘Note the typographical distinction between the syntactic symbol for

equality, namely ‘=‘, and the symbol for the “identically-equal” relation

on individuals, namely I=‘.

and (ii) for all u’ E Us’,

(Ku I f(u) = u’}I > 1) E ts’(sm)(u’) (11)
We say that S can be embedded in S’ (denoted by S 5

5”) if there exists a function f such that S cf S’. •I

Note that inequality (10) applies to the summary predi-
cate, sm, as well.

A special kind of embedding is a tight embedding, in which
information loss is minimized when multiple individuals of S
are mapped to the same individual in S’:

Definition 3.6 A structure S’ = (U”,L”) is a tight em-
bedding of S = (Us, ts) if there exists a surjectiwe function

t-embed: Us + Us’ such that, for every p E P - {sm} of
arity 1,

‘s’(p)@:, . . .) u;> = I-J &)(%,... ,uk)(12)

t_embed(Ui)=~i,l<i<k

and for every u’ E Us’,

LS,(sm)(
u

,) = (I{4t-embed($ = ~‘11 > W

u L (smN4
t_embed(u)=u’

(13)

Because t-embed is surjective, equations (12) and (13)
uniquely determine S’ (up to isomorphism); therefore, we say
that S’ = t-embed(S). •I

It is immediately apparent from Definition 3.6 that the
tight embedding of a structure S by a function t-embed pos-
sessing properties (12) and (13) embeds S in t-embed(S), i.e.,

S Pmbed t-embed(S).

If f:US + us’ is a function and 2: Var + Us is an

assignment, f o Z denotes the assignment f o 2: Var + Us’
such that (f o Z)(v) = f(.Z(v)).

We are now ready to state the embedding theorem. Intu-
itively, it says:

If S cf S’, then every piece of information ex-
tracted from S’ via a formula q is a conservative
approximation of the information extracted from
S via cp.

Theorem 3.7 [Embedding Theorem]. Let S = (Us,ts)

and S’ = (Us’ , I?‘) be two structures and f: Us + Us’ such

that S cf S’. Then, for every formula cp and complete assign-

ment 2 for 9, M3s(z) 5 Mf’(f o 2). 0

3.4 Compatible Structures

We use 3-STRUCT[P] to denote the set of general three-
valued structures over vocabulary P, and 2-STRUCT[P] to
denote the normal two-valued structures over P. (Note that
2-STRUCT[?‘] C 3-STRUCT[P].)

Suppose that P is a C program that operates on the List
data-type of Figure l(a), and that Sb E 2-STRUCT[P] is a
two-valued structure over the appropriate vocabulary. As de-
scribed in Table 1, our intention is that Sh capture a List-
valued store in the following manner:

Each cell in hyhp-allocated storage corresponds to an

individual in U .

For every individual u, ~~~ (z)(u) = 1 if and only if the
heap cell that u represents is pointed to by program vari-
able x.

For every pair of individuals ui and 112, L Sb (n)(u1, u2) =

1 if and only if the n field of ui points to UP.

110

for each x E PVar,Vvi,v2 : Z(Q) AZ(~) =S WI = ~2 (14)

v111,212 : (3tJ3 : n(w3,211) A n(vs,vz)) * 211 = 212 (15)

vv: (32)1,v2 : WI # 212 An(th,v) A n(v2,v)) * is(w) (16)

tlv : -+h,w2 : ~1 # v2 An(m,v) An(wz,v)) =S -+8(v) (17)
v212,2, : (AI, : -vis u A VI # 212 An v1,v)) =k- -n(vz,v)(18)

V/2)1,2) : (3~2 : +5(v) Avl # 212 An(vz,w)) + -Vz(v1,v) (19)

tj211,va : (3~ : -k?(v) An(vl,v) A n(v2,v)) + 111 = 212 (20)

Table 4: Compatibility formulae F for structures that repre-
sent a store of the reverse program, which operates on the
List data-type declaration from Figure l(a). The rules below
the line are logical consequences of the rules above the line,
and are generated systematically from the rules above the line,
as explained in Section 5.2.1.

(Similar statements hold for the instrumentation predicates,
as indicated in Table 2.)

However, not all structures Sb E 2-STRUCT[P] represent
stores that are compatible with the semantics of C. For exam-
ple, stores have the property that each pointer variable points
to at most one element in heap-allocated storage. Conse-
quently, we are not interested in all structures in 2-STRUCT[P],
but only in ones compatible with the semantics of C. Table 4
lists a set of compatibility formulae F (or “hygiene condi-
tions”) that must be satisfied for a structure to represent a
store of a C program that operates on the List data-type from
Figure l(a). Formula (14) captures the fact that every pro-
gram variable points to at most one list element. Formula (15)
captures a similar invariant on the n fields of List structures:
Whenever the n field of a list element is non-NULL, it points to
at most one list element.

In addition, for every instrumentation predicate p E Z de-
fined by a formula ‘pp (vi , . . . , ZIP), we generate a compatibility
formula of the following form:

vu1 ,... ,?.Jk : (pp(211 ,... ,vk) w$p(vl,... ,vk) (21)

This is then broken into two formulae of the form:

vu l,... , vk : f&,(2)1,. . . ,‘uk) * p(vl,. . . ,vk)

vu 1,. . . ,Vk : -&‘p(Vl,. . . ,2)k) =i’ -‘p(vl,. . . ,vk)

For instance, for the instrumentation predicate is, we use
formula (4) for (Pia to generate compatibility formulae (16)
and (17).

In the remainder of the paper, 2-CSTRUCT[P, F] denotes
the set of two-valued structures that satisfy a set of compati-
bility formulae F.

Compatibility constraints for three-valued structures are
discussed in Section 5.2.1.

4 A Simple Abstract Semantics

In this section, we formally work out the abstract-interpretation
algorithm that was sketched in Section 2.3. In Section 4.1, we
define how (a potentially infinite number of) concrete struc-
tures can be represented conservatively using a single three-
valued structure. In Section 4.2, the meaning functions of the
program statements are defined. To guarantee that the analy-
sis of a program containing a loop terminates, we require that
the number of potential structures for a given program be fi-
nite. For this reason, in Section 4.3 we introduce the set of
bounded structures, and show how every three-valued struc-
ture can be mapped into a bounded structure. Section 4.4
states the abstract interpretation in terms of a least fixed point
of a set of equations.

4.1 The Concrete Stores Represented by a Three-Valued

Structure

Deflnition 4.1 (Concretization of Three-Valued Struc-
tures) For a structure S E 3-STRUCqP], we denote by y(S)
the set of two-valued structures that S represents, i.e.,

y(S) = {Sb 1 Sh c S, Sb E %CSTRUC~P, F]} (22)
Cl

Example 4.2 The structure S2 shown in Figure 2 represents
lists of length two or more. 0

4.2 The Meaning of Program Statements

In this subsection, we present a simple algorithm that, given a
program, computes for every point in the program a conserva-
tive approximation of the set of concrete structures that arise
at that point during execution. (This algorithm is refined in
Section 5 to obtain a more precise solution.)

We now formalize the abstract semantics that was dis-
cussed in Section 2.3. The main idea is that for every state-
ment st, the new values of every predicate p are defined via a
predicate-update formula cp;” (referred to as p’ in Section 2.3).

Definition 4.3 Let st be a program statement, and for every
a&y-k predicate p in vocabulary P, let ‘pit be the formula over
free variables vi,. . . , vk that defines the new value of p after
st. Then the P transformer associated with st, denoted
by [St], is defined as follows:

]stl(S) = (y;;,,, . . . ,t&.[$$];([th +b ‘111,. . . ,Wk ti t&l))
0

Example 4.4 Table 5 lists the predicate-update formulae that
define the abstract semantics of the five kinds of statements
that manipulate data structures defined by the List data type
given in Figure l(a). (For the moment, ignore the case for
statements of the form x = malloc 0 .) Cl

Definition 4.3 does not handle statements of the form x =
malloc0 because the universe of S does not change. Instead,
for statements of this form, we use the modified definition
of]st](S) given in Definition 4.5, which first allocates a new
individual unew , and then invokes predicate-update formulae
in a manner similar to Definition 4.3.

Definition 4.5 Let st E x =malloc() and let new $2 P be
a unary predicate. For every p E P, let ‘pGt be a predicate-
update formula over vocabulary PU{new}. Then the P trans-
former associated with st E x = malloc(), denoted by [z =
malloc()], is defined as follows:

[x = malloc()](S) =

let U’ = Us U {unew}, where unew is an individual not in Us

xp.xul,. . . ,uk.
1 p=new Au1 =unew

and L'=

I

0 p=newAul#unew

l/2 p#new A V ui =unew
l<i<k --

LS(p)(Ul,... , uk) otherwise

in
(

U’,
xp.xu1, . . * , dbf’p 13 St (“+‘)([Vl k-b ul, . . . , Vk +b Uk]) >

Cl

In Definition 4.5, L’ is created from L as follows: (i) new(unew)
is set to 1, (ii) new(ui) is set to 0 for all other individuals
‘111 # uncut, and (iii) all predicates are set to l/2 when any

111

st

x = NULL

P;”
&‘(w) def 0

(Pan def zj:J, for each z E (PVar - {x})

cpz (211, v2) = n(211,212)

&(w) def m(w)

x=t f&“(w) deft(w)

p:‘(w) def z(w), for each z E (PVar - {x))

cpzLt(wI, w2) dgf n(w1,w2)

y&(w) def m(w)

x = t->n &(w) def 3Wl : t(w1) A 7z(Wl, w)

p:“(w) def z(w), for each z E (PVur - {x})

f&(w , w2)
def
= n(w1,w2)

g&(w) def m(w)

x->n = t &(w) def Z(W), for each z E PVar
def (n(w, 112) A ~~(211))

d(wl,w2) = v (z(w1) A t(w2))

cp::, (w) dsf m(w)

x = malloc() ‘p:‘(w) def new(w)
def Z(W) A -new(w),

cp’“(w) = for eac;lu: z2jpVar - {x})
def

cp”,“(Wl,W2) = A -w&(w,) A Tnew(w2)

p::(w) ef sm(w) A -new(w)

Table 5: Predicate-update formulae for the core predicates for
List and reverse.

argument is uneW. The predicate-update operation in Defi-
nition 4.5 is very similar to the one in Definition 4.3 after L’
has been set. (Note that the p in “L’ = Xp.. . .” ranges over
P U {new}, whereas the p in “Xp.. . .” appearing in the last
line of Definition 4.5 ranges over P.)

The Embedding Theorem immediately implies that the
three-valued interpretation is conservative with respect to ev-
ery store that can possibly occur at run-time.

The above two definitions are not the complete story. In
the case of the instrumentation predicates, the statements
need to maintain %orrect instrumentation”. This is formally
defined as follows:

Definition 4.6 A predicate-update formula cpg” maintains a
correct instrumentation for predicate p E Z if for all
Sb E 2-CSTRUCqP, F] and for all Z,

[p;*]$ (Z) = [‘pp]yqZ).
El

Example 4.7 Table 6 gives the definitions of the predicate-
update formulae for the instrumentation predicate is. It is
not hard to see that, for each kind of assignment statement,
equation (23) holds. 0

Henceforth, when discussing the general case (i.e., the para-
metric framework), we assume that all predicate-update for-
mulae maintain correct instrumentations.

st st
(Pis j

x = NULL I&w) def is(w)

x=t (cp$w) def is(w)

x = t->n &w) def is(w)

is(w) A 3~1,212 : 01 # w2

x->n = t l&(w) def A n(wl, w) A 4~2, v)

A +wl) A -4~2)

V (t(w) A 3~1 : n(w~, w) A x(w~))

x = malloc() cp~~(w) gf is(w) A -mew(w)

Table 6: Predicate-update formulae for the instrumentation
predicate is.

structures for a given program be finite. Toward this end, we
make the following definition:

Definition 4.8 A bounded structure ozler vocabulary P is
a structure S = (U’,L’) such that for every UI,UZ E Us,
where u1 # ‘112, there etists a unary predicate symbol p E P
such that (i) I’ # l/2, (ii) L’(~)(W) # l/2, and

(iii) LS(P)(U1) # rS(p)(u2>.

In the sequel, B-STRlJCljP] denotes the set of such struc-
tures. 13

There are two consequences of Definition 4.8:

l For every fixed set of predicate symbols P containing
unary predicate symbols A C P, there is an upper bound
on the size of structures S E B-STRUCT[P], i.e., IUs <
21-4’.

l The embedding of any structure into a bounded struc-
ture S is unique.

Example 4.9 Consider the class of bounded structures asso-
ciated with the List data-type declaration from Figure l(a).
Here the predicate symbols are C = {sm, n) U {z (x E PVar)

and Z = {is}.”
For the reverse program from Figure l(b), the program

variables are x, y, and t, yielding unary core predicates G, y,
and t; the other unary predicates are is and sm. Therefore,
the maximum number of individuals in a structure is 25 = 32;
however, a consequence of equation (13) is that sm cannot
have the value 1, and thus the maximum number of individuals
in a structure is really only 16. On the other hand, Figure 3
shows that each structure that arises in the analysis of reverse
has at most two individuals. 0

One way to obtain a bounded structure is to map individ-
uals into abstract individuals named by the definite values of
the unary predicate symbols. That is, to embed unbounded-
size structures into bounded-size ones, we exploit the following
abstraction principle, in which the mapping is controlled
by a fixed set of unary “abstraction predicates”-the unary
predicates of the vocabulary:

Individuals are partitioned into equivalence classes
according to their sets of unary-predicate values.
Every structure Sb is then represented (conserva-
tively) by a condensed structure in which each in-
dividual of S represents an equivalence class of Sb.

This is formalized in the following definition:

4.3 Bounded Structures

To guarantee that shape analysis terminates for a program
that contains a loop, we require that the number of potential

*The predicate sm has a slightly different status than the other core
predicates. It captures the essence of “summary-nodes”, and thus has
has a fixed meaning in all concrete structures, namely, sm(u) = 0 for
all u E Us. Including sm in the concrete structures allows us to work
with the same vocabularies at the concrete and abstract levels.

112

Deflnition 4.10 The canonical abstraction of a structure
S, denoted by t-embed,(S), is the tight embedding induced by
the following mapping:

t-embed,(u) = "{pod-{~n}l‘~(p)(~)=l),(pEA-Iam)JrS(p)(~)=O}.
Cl

Note that t-embed, can be applied to any three-valued
structure, not just two-valued structures, and that t-embed,
is idempotent (i.e., t_embed,(t_embed,(S)) = t-embed,(S)).

The name '"{p~d-{dm}l‘s(p)(u)=l),{ ~d-{.m}~~S(p)(u)=O}n
is known as the canonical name of m J ividual u.

Example 4.11 In structure Sr from Figure 2, the canonical
name of individual ui is u{xl,{r,t,ial, and the canonical name
of ‘11 is "0,{z,y,t,is}* In structure Ss, which arises after the
first abstract mterpretation of statement sts in Figure 3, the
canonical name of ui is ~I~,~l,{~,i~l, and the canonical name
of u is ~0,{,,~.t,i~j. 0

It is straightforward to generalize Definition 4.10 to use
just a subset of the unary predicate symbols, rather than all
of the unary predicate symbols A c P. This alternative yields
bounded structures that have a smaller number of individu-
als, but may decrease the precision of the shape-analysis al-
gorithm. For instance, Definition 4.10 is a generalization of
the abstraction function used in [19].3 The only abstraction
predicates used in [19] are the “pointed-to-by-x” predicates;
the predicate is is used only as an instrumentation predicate
in [19], but not as an abstraction predicate (i.e., is does not
contribute to the canonical name of an individual in [19]).
Consequently, the algorithm from [19] loses precision for stores
that contain both shared and unshared heap cells that are not
directly pointed to by any variable. Adopting is as an addi-
tional abstraction predicate improves the accuracy of shape
analysis: In this case, shared heap cells and unshared heap
cells are represented by abstract individuals that have differ-
ent canonical names.

4.4 The Shape-Analysis Algorithm

In this section, we define the actual shape-analysis algorithm.

Deflnition 4.12 For structure sets XS1, XS1 c 3-STRZJCqP],
we define: XSI E XSa e VSi E XSz : 3Sz E XSz : Si g .I$.
cl

The shape-analysis algorithm itself is an iterative proce-
dure that computes a set of structures, StructSet[v], for each
vertex 2) of control-flow graph G, as a least fixed point of the
following system of equations over the variables StructSet[v]:

U {t_embed,[st(w)](S)] S E StructSet[w]}

{(8,&h,... ,uk.1/2)}

if u # start
if v = start

The iteration starts from the initial assignment StructSet[v] =
0 for each control-flow-graph vertex v. Because of the t-embed,
operation, it is possible to check efficiently if two structures
are isomorphic.

5 Improved Abstract Semantics

In this section, we formulate the improved abstract interpre-
tation referred to in Section 2. This analysis recovers precise
shape information for many list-manipulation programs, in-
cluding ones that manipulate cyclic lists.

‘The shape-analysis algorithm presented in [19] is described in terms
of Storage Shape Graphs (SSGs), not bounded structures. Our compar-
ison is couched in terms of the terminology of the present paper.

II

{S51

1 Wl

{s6} 2 {sS,OtsS,l, s6.2) \COerrF {'95,0,0, '95,o,lrS5,o,2)

Figure 4: One- vs. three-stage abstract semantics of statement
sts. The operation [st] was already defined in Section 4. The
focus and the coerce operations are introduced in Sections 5.1
and 5.2, respectively. (This example will be discussed in fur-
ther detail in Sections 5.1 and 5.2.)

In contrast to the abstract meaning function for a state-
ment st given in Definition 4.3, in this section we decompose
the transformer for st into a composition of three functions,
as depicted in Figure 4 and explained below:

The operation focus, defined in Section 5.1, refines three-
valued structures such that the formulae that define the
meaning of st evaluate to definite values. The focus op-
eration thus brings these formulae “into focus”.

The transformer [St], defined in Section 4, is then ap-
plied (see Definitions 4.3 and 4.5).

The operation coerce, defined in Section 5.2, converts a
three-valued structure into a more precise three-valued
structure by removing incompatibilities. In contrast to
the other two operations, coerce does not depend on the
particular statement st; it can be applied at any step
(e.g., right after focus and before [St]) and may improve
precision.

It is worthwhile noting that both focus and coerce are
semantic-reduction operations (originally defined in [3]). That
is, they convert a set of three-valued structures into a more
precise set of structures that describe the same set of stores.
This property, together with the correctness of the structure
transformer [St], guarantees that the overall three-stage se-
mantics is correct.

5.1 Bringing Formulae Into Focus

To improve the precision of the simple abstract semantics of
Section 4 we define an operation, called focus, that forces a
given formula cp to a definite value.

5.1.1 The Focus Operation

First, we define an auxiliary operation, mazimal, that returns
the set of maximal structures in a given set of structures:

Definition 5.1 For a set of structures XS C 3-STRUCT[P],

mazimal(XS) def

XS-{XEXSI~X’EXS:X[I:X’~~~X’~X}

Cl

Definition 5.2 Given a formula cp, the operation focus, yields
the (potentially infinite) set of structures in which cp evaluates
to a definite value, i.e.,

focus,(S) = maximal

0
for all 2 : [&’ (2) # l/2 }I

Example 5.3 The upper part of Figure 5 illustrates the ap-
plication of focus to the formula &(u) and the structure Ss
that we have in reverse between the first application of state-
ment sts: y = x and the first application of statement st4: x
= x->n in Figure 3. This results in three structures:

The structure S~J,C,, in which ‘pit4(w) evaluates to 0 for
all individuals. This structure represents a situation in
which the concrete list that x and y point to has only
one element, but the store also contains garbage cells,
represented by summary node U.

The structure &JJ, in which [‘pzt4 (v)]?‘~*~ ([v I+ u])
equals 1. This covers the case where the list that x and
y point to is a list of exactly two elements: In all of the
concrete cells that summary node ‘1~ represents, cpz”‘(v)
must evaluate to 1, and so u must represent just a single
list node.

The structure &,,f,2, in which [cpzt4 (v)]~.‘.‘([v * u.01)

equals 0 and [&‘4(~)]~*f~2([w C) u.l]) equals 1. This
covers the case where the list that x and y point to is a
list of three or more elements: In all of the concrete cells
that u.0 represents, cp:““(v) must evaluate to 0, and in
all of the cells that 21.1 represents, cpzt4 (w) must evaluate
to 1.

This case captures the essence of node materialization
as described in [19]: individual ‘1~ is bifurcated into two
individuals. M(S,Z) =

Notice how foc~~~~t~ CV) is effectively constructed from SS

by considering the reasons why [&“4(~)]~(Z) evaluates to
l/2 for a possible assignment 2: [&4(v)]? ([v H ul]) equals
0, and therefore cpit4(v) is already in focus at ~1; in contrast,

[‘pzt4 (v)]? ([v e u]) equals l/2. There are three (maximal)
structures in which [(pit4 (v)]s([~ t+ u]) has a definite value:

l &,,J,o, in which ~(uI,u) was forced to 0, and thus

[$&’ (v)]?J*O ([v I+ u]) equals 0.

l SSJJ, in which n(ul, U) was forced to 1, and thus

[‘p$4 (?&JJ ([v c) u]) equals 1.

l &,f,z, in which u was bifurcated into two different in-
dividuals, u.0 and 21.1. In &,,f,z, n(u1,u.O) was set to

0, and thus [cp;““(~)],S6,~*~ ([v r-) u.01) equals 0, whereas

n(z(;;;;‘) was set to 1, and thus [&(~)],s”*‘* ([v I+ ~.l])

Of course, there are other structures that can be embedded
into S5 that would assign a definite value to ‘pjZt4 (v), but these
are not maximal (according to Definition 5.1) because each of
them can be embedded into one of &,f,o, Ss,f,l, or &,f,2. 0

In this paper, we simplify the analysis algorithm by only
applying focus with respect to spit formulae, which ensures
that the number of resulting structures is finite:

Lemma 5.4 For every program variable x E PVar, statement
st, and structure S, If0cu.9,:~ (S)l 5 31U’I. q

{(&h’(z(d,-.. , z(vk)) + 01)

Z(P(‘ul,... , d)(s, 2) = if 0 E b@(z(vl), . . . , z(vk))
0 otherwise

,491 A (P2)(% 2) = 4cpl)(S, Z) u 4cpz)(S, 2)

4~1 v cp2)(8 2) = 4cpd(s, 2) n 4f72)(s, 2)

4-v)(f% 2) = o(cp)(S, 2)

WJ : rp)(S, 2) = u 4cp)(S, Z[v I+ 4
UEU

-43v : cpw, 2) = fl 4cpm,GJ * 4
UEU

o(Z)(S, 2) =

o(v1 = ‘u2)(S,Z) =
z(sm(vl))(S, 2) if Z(~I) = Z(v2)

otherwise

{(~,h’(~(‘ul),-.. ,z(vk)) 4- 11))

O(P(V1, . . . t vk))(S, 2) = if 1 c L(I)(z(vl), . . . , z(vk)))
0 otherwise

4cpl A cpz)(S, 2) = O(cpl)(S, 2) n o(cpz)(S, 2)

O(cpl v (P2)(% 2) = O(cpl)(S, 2) u o(cp2)(% 2)

o(-cp)(S, 2) = 4v)(S, 2)

o(Vv : cp)(S, 2) = /-j o(cp)(S, -qJ ++ 4)
UEU

5.1.2 An Algorithm for Focus

In this section, we present an algorithm that implements focusVlt (“)

by generating structures in which cp;2’(v) has a definite value. o@v : cpp, 2) = u 4cpK% Zb - 4
A key aspect of the algorithm is the ability to identify the UEU

maximal structures in which cpzt (v) has a definite value. Recall
cI

that the Hoare order on sets of structures is only a pre-partial Example 5.7 For the formula cpct4(w), structure S5 from Fig-
order (see Definition 4.12). The following definition provides
a way to compute a least upper bound and a greatest lower
bound on sets of structures sharing the same universe U.

Definition 5.5 Let XSI, XS2 s 3-STRUCqP] such that for
all S E XS1 U X&, Us = U. We define the following opera-
tions on XSI and XS2:

XSl U XS2 def maximal(XS1 U XS2)

xs 1 l-l xs 2 dsf

{

(u,~p.xUl,. . . Uk.LS1(P)(Ulr.. . ,Uk) n L’“(P)(Ul,. . . ,uk))

I S1 E XSI and Sz E XS2 and comparable(S1, SZ) >

where:

comparable(S1, SZ) =

forallpEP,forallu~,... ,uk EU:
Pqp)(UI,... ,uk) bS2@)(‘111,... ,uk)

or bs2 (p)(u~, . . . , Uk) c Lsl (p)(Ul, . . . , ‘ilk)

cl

We are now ready to define the operations z and o that
assure that a given formula evaluates to 0 and 1, respectively,
in a given assignment.

Definition 5.6 Let S = (U, L) E 3-STRUCljP] be a three-
valued structure. Let &(u~, . . . , uk) t l] denote the map ob-
tained from L by updating ~(p)(u~, . . . , uk) to have the value
1. For a formula cp and assignment 2, we define z(cp)(S,Z) E

23~STRUCT~p1 and o(cp)(S, 2) E 23-sTRucT[p1 inductively, as
follows:

114

. .
input

4 ;

struct. s5

focus
a

formulae {$+(2)) = 31 : 2(w) A n(tJ1, v), &qv) = y(v), cp;“yv> = t(v)}

focused
struct. %f,O &4(u) = 0 %f,l ‘pg4 (u) = 1 S&f,2 cp:t’(u) = 1 &‘(21) = 0

..m.

x,,_@ 4d x,y_@_R x,y_o~~-_:::::::::~.~

update ‘pct4 (v) PO;
t
4(v) $4

t

formulae
4(v)

t t
(PL4 (v) cp:4 (v)

t
cp; 4 (211, v2)

31 : 2(Vl) A n(v1, v)ly(v) It(v) lis(v) m(v) jTz(v1, v2)

output
struct . ss,o,o SS,o,l X s5,0,2 X

. ..?a...

y+@ j& 0-A
..*.. 4 .:

y-u1 n @ Y - ‘111 n, u.1 i). 0 (I ,:;:;,::r. 21.0

‘. b 0 ‘.. . ..’ ,:
coerced
struct. St?,0 &,l X se,2

y+@ 4& 0-A Y- Ul
n

U y-o-Q . . ?L@

Figure 5: The first application of the improved transformer for statement st4: x = x->n in reverse.

ure 5, and individual u E lJs5, we have:

4&“)(~5, bJ -+ ul)
= Z(3Vl : z(w) A n(v1, v))(S5, [v --) U])

= n Z(Z(Vl) A n(v1, v))(S5, [v + U, Vl + 21’1)

u’E{u,u1)

+(m) A n(vl, v))(s5, [v -+ U, VI + U])

= I-I .+(vl) A n(w, v)>(s5, [v + U, VI + UI])

(

42(Vl)(S5, [v -+ U, VI + U])

= u z(n(v1, v))(S5, [v + U, Vl + U])) >

I-I z(z(w) A ~(vI, v))(ss, [v + U, VI + ~11)

({Ss) u ({U, Ul), +[n(U, 4 * 01))

= n r+(w) A n(w, v))(Ss, [v + u, VI + UI])

= {Ss} n z(~(vr) A n(v1, v))(Ss, [v + u, vi + ~11)

= {ss] I-I (u *(n(vr, v),(&, [v + L, vr + u1]))
(z(z(vl))(ss [v + U 211 --) Ul])

= (Ss} l-l +qVl, 4)(S5, [v --) U, Vl + w])

>

= {Ss} n ({U, Ul}, +(Ul, U) I-+ 01)

= {({U,%}, +[n(Ul,U) I+ 01))
= {%f,Ol

Similarly, 0((0:~~)(S5, [v + ~1) = {&,f,l}. Cl

Remark. In Definition 5.6 we have ignored the case of for-
mulae that include the transitive-closure operator. This was
done both for notational simplicity, and because such formu-
lae are not useful in the various predicate-update formulae cpi”
employed by the abstract semantics. It is possible to handle
such formulae by enumerating structures in which formulae
evaluate to definite values. 0

The algorithm for focus, called Focus, is shown in Figure 6.
When all of structure S’s individuals have definite values for
I&(V), Focus returns {S}; when S has an individual u that has
an indefinite value for cp:“(v), Focus applies z and o to gener-
ate structures in which the indefiniteness is removed, and then
recursively applies Focus to each of the structures generated.
The call on auxiliary function Expand creates a structure in

function Focus(S : 3-STRUCT[P], 9$(v): Formula)
returns 2s-CsTnrJCW~s(FN

begin
if there exists u E Us s.t. [&“]z([v C) u]) = l/2 then

let u.0 and u.l be individuals not in Us
and S’ = o(cp:“(v))(z(cp:t(v))(Expand(S, q~0,u.l)

[v c) u.11)
[v +) 4>,

and XS =
z($u))(S, [v H 4)

; $“= (u))(S, [u I+ 4

in return u Focus(S)‘, cp$ (v))
S”EXS

else return {S}
end

function Expand(S : 3-STRUCT[P], u, ~0, u.1: elements)
returns 3-STRUCT[P]

if u’ = 21.0 V u’ = u.1
let m = Xu’. :I otherwise

{
in

return
(VS - {?J}) u (u.0, ‘1L.l)
xp.xui,. . . 7 m.LSb)(m(Ul), . . . T m(Uk)) >

Figure 6: An algorithm for ~ocus~:~(,).

which individual u is bifurcated into two individuals; this cap-
tures the essence of shape-node materialization (cf. [19]).

Example 5.8 Consider the application of Focus to the struc-
ture S5 from Figure 5 and the formula ‘pzt4. By Example 5.7,
z(cpgt4)(Ss, 2) yields the singleton set {Ss,f,o} and o(&“~)(SS, 2)
yields the singleton set {Ss,f,i}. By a similar derivation,
o(pzt4 (v))(z((p:t4(v))(Expand(S, 21, u.0, u.l), [v I+ u.O]), [v I+
u.11) yields the singleton set {Ss,f,2}. Thus, the result of
Focus(Sa, cp$‘) is the set {Ss,f,o,Ss,f,l,S5,f,2}. 0

115

5.2 Coercing into More Precise Structures

After focus, we apply the simple transformer [st]l that was
defined in Definitions 4.3 and 4.5. In the example discussed
in Section 5.1, we apply [sty] to the structures &J,o, SSJJ,
and S5,f,2. We see that S+,o is obtained from S,~J,O, &,+,,l
from SSJJ, and sS,o,Z from S5,f,2.

Applying focus and then [st] can produce structures that
are not as precise as we would like. The intuitive reason for
this state of affairs is that there can be interdependences be-
tween different properties stored in a structure, and these in-
terdependences are not necessarily incorporated in the defini-
tions of the predicate-update formulae. This is demonstrated
in the following example:

Example 5.9 Consider structure S5+,,2 from Figure 5. In
this structure, the n field of u.0 can point to u.l, which sug-
gests that x may be pointing to a cyclic data structure. How-
ever, this is incompatible with the fact that is(u.1) = 0-i.e.,
u.1 cannot represent a heap-shared cell-and the fact that
n(u1,u.l) = 1-i.e., it is known that u.l definitely has an
incoming selector edge from a cell other than u.0. 0

for each x E PVar, ~(211) A z(v2) D vl = 212 (27)
(3213 : n(v3,w) A n(v3,vz)) D vl = 212 (28)

(h,v2 : VI # 212 An(Vl,v) A n(V2,V)) D is(v) (29)
$3vl,2)2 : WI # 212 A n(v1, v) A n(v2, v)) D lia(v) (30)

(Au1 : via v) A v1 # 212 A n(w1, w)) D Tn(v2, v) (31)

(3~12 : -is(v) A ~1 # 212 A n(v2, w)) D %(2)1, v) (32)
(3~ : -is(v) A n(v1, w) A n(v2, v)) D v1 = 212 (33)

Table 7: The compatibility constraints R(clzre(F)) gener-
ated using Definition 5.13 from the formulae F given above
the line in Table 4. The constraints below the line come from
applying r to the formulae listed below the line in Table 4.

This observation motivates the subject of the remainder of
this subsection-an investigation of compatibility constraints
expressed in terms of a new logical connective, ‘D’.

In this subsection, we show that in many cases we can
sharpen the structures by removing indefinite values that vi-
olate certain compatibility rules. In particular, it allows us to
remedy the imprecision illustrated in Example 5.9. Further-
more, the shape-analysis actually yields precise information in
the analysis of reverse.

Definition 5.12 Let C be a finite set of compatibility con-
straints of the form cpl D cpz, where cpl is an arbitrary three-
valued formula, and cpz is either an atomic formula or a nega-
tion of an atomic formula. We say that a structure S satisfies
C (denoted by S k C) if for every constraint ‘pl D (~2 in C,
and for every assignment 2 such that [(pl]t(Z) = 1, we have

[qJ2]3s(Z)= 1. 0

5.2.1 Compatibility Constraints

We can, in many cases, sharpen some of the stored predicate
values of three-valued structures:

Example 5.10 Consider a two-valued structure Sb that can
be embedded in a three-valued structure 5’. By the Property-
Extraction Principle (Observation 2.1), we know that if the
formula cpis for “inferring” whether an individual u is shared
evaluates to, e.g., 1 in S, then in Sk, is(&) must be 1 for any
individual ‘1~~ that maps to u. The definition of embedding
(Definition 3.5) would allow the value of is(u) in S to be l/2;
however, in this case a tighter embedding-in the sense of
Definition 3.6-is also possible, in which is(u) has the value
1. In other words, it is needlessly imprecise to let is(u) retain
the value l/2: The “stored property” is should be at least
as precise as its inferred value. Thus, in some cases, the fact
that cpis evaluates to 1 in a three-valued structure allows us
to sharpen the stored predicate is.

For a two-valued structure, D has the same meaning as +.
However, for a three-valued structure D is stronger than 3: if
‘pl evaluates to 1 and (~2 evaluates to l/2, the constraint ‘pl D
‘p2 is not satisfied. More precisely, suppose that [pl]i(Z) = 1
and [(p&(Z) = l/2; the implication ‘pl + (~2 is satisfied (i.e.,
S, 2 b ‘pl * cpz), but the constraint ‘pl D ‘p2 is not satisfied
(i.e., S, 2 p ‘~1 D ~2).

The constraint that captures the reasoning used in Exam-
ple 5.10 is Cpis(V) D is(v). That is, when cpi8 evaluates to 1 at
u, then is must evaluate to 1 at u.

Such constraints formalize the Sharpening Principle. They
will be used to improve the precision of the shape-analysis
algorithm by (i) sharpening the values of stored predicates,
and (ii) eliminating structures that violate the constraints.

The following definition converts formulae into constraints
in a natural way:

Definition 5.13 For formula ‘p and atomic formula a, define
r((p) as follows.

Similar reasoning allows us to determine, in some cases,
that a structure is inconsistent. For instance, if 9;s evaluates
to 1 for an individual u and is(u) is 0, then S is a three-valued
structure that does not represent any concrete structures at
all! When this situation arises, the structure can be eliminated
from further consideration by the abstract-interpretation al-
gorithm.

r(Vvl,... Uk : (‘p =s a)) def cp D a

r(Vvl,... vk : (‘p * -a)) def $7 D -a

r(Vvl,... Vk : $7) dsf ‘Cp D 9

(24)

(25)

(26)
For a set of formulae F, we define R(F) to be the set of con-
straints obtained by applying r to each of the formulae in F.
0

This reasoning applies to all instrumentation predicates, Rule (26) was added to enable an arbitrary formula to be
not just is, and to both of the definite values, 0 and 1. 0 converted to a constraint.

The reasoning used in Example 5.10 can be summarized as
the following principle:

Observation 5.11 [The Sharpening Principle]. In any
structure S, the valued stored for p(ul, . . . , uk) should be at
least as precise as the value of p’s defining formula, ‘pp, evalu-
atedatul,... ,Uk (i.e., [(pp]~([Vl I+ Ul,... ,Vk I-b Uk])). fir-

thermore, if p(ul,... ,uk) has a definite value and ‘pp evalu-
ates to an incomparable definite value, then S is a three-valued
structure that does not represent any concrete structures at all.
cl

Example 5.14 The constraints generated for the formulae
that appear above the line in Table 4 are listed above the line
in Table 7. c7

In [18], we define a closure operator cl&&e(F) that gen-
erates certain logical consequences of a set F of compatibility
formulae. For instance, the three formulae below the line in

Table 4 are generated by cE&%e(F), where F is the set of for-
mulae given above the line in Table 4. The corresponding com-

patibility constraints that are obtained from R(cl&&e(F)) are
listed below the line in Table 7.

116

Example 5.15 As we will see in Section 5.2.3, compatibil-
ity constraints play a crucial role in the shape-analysis algo-
rithm. Without them the algorithm would often be unable
to determine that the data structure being manipulated by
a list-manipulation program is actually a list. In particular,
constraint (31) allows us to do a more accurate job of ma-
terialization: When is(u) evaluates to 0 and one incoming
n edge is 1, to satisfy constraint (31) a second incoming n
edge cannot have the value l/2-it must have the value 0,
i.e., no such edge exists (cf. Examples 5.9 and 5.19). This
allows edges to be removed (safely) that a more naive materi-
alization process would retain (cf. Sh@AIreS .t&,,2 and S6,2 in
Figure 5), and permits the improved shape-analysis algorithm
to generate more precise structures for reverse than the ones
generated by the simple shape-analysis algorithm described in
Sections 2.3 and 4. q

Henceforth, we assume that c&& has been applied to all
sets of hygiene conditions.

Definition 5.16 (Compatible Three-Valued Structures).
The set of compatible three-valued structures
3-CSTRlJCqP,R(F)] E 3-STRUCqP] is defined by S E
3-CSTRUCqP,R(F)] i_@S b R(F). •I

5.2.2 The Coerce Operation

We are now ready to show how the coerce operation works.

Example 5.17 Consider structure S&o,2 from Figure 5 again.
The structure S5+,,2 violates constraint (32) under the assign-
ment [v I-) u.l,vl I+ ul,v2 C) u.01. Because ~(Is)(u.l) = 0,
~1 # u.0, and b(n)(ul, 21.1) = 1, yet, ~(n)(u.O, u.1) = l/2, con-
straint (31) is not, satisfied: The left-hand side evaluates to 1,
whereas the right-hand side evaluates to l/2. 0

This example motivates the following definition:

Definition 5.18 The operation

coerce: 3-STRlJCqP] -+ 3-CSTRUCqP, R(F)] U {I}

is defined as follows: coerce(S) def the maximal S’ such that

S’ c s, US’ = US, and S’ E 3-CSTRUCflP, R(F)], or I if
no such S’ exists. 0

Example 5.19 The application of coerce to the structures
S+.,O, S+,l, and SS,~,Z is shown in the bottom block of Fig-
ure 5. It yields Ss,O, S&l, and S6,2, respectively.

There are important differences between the structures
S&O, Ss,l, and S&2 that reSUk from the improved k_tnSfOrIrXT

for statement st4 : x = x->n, and the structure Ss that is the
result of the simple version of the transformer (see the fourth
entry of Figure 3): x points to a summary node in Ss, whereas
in none of Ss,O, S&l, and Se,2 does 2 point to a summary node.
•1

5.2.3 The Coerce Algorithm

In this subsection, we describe an algorithm, Coerce, that im-
plements the operation coerce defined in Section 5.2. This
algorithm actually finds a maximal solution to a system of
constraints of the form defined in Definition 5.12. It is conve-
nient to partition these constraints into the following types:

(P(v~,vz,... ,v/c) D b (34)

(p(vl,V2,... ,vk) b (vl =V2)’ (35)

(P(Vl,VZ,... , vk) D pb(vl,v2,... ,vk) (36)
where b E (0, 1,1/2} and the superscript notation means the
following: ppl 3 cp and ‘p” E ycp. We say that constraints in

function Coerce(S: 3-STRUCT[P], R(F): Constraint set)
retuns 3-CSTRUCT[P, R(F)] u {I}

s’ := s
while there exists a constraint c G ‘pl D ~72 E R(F) and an

assignment 2: freeVars(c) --t Us such that S’, 2 p c do
switch ‘p2

case cp2 z b /* Type I */
return I

case ‘p2 E (211 = ~2)~ /* Type II */
if b = 1 and Z(v,) = Z(v2) and

~~‘(sm)(Z(vl)) = l/2 then ~~‘(sm)(Z(vl)) := 0
else return I

case (~2 E pb(vl, . . . , vk) /* Type III */

if ~“(p)(Z(v1), . . . , z(Vk)) = l/2 then

~~‘(p)(.i?(v&. . . , z(vk)) := b
else return _L

end switch
od
return S’

end

Figure 7: An iterative algorithm for solving three-valued con-
straints.

the forms (34), (35), and (36) are Qpe I, Qpe II, and Type
III constraints, respectively.

The algorithm for coerce is shown in Figure 7. The input
is a three-valued structure S E 3-STRUCT[P] and a set of
constraints R(F). It initializes S’ to the input structure S
and then repeatedly refines 5” by lowering predicate values in

L” from l/2 into a definite value, until either: (i) a constraint
is irreparably violated, i.e., the left-hand and the right-hand
side have different definite values, in which case the algorithm
returns I, or (ii) no constraint is violated, in which case the
algorithm successfully returns S’. The main loop is a case
switch on the type of the constraint considered:

l A violation of a Type I constraint is irreparable since the
right-hand side is a literal.

l A violation of a Type II constraint can be fixed only
when the right-hand side is an equality (as opposed to a
negated equality) that evaluates to l/2. This can happen
when there is an individual u that is a summary node:

[VI = V&‘([Vl I+ u, v2 c) ?J]) = lS’(Sm)(a) = l/2.

In this case, ~~‘(srn)(u) is set, to 0.

l A violation of a Type III constraint can be fixed when
the predicate entry is indefinite.

The correctness of algorithm Coerce stems from the fol-
lowing lemma:

Lemma 5.20 For every S, S1 E 3-STRUCljP], such that
S1 C S and SI /= R(F), and for every structure S’ during
each e’teration of Coerce, S1 E S’.
Proof: By induction on the number of iterations. 0

Coerce must terminate after at most n steps, where n
is the number of definite values in S’, which is bounded by
&p lulQr+(p).

6 Related Work

The following previous shape-analysis algorithms, which all
make use of some kind of shape-graph formalism, can be viewed

117

as instances of our framework:

l The algorithm of [ll], which collapses individuals that
are not reachable from a pointer variable in k or fewer
steps, for some fixed k. This algorithm can be captured
in our framework by using instrumentation predicates of
the form “reachable-from-x-via-access-path-c?’, for]a! 5
k.

l The algorithms of [12,2], which can be incorporated into
the framework by introducing unary core predicates that
record the allocation sites of heap cells.

l The algorithm of [16], which can be captured in the
framework using the predicates cf.b(u) and c&f(v) (see
Tables 2 and 3).

l The algorithms of [22, 191. These map unbounded-size
stores into bounded-size abstractions by collapsing con-
crete cells that are not directly pointed to by program
variables into one abstract cell, whereas concrete cells
that are pointed to by different sets of variables are kept
apart in different abstract cells. (See also the discussion
in Section 4.3.)

Throughout this paper, we have focused on precision and
ignored efficiency. The above-cited algorithms are more ef-
ficient than the one presented in this paper; however, Sec-
tion 1.2 discusses reasons why it should be possible to incor-
porate well-known techniques for improving efficiency into our
approach. In addition, the techniques presented in this paper
may also provide a new basis for improving the efficiency of
shape-analysis algorithms. In particular, the machinery we
have introduced provides a way both to collapse individuals
of 3-valued structures, via embedding, as well as to materialize
them when necessary, via focus.

Roughly speaking, the chief alternative to the use of shape
graphs involves representing may-aliases between pointer-access
paths [8, 14, 4, 5, 201. Compared with shape graphs, these
methods have certain drawbacks. In particular, shape graphs
represent the topological properties of the store directly, which
allows certain operations, such as destructive updates, to be
tracked more precisely. In addition., shape graphs are a more
intuitive mechanism for reporting Information back to a hu-
man, and thus may be more useful in program-understanding
tools. On the other hand, representations of may-aliases can
be more compact than shape graphs, and some may-alias al-
gorithms are capable of representing information that goes
beyond the capabilities of bounded structures [4, 51.

Acknowledgements

We are grateful for the helpful comments of A. Avron, T. Ball, M.
Benedikt, N. Dor, M. Gitik, K. Kunen, V. Lifschitz, H.R. Nielson,
M. O’Donnell, A. Rabinovich, and K. Sieber. We thank K.H. Rose
for the Xy-pit I&QXpackage.

[I] U. Assmann and M. Weinhardt. Interprocedural heap anal-
ysis for parallelizing imperative programs. In W. K. Giloi,
S. Jghnichen, and B. D. Shriver, editors, Pmgmmming Models
For Massively Pamllel Computers, pages 74-82, Washington,
DC, September 1993. IEEE Press.

[2] D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers
and structures. In SIGPLAN Conf. on Prog. Lang. Design and
Impl., pages 296-310, New York, NY, 1990. ACM Press.

[3] P. Cousot and R. Cousot. Systematic design of program anal-
ysis frameworks. In Symp. on Print. of Prog. Lang., pages
269-282, New York, NY, 1979. ACM Press.

[4] A. Deutsch. A storeless model for aliasing and its abstractions
using finite representations of right-regular equivalence rela-
tions. In IEEE International Conference on Computer Lan-
guages, pages 2-13, Washington, DC, 1992. IEEE Press.

[5] A. Deutsch. Interprocedural may-alias analysis for pointers:
Beyond k-limiting. In SIGPLAN Conf. on Prog. Lang. Design
and Zmpl., pages 230-241, New York, NY, 1994. ACM Press.

[6] L. Hendren. Pamllelizing Programs with Recursive Data Struc-
tures. PhD thesis, Cornell Univ., Ithaca, NY, Jan 1990.

[7] L. Hendren, J. Hummel, and A. Nicolau. Abstractions for re-
cursive pointer data structures: Improving the analysis and the
transformation of imperative programs. In SIGPLAN Conf. on
Prog. Lang. Design and Impl., pages 249-260, New York, NY,
June 1992. ACM Press.

[8] L. Hendren and A. Nicolau. Parallelizing programs with re-
cursive data structures. IEEE ‘Trans. on Par. and Dist. Syst.,
l(1):35-47, January 1990.

[9] C.A.R. Hoare. Recursive data structures. Int. J. of Comp. and
Znf. Sci., 4(2):105-132, 1975.

[lo] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for
pointer variables. In SIGPLAN Conf. on Prog. Lang. Design
and Impl., pages 28-40, New York, NY, 1989. ACM Press.

[ll] N.D. Jones and S.S. Muchnick. Flow analysis and optimiza-
tion of Lisp-like structures. In S.S. Muchnick and N.D. Jones,
editors, Program Flow Analysis: Theory and Applications,
chapter 4, pages 102-131. Prentice-Hall, Englewood Cliffs, NJ,
1981.

[12] N.D. Jones and S.S. Muchnick. A flexible approach to inter-
procedural data flow analysis and programs with recursive data
structures. In Symp. on Print. of Prag. Lang., pages 66-74,
New York, NY, 1982. ACM Press.

[13] S.C. Kleene. Introduction to Metamathematics. North-
Holland, second edition, 1987.

[14] W. Landi and B.G. Ryder. Pointer induced aliasing: A problem
classification. In Symp. on Print. of Prog. Lang., pages 93-103,
New York, NY, January 1991. ACM Press.

[15] J.R. Larus and P.N. Hilfinger. Detecting conflicts between
structure accesses. In SIGPLAN Conf. on Prog. Lang. Design
and Impl., pages 21-34, New York, NY, 1988. ACM Press.

[16] J. Plevyak, A.A. Chien, and V. Karamcheti. Analysis of dy-
namic structures for efficient parallel execution. In U. Baner-
jee, D. Gelernter, A. Nicolau, and D. Padua, editors, Lan-
guages and Compilers for Parallel Computing, volume 768 of
Let. Notes in Comp. Sci., pages 37-57, Portland, OR, August
1993. Springer-Verlag.

[17] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating. In Symp.
on Print. of Prvg. Lang., New York, NY, January 1996. ACM
Press.

[18] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via J-valued logic. Tech. Rep. TR-1383, Comp. Sci. Dept.,
Univ. of Wisconsin, Madison, WI, July 1998. Available at
‘Lhttp://www.cs.wisc.edu/wpis/papers/parametric.ps”.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating. tins. on
Prag. Lang. and Syst., 20(1):1-50, January 1998.

[20] S. Sagiv, N. Francez, M. Rodeh, and R. Wilhelm. A logic-based
approach to data flow analysis problems. Acta In., 35(6):457-
504, June 1998.

[21] J. Stransky. A lattice for abstract interpretation of dynamic
(Lisp-like) structures. Raf. and Comp., 101(1):70-102, Nov.
1992.

[22] E. Y.-B. Wang. Analysis of Recursive Types in an Imperative
Language. PhD thesis, Univ. of Calif., Berkeley, CA, 1994.

118

