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Abstract 

We present a family of abstract-interpretation algorithms that 
are capable of determining “shape invariants” of programs 
that perform destructive updating on dynamically allocated 
storage. The main idea is to represent the stores that can pas- 

sibly arise during execution using three-valued logical struc- 
tures. 

Questions about properties of stores can be answered by 
evaluating predicate-logic formulae using Kleene’s semantics 
of three-valued logic: 

l If a formula evaluates to true, then the formula holds in 
every store represented by the three-valued structure. 

l If a formula evaluates to false, then the formula does 
not hold in any store represented by the three-valued 
structure. 

l If a formula evaluates to unknown, then we do not know 
if this formula always holds, never holds, or sometimes 
holds and sometimes does not hold in the stores repre- 
sented by the three-valued structure. 

Three-valued logical structures are thus a conservative repre- 
sentation of memory stores. 

The approach described is a parametric framework: It pro- 
vides the basis for generating a family of shape-analysis al- 
gorithms by varying the vocabulary used in the three-valued 
logic. 

1 Introduction 

Data structures built using pointers can be characterized by 
invariants describing their “shape” at stable states, i.e., in be- 
tween operations on them. These invariants are usually not 
preserved by the execution of individual program statements, 
and it is challenging to prove that invariants are reestab- 
lished once a sequence of operations is finished [9]. In 
the past two decades, many “shape-analysis” algorithms have 
been developed that can automatically identify shape invari- 
ants in some programs that manipulate heap-allocated stor- 
age [ll, 12, 15, 10, 2, 21, 1, 16, 22, 191. A common feature of 
these algorithms is that they represent heap cells by “shape- 
nodes” and sets of “indistinguishable” run-time locations by 
a single shape-node, often called a summary-node [2]. One 
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way of looking at these algorithms is that “shape graphs” are 
indirect representations of store invariants. 

1.1 Main Results 

This paper presents a parametric framework for shape analy- 
sis. Different instantiations of the framework allow the usage 
patterns of different kinds of data structures in a program to 
be observed, or allow the usage patterns of data structures 
to be observed with different levels of precision and efficiency. 
The ideal is to have a fully automatic method-a yacc for 
shape analysis, so to speak. The “designer” of a shape-analysis 
algorithm would supply only the specification, and the shape- 
analysis algorithm would be created automatically from this 
specification. This can be achieved by means of the methods 
presented in this paper. 

Moreover, the framework allows us to create algorithms 
that are more precise than the above-cited algorithms. In 
particular, by tracking which run-time locations are reachable 
from which program variables, it is often possible to deter- 
mine precise shape information for programs that manipulate 
several (possibly cyclic) data structures. Other static-analysis 
techniques (including ones that are not based on shape graphs 
[14, 6, 8, 4, 51) yield very imprecise information on these pro- 
grams. 

1.1.1 The Use of Logic for Shape Analysis 

In our shape-analysis framework, predicate-logic formulae play 
many roles: expressing both the concrete and abstract seman- 
tics of the programming language, expressing properties of 
store elements (e.g., may-aliases, must-aliases), and express- 
ing properties of stores (e.g., data-structure invariants). For 
instance, the predicate Z(V) expresses whether pointer variable 
x points to heap cell u; the binary predicate n(ui, vz) express 
whether the n-component of heap cell ~1 points to heap cell uz; 
to specify the effect of the statement “x = x->n” on variable 
x (part of the concrete semantics), we write the formula 

z’(v) = 3?Ji : Z(Vl) A n(w1, v). (1) 
This indicates that after this statement, variable x points to 
a heap cell that was formerly pointed to by x->n. To express 
the property “program variables x and y are not may-aliases”, 
we write the formula 

vu : +r(‘u) A y(v)). (2) 

1.1.2 Shape Analysis via Three-Valued Logic 

We use Kleene’s three-valued logic [13] (which has a third 
truth value that signifies “unknown”) to create a shape-analysis 
algorithm automatically from a specification. Kleene’s logic is 
useful for shape analysis because we only have-partial infor- 
mation about summary nodes: For these nodes, predicates 
may have the value unknown. One of the nice properties of 
Kleene’s three-valued logic is that the interpretations of for- 
mulae in two-valued and three-valued logic coincide on true 
and false. This comes in handy for shape analysis, where we 
wish to relate the concrete (two-valued) world and the ab- 
stract (three-valued) world: The advantage of using logic is 
that it allows us to make a statement about both the concrete 
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and abstract worlds via the same formula-the same syntac- 
tic expression can be interpreted either as statement about 
the two-valued world or the three-valued world. 

In this paper, shape graphs are represented as “three-valued 
logical structures” that provide truth values for every formula. 
Therefore, by evaluating formulae, one obtains simple algo- 
rithms for: (i) executing statements abstractly, and (ii) (con- 
servatively) extracting store properties from a shape graph. 
For example, formula (2) evaluates to true for an abstract 
store in which x and y do not point to the same shape-node. 
In this case, we know that z and y cannot be aliases. For- 
mula (2) evaluates to false for an abstract store in which z 
and y point to the same non-summary node. In this case, 
we know that x and y are aliases. However, the formula can 
evaluate to unknown when both x and y point to a summary- 
node. In this case, the analysis does not know if x and y can 
be aliases. 

In Sections 2 and 4, we show how these mechanisms can be 
exploited to create a parametric framework for shape-analysis. 
This technique suffices to explain the algorithms of [ll, 10, 2, 
211. 

1.1.3 Materialization of New Nodes from Summary Nodes 

One of the magical aspects of [19] is “materialization”, in 
which a transfer function splits a summary-node into two sep- 
arate nodes. (This operation is also discussed in [2, 161.) This 
turns out to be important for maintaining accuracy in the 
analysis of loops that advance pointers through data struc- 
tures. The parametric framework provides insight into the 
workings of materialization. It shows that the essence of ma- 
terialization involves a step (called focus, discussed in Sec- 
tion 5.1) that forces the values of certain formulae from un- 
known to true or false. This has the effect of converting a 
shape graph into one with finer distinctions. 

In [19], it was observed that node materialization is com- 
plicated because various kinds of shape-graph properties are 
interdependent. For instance, the connections between heap 
cells constrain the sets of potential aliases, and vice versa. In 
this paper, we introduce a mechanism for expressing (three- 
valued) constraints on shape graphs, which we use to capture 
such dependences between properties. 

1.2 Limitations 

The results reported in the paper are limited in the following 
ways: 

l The framework creates intraprocedural shape-analysis 
algorithms, not interprocedural ones. Methods for han- 
dling procedures are presented in [2, 1, 191. Because 
these are instances of the framework, their methods for 
handling procedures should generalize to the parametric 
case. 

l The number of possible shape-nodes that may arise dur- 
ing abstract interpretation is potentially exponential in 
the size of the specification. We do not know how severe 
this problem is in practice. However, it is possible to de- 
fine a widening operator that converts a shape graph into 
a more compact, but possibly less precise, shape graph 
by collapsing more nodes into summary nodes. This can 
be used to make a shape-analysis algorithm polynomial, 
at the cost of making the results less accurate. 

l The number of shape graphs may be quite large (as 
in [ll, lo]). This problem was avoided in [15, 2, 16, 191 
by keeping a single merged shape graph at every point. 

/* reverse.c */ 
#include “1ist.h” 
List reversetlist x> { 

List y, t; 

/* 1ist.h */ 
assert (acyclic-list (x1 > ; 

typedef struct node { 
y=NuLL; 

struct node *n; 
while (x != NULL) { 

int data; 
t = y; 

} *List; 
y = x; 
x = x->n; 

(a) 

y-h = t; 

1 
return y; 

1 
(b) 

Figure 1: (a) Declaration of a linked-list data type in C. (b) A 
C function that uses destructive updating to reverse the list 
pointed to by parameter x. 

This measure has not been employed in this paper in 
order to simplify the presentation. 

1.3 Organization of the Paper 

We explain our work by presenting two versions of the shape- 
analysis framework. The first version is used to introduce 
many of the key ideas, but in a simplified setting: Section 2 
provides an overview of the simplified version and presents an 
example of it in action; Section 4 gives the technical details. 
Section 3 presents technical details of how three-valued logic is 
used to define abstractions of concrete stores (which is needed 
for Section 4 and subsequent sections). Section 5 defines the 
more elaborate version of the shape-analysis framework. Due 
to space constraints, some aspects of the abstract semantics 
are omitted (see [18]). Section 6 contains a short account of 
related work. 

2 An Overview of the Parametric Framework 

Figure l(a) shows the declaration of a linked-list data type in 
C, and Figure l(b) shows a C program that reverses a list via 
destructive updating. The analysis of the shapes of the data 
structures that arise at the different points in the reverse 
program will serve as the subject of the examples given in the 
remainder of the paper. The reverse program allows us to 
demonstrate many aspects of the shape-analysis framework in 
a nontrivial, but still relatively digestible, fashion. 

2.1 Representing Stores via Three-Valued Structures 

In Section 1, we couched the discussion in terms of shape- 
graphs for the convenience of readers who are familiar with 
previous work. Formally, we do not work with shape-graphs; 
instead, the abstractions of stores will be what logicians call 
three-valued logical structures, denoted by (U, L). There is a 
vocabulary of predicate symbols (with given arities); each log- 
ical structure has a universe of individuals U, and L maps each 
possible tuple ~(2~1, . . . , uk) of an arity-k predicate symbol p, 
where ui E U, to the value 0, 1, or l/2, (i.e., false, true, and 
unknown, respectively). Logical structures are used to pro- 
vide a uniform representation of stores: Individuals represent 
abstractions of memory locations; pointers from the stack into 
the heap are represented by unary “pointed-to-by-variable-x” 
predicates; and pointer-valued fields of data structures are rep- 
resented by binary “pointer-component-points-to” predicates. 
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S Structure 
Graphical 
Representation 

unary predicates: 
indiv. x y t sm is 

so binary predicates: 

q 
unary predicates: 

binary predicates: 

unary predicates: 

Figure 2: The three-valued logical structures that describe all 
possible acyclic inputs to reverse. 

Assuming that reverse is invoked on acyclic lists, the 
three-valued structures that describe all possible inputs to 
reverse are shown in Figure 2. The following graphical no- 
tation is used for three-valued logical structures: Individuals 
of the universe are represented by circles with names inside. 
Summary nodes (i.e., nodes for which the value of predicate 
sm is l/2) are represented by double circles. Other unary 
predicates with value 1 (l/2) and binary pointer-component- 
points-to predicates are represented by solid (dotted) arrows. 

Thus, in structure S2, pointer variable x points to element ~1, 
whose n field may point to a location represented by element 
u. u is a summary node, i.e., it may represent more than one 
location. Possibly there is an n field in one of these locations 
that points to another location represented by u. 

S2 corresponds to stores in which program variable x points 
to an acyclic list of two or more elements: 

l The abstract element u1 represents the head of the list, 
and u represents all the tail elements. 

a The unary predicates x, y, and t are used to characterize 
the list elements pointed to by program variables x, y, 
and t, respectively. 

l The unary predicate sm indicates whether abstract el- 
ements are - “summary elements”, i.e., represent more 
than one concrete list element in a given store. Thus, 
sm(ul) = 0 because u1 represents a unique list element, 
the list head. In contrast, sm(u) = l/2, because u repre- 
sents a single list element when the input list has exactly 
two elements, and more than one list element when the 
input list is of length three or more. 

The unaxy predicate is is explained in Section 2.2. 

The binary predicate n represents the n fields of list el- 
ements. The value of n(u1, u) is l/2 because there are 
list elements represented by u that are not immediate 
n-successors of 741. 

The structures SO and S1 represent the simpler cases of lists 
of length zero and one, respectively. 

2.2 Conservative Extraction of Store Properties 

Three-valued structures offer a systematic way to answer ques- 
tions about properties of stores: 

Observation 2.1 [Property-Extraction Principle]. Ques- 
tions about properties of stores can be answered by evaluating 
formulae using Kleene’s semantics of three-valued logic: 

l If a formula evaluates to 1, then the formula holds in 
every store represented by the three-valued structure. 

l If a formula evaluates to 0, then the formula never holds 
in any store represented by the three-valued structure. 

l If a formula evaluates to l/2, then we do not know if this 
formula always holds, never holds, or sometimes holds 
and sometimes does not hold. 

In Section 3.3, we give the Embedding Theorem (Theo- 
rem 3.7), which states that the three-valued Kleene interpre- 
tation in S of every formula is consistent with the formula’s 
two-valued interpretation in every concrete store that S rep- 
resents. 

Now consider the formula 

p(v) def 3vl,v2 : n(vl,v) A n(v2,v) A 211 # v2, (3) 
which expresses the property “Do two or more different cells 
point to v. 7” Formula q(v) evaluates to l/2 in 5% for v c+ u, 
v1 t+ u, and 212 C) ~1, because n(u, u) A n(u,, u) A u # UI = 
l/2 A l/2 A 1, which equals l/2. The intuition is that because 
the values of n(u,u) and n(u1,u) are unknown, we do not 
know whether or not two different cells point to u. 

This uncertainty implies that the tail of the list pointed to 
by x might be shared (and the list could be cyclic, as well). 
In fact, neither of these conditions ever holds in the concrete 
stores that arise in the reverse program. 

To avoid this imprecision, our abstract structures have an 
extra “instrumentation predicate”, is(v), that represents the 
truth values of formula (3) for the elements of concrete struc- 
tures that v represents. In particular, is(u) = 0 in SZ. This 
fact implies that S2 can only represent acyclic, unshared lists 
even though formula (3) evaluates to l/2 on u. 

The preceding discussion illustrates the following principle: 

Observation 2.2 [Instrumentation Principle]. Suppose 
S is a three-valued structure that represents concrete store Sb . 
By explicitly “storing” in S the values that a formula cp has 
in 9, we can maintain finer distinctions in S than can be 
obtained by evaluating cp in S. 0 

2.3 Simple Abstract Interpretation of Program Statements 

Our main tool for expressing the semantics of program state- 
ments is based on the Property-Extraction Principle: 

Observation 2.3 [Expressing Semantics of Statements 
via Logical Formulae]. Suppose a structure S represents a 
set of stores that arise before statement st. A structure that 
represents the corresponding set of stores that arise after st 
can be obtained by extmcting a suitable collection of properties 
from S (i.e., by evaluating a suitable collection of formulae 
that capture the semantics of st). 0 

Figure 3 illustrates the first two iterations of an abstract 
interpretation of reverse on the structure S2 from Figure 2. 
The value of a predicate p(v) after a statement executes is 
obtained by evaluating a predicate-update formula p’(v). The 
appropriate predicate-update formulae for each statement are 
shown in the second column of Figure 3. Figure 3 lists a 
predicate-update formula p’(v) only if predicate p is affected 
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st1: y = NULL; y’(v) = 0 

st2: t = y; t’(v) = Y(V) 

stg: y = x; Y’(V) = 4u) 

st4: x = x->n; z’(v) = 3Vl : Z(Q) A n(w1, v) 

12’(Ol,212) = (n(v1,vz) A -y(w)) v (Y(W) A t(v2)) 

sts: y-al = t; 
is’(w) = 

is(v) A 3Vl,D2 : Ul # 212 An(v1,v) A7qv2,v) 

A -y(w) A -y(vz) > 
V (t(v) A 3~1 : n(w , v) A ‘y(w )) 

:..-. 
4 :; 

@. x s* 
,_. ._, 

stz: t = y; t’(v) = Y(V) 

st3: y = x; Y’(V) = dV> 

st4: x = x->n; z’(v) = 3Vl : z(q) A n(v1, v) 
I 

n v1,v2 ) = (?z(Vl, v2) A -y(v1)) v (y(w) A t(v2)) 

sts: y-al = t; 
is’(v) = 

is(v) A 3~1,212 : 
( 

VI #aAn(vl,v)An(w,v) 
A-y(w) A -7y(v2) > 

V (t(v) A 31 : n(w,~) A -y(w)) 

st2: t = y; t’(v) = Y(V) 

st3: y = x; Y’(V) = 4V) 

st4: x = x->n; z’(w) = 3Vl : 2?(Q) A n(m, tJ) 

n’(m, ~2) = (n(vl, ~2) A my) V (y(w) A t(w)) 

st5: y-h = t; 
is’(v) = 

is(v) A 3~1, v2 : 
( 

~1 # ~2 An(w,v) An(vz,v) 

A ly(m) A T&Z) > 
V (t(v) A 3~1 : n(w,v) A l!/(w)) 

iS 

via 
I 

‘igure 3: The first three iterations of the abstract interpretation of reverse (7 I the simplified framework described in Section 4). 

statement 1 formula structure that arises just after statement 
_. . . 

In this example, reverse is applied to structure Sz from Figure 2, which represents lists of length two or more. 

by the execution of the statement. The shape-analysis al- are traversed. As we will see, this allows us to determine the 
gorithm illustrated in Figure 3 is essentially that of Chase et correct shape descriptors for the data structures used in the 
al. [2]. reverse program. 

Unfortunately, there is also bad news: The method de- 
scribed above and illustrated in Figure 3 can be very impre- 
cise. For instance, statement st4 sets x to x->n; i.e., it makes 
x point to the next element in the list. In the abstract inter- 
pretation, the following things occur: 

l In the first abstract execution of st4, z'(u) is set to l/2 
because z(ui) A n(ul,u) = 1 A l/2 = l/2. In other 
words, x may point to one of the cells represented by the 
summary node u (see the structure Ss). 

l This eventually leads to the situation that occurs after 
the third abstract execution of st5, which produces struc- 
ture Sis. Structure $5 indicates that “x, y, and t may 
all point to the same (possibly shared) list”. 

In Section 5, we show how it is possible to go beyond the 
simplified approach described above by “materializing” new 
non-summary nodes from summary nodes as data structures 

3 Three-Valued Logic and Embedding 

This section defines a three-valued first-order logic with equal- 
ity and transitive closure. 

We say that the values 0 and 1 are definite values and that 
l/2 is an indefinite value, and define a partial order C on truth 
values to reflect information content: Ii & 1s denotes that Ii 
has more definite information than 12: 

Definition 3.1 For 11,12 E {0,1/2, l}, we define the infor- 
mation order on truth values as follows: 11 C 12 if 11 = 12 or 
12 = I/2. The symbol U denotes the least-upper bound opera- 
tion with respect to 5. El 

Kleene’s semantics of three-valued logic is monotonic in the 
information order (see Definition 3.4). 
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Does pointer variable x point to element v? Cl Does element v represent more than one 

Table 1: The core predicates that correspond to the List data- 
type declaration from Figure l(a). 

3.1 First-Order Formulae with Transitive Closure 

Let P = {pi,... ,p,} be a finite set of predicate symbols. 
We write first-order formulae over P using the logical con- 
nectives A, V, 1, and the quantifiers V and 3. The sym- 
bol = denotes the equality predicate. The operator ‘TC’ 
denotes transitive closure on formulae. We also use several 
shorthand notations: For a binary predicate p, P+(v~,v~) is 
a shorthand for (TC VI, us : p(v1,va))(vs, ~4); cpl =S 92 is a 
shorthand for (-cpr V ~2); and (pi * ‘ps is a shorthand for 

(91 * 92) A ($72 * cpl). 
Formally, the syntax of first-order formulae with equality 

and transitive closure is defined as follows: 

Definition 3.2 A formula offer a vocabulary 
P= {Pl,... ,Pn} is defined inductively, as follows: 

Atomic Formulae The logical-literals 0, 1, and l/2 are 
atomic formulae with no free variables. 

For every predicate symbol p E P of arity k, p(vl, . . . , vk) 
is an atomic formula with free variables ~1, . . . , vk . 

The formula (~1 = va) is an atomic formula with free 
variables v1 and vs. 

Logical Connectives If (~1 and cp2 are formulae whose sets 
of free variables are VI and Vz, respectively, then (cpl A 
(p2), (cpl Vqa), and (-rrpi) are formulae with free variables 
VI U Va, VI U Va, and VI, respectively. 

Quantiflers If cp is a formula with free variables VI, ~2,. . . , vk, 
then (3vl : cp) and (Vvi : cp) are both formulae with free 
variables us, vs, . . . , vk. 

Transitive Closure If cp is a formula with free variables V 
such that VI, va E V and ‘us, 214 # V, then (TC VI, v2 : 
(P)(Q, ~4) is a formula with free variables (V-{VI, v2))U 

(213,214). 

A formula is closed when it has no free variables. •I 

In our application, the set of predicates P is partitioned 
into two disjoint sets: the “core-predicates”, C, and the 
Ynstrumentation-predicates”, Z. The core-predicates are part 
of the programming-language semantics. In contrast, the in- 
strumentation predicates are introduced in order to improve 
the precision of the analysis (as described by Observation 2.2). 

Example 3.3 Table 1 contains the core-predicates for the 
List data-type declaration from Figure l(a) and the reverse 
program of Figure l(b). 0 

Table 2 lists some interesting instrumentation predicates, 
and Table 3 lists their defining formulae. 

. 

. 

The sharing predicate is was introduced in [2] and also 
used in [19] to capture list and tree data structures. 

The reachability-from-x predicate rr was mentioned in [19, 
p.381. It drastically improves the precision of shape anal- 
ysis, even for programs that manipulate simple list and 
tree data structures, since it keeps separate the abstract 
representations of data structures that are disjoint in the 
concrete world. 

1 Pred. I Intended Meaning I Puruose I Ref.] 
qq-- 

TX(v) 

44 
Cf.6 (v> 

Cb.f (v) 

Do two or more fields of 
heap elements point to v? 
Is v (transitively) 
reachable from 
pointer variable x? 
Is v reachable from some 
pointer variable (i.e., is v 
a non-garbage element)? 
Is v on a directed cycle? 
Does a field-f dereference 
from v, followed by a 
field-b dereference, yield v? 
Does a field-b dereference 
from v, followed by a 
field-f dereference, yield v? 

lists *and 
trees 
separating WI 
disjoint data 
structures 
compile-time 
garbage 
collection 
ref. counting [ll] 
doubly-linked [7], 
lists [I61 

doubly-linked [7], 
lists [16] 

Table 2: Examples of instrumentation predicates. 

def 
@J(V) = 3v1,v2 : n(v1,v)An(v2,v) Au1 # v2 

def 
cp,,(v) = z(v)V% : Z(Q) An+(vl,v) 

(p,(v) dzf // (z(v) V 3vi : z(w) A n+(vl,v)) 

xEPVor 

cpc(v) tsf n+(z), v) 

def 

(4) 

(5) 

(6) 

(7) 

(~c~,~ (v) = VW, v2 : f (v, ~1) A b(vl, 212) =S v2 = 2, (8) 

(pcb.f (v> ef VW, 212 : b(v, VI) A f (VI, v2) * ~2 = 2, (9) 

Table 3: Formulae that define the meaning of the instrumen- 
tation predicates listed in Table 2. 

. 

. 

The reachability predicate r identifies non-garbage cells. 
This is useful for determining when compile-time garbage 
collection can be performed. 

The cyclicity predicate c was introduced by Jones and 
Muchnick [ll] to aid in determining when reference count- 
ing would be sufficient. 

. The special cyclic&y predicates cf.b and c&f are used to 
capture doubly-linked lists, in which forward and back- 
ward field dereferences cancel each other. This idea was 
introduced in [7] and also used in (161. 

3.2 Kleene’s Three-Valued Semantics 

In this section, we define Kleene’s three-valued semantics for 
first-order formulae with transitive closure. 

Definition 3.4 A three-valued interpretation of the Zan- 
guage of formulae over P is a three-valued logical struc- 
ture S = (U’,L’), where Us is a set of individuals and 
L’ maps each predicate symbol p of arity k to a truth-valued 
function: 

LS : P -+ (US)” -+ (0, 1,1/2}. 
An assignment Z is a function that maps free variables to 

individuals (i.e., an assignment has the functionality 
2: {v1,v2,...} + Us). An assignment that is defined on 
all free variables of a formula cp is called complete for cp. In 
the sequel, we assume that euery assignment 2 that arises in 
connection with the discussion of some formula cp is complete 

for cp. 
The meaning of a formula cp, denoted by [&(Z), yields 

a truth value in (0, 1,1/2}. The meaning of cp is defined in- 
ductively as follows: 

109 



Atomic For a logical-literal 1 E {O,l, l/2}, [l]:(Z) = I 
(where 1 E (0, &l/2}). 

For an atomic foTTHLla p(vl, . . . , a), 

[p(Vl,... ,vk)]@) = ~%‘)(%‘I), . . . > z(d) 

For an atomic formula (WI = vz), 

0 Z(w) # Z(v2) 

[Vl = vz];(z) = 1 
Z(w) = Z(v2) 

A ‘qm)(z(v,)) = 0 

l/2 otherwise 

Logical Connectives For logical formulae ‘pl and ~2 

ha A (~2lt(z) = min(8vlI~(~h h&(~)) 

BP1 v cp21m = mMcpll~(~), Ff213sW) 

8%13s(~) = 1 - Mm 

Quantifiers If cp is a logical formula, 

pw : &(Z) = p$. I&qw I-t UI) 

pw : &(a = mys [&(GJ1 e 4 

Transitive Closure For (TC 211,212 : (p)(vs, v4), 

[(TC 211,212 : (P)(w4)p:(z) = 

We say that S and Z potentially satisfy cp (denoted by 
S, 2 k cp) if [q]:(Z) = l/2 or [&(Z) = 1. Finally, we write 
S + cp if for every 2: S, 2 k cp. 0 

The only nonstandard part of Definition 3.4 is the meaning 
of equality (denoted by the symbol ‘=‘). The predicate = 
is defined in terms of the sm predicate and the “identically- 
equal” relation on individuals (denoted by the symbol ‘=‘):’ 

l Non-identical individuals ui and u2 are unequal (i.e., if 
ui # uz then ui # uz ). 

l A non-summary individual must be equal to itself (i.e., 
if sm(u) = 0, then u = u). 

. In all other cases, we throw up our hands and return 
l/2. 

Three-valued logic retains a number of properties that are 
familiar from two-valued logic, such as commutativity and as- 
sociativity of A and V, distributivity of A over V and vice 
versa, De Morgan laws, etc. 

3.3 The Embedding Theorem 

In this section, we formulate the Embedding Theorem, which 
gives us a tool to relate two- and three-valued interpretations. 
We define the embedding ordering on structures as follows: 

Definition 3.5 Let S = (U’,L’) and S’ = (Us’,“‘) be two 

structures. Let f: Us -+ Us’ be surjectiwe. We say that f 
embeds S in S’ (denoted by S Cf S’) if(i) for every predicate 
symbol p of an’ty k and all ~1,. . . , u& E Us, 

&)(ul, . . . . , ‘ilk) & b%)(f (u1), . . . , f (uk)) (10) 

‘Note the typographical distinction between the syntactic symbol for 

equality, namely ‘=‘, and the symbol for the “identically-equal” relation 

on individuals, namely I=‘. 

and (ii) for all u’ E Us’, 

(Ku I f(u) = u’}I > 1) E ts’(sm)(u’) (11) 
We say that S can be embedded in S’ (denoted by S 5 

5”) if there exists a function f such that S cf S’. •I 

Note that inequality (10) applies to the summary predi- 
cate, sm, as well. 

A special kind of embedding is a tight embedding, in which 
information loss is minimized when multiple individuals of S 
are mapped to the same individual in S’: 

Definition 3.6 A structure S’ = (U”,L”) is a tight em- 
bedding of S = (Us, ts) if there exists a surjectiwe function 

t-embed: Us + Us’ such that, for every p E P - {sm} of 
arity 1, 

‘s’(p)@:, . . . ) u;> = I-J &)(%,... ,uk)(12) 

t_embed(Ui)=~i,l<i<k 

and for every u’ E Us’, 

LS,(sm)( 
u 

,) = (I{4t-embed($ = ~‘11 > W 

u L (smN4 
t_embed(u)=u’ 

(13) 

Because t-embed is surjective, equations (12) and (13) 
uniquely determine S’ (up to isomorphism); therefore, we say 
that S’ = t-embed(S). •I 

It is immediately apparent from Definition 3.6 that the 
tight embedding of a structure S by a function t-embed pos- 
sessing properties (12) and (13) embeds S in t-embed(S), i.e., 

S Pmbed t-embed(S). 

If f:US + us’ is a function and 2: Var + Us is an 

assignment, f o Z denotes the assignment f o 2: Var + Us’ 
such that (f o Z)(v) = f(.Z(v)). 

We are now ready to state the embedding theorem. Intu- 
itively, it says: 

If S cf S’, then every piece of information ex- 
tracted from S’ via a formula q is a conservative 
approximation of the information extracted from 
S via cp. 

Theorem 3.7 [Embedding Theorem]. Let S = (Us,ts) 

and S’ = (Us’ , I?‘) be two structures and f: Us + Us’ such 

that S cf S’. Then, for every formula cp and complete assign- 

ment 2 for 9, M3s(z) 5 Mf’(f o 2). 0 

3.4 Compatible Structures 

We use 3-STRUCT[P] to denote the set of general three- 
valued structures over vocabulary P, and 2-STRUCT[P] to 
denote the normal two-valued structures over P. (Note that 
2-STRUCT[?‘] C 3-STRUCT[P].) 

Suppose that P is a C program that operates on the List 
data-type of Figure l(a), and that Sb E 2-STRUCT[P] is a 
two-valued structure over the appropriate vocabulary. As de- 
scribed in Table 1, our intention is that Sh capture a List- 
valued store in the following manner: 

Each cell in hyhp-allocated storage corresponds to an 

individual in U . 

For every individual u, ~~~ (z)(u) = 1 if and only if the 
heap cell that u represents is pointed to by program vari- 
able x. 

For every pair of individuals ui and 112, L Sb (n)(u1, u2) = 

1 if and only if the n field of ui points to UP. 
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for each x E PVar,Vvi,v2 : Z(Q) AZ(~) =S WI = ~2 (14) 

v111,212 : (3tJ3 : n(w3,211) A n(vs,vz)) * 211 = 212 (15) 

vv: (32)1,v2 : WI # 212 An(th,v) A n(v2,v)) * is(w) (16) 

tlv : -+h,w2 : ~1 # v2 An(m,v) An(wz,v)) =S -+8(v) (17) 
v212,2, : (AI, : -vis u A VI # 212 An v1,v)) =k- -n(vz,v)(18) 

V/2)1,2) : (3~2 : +5(v) Avl # 212 An(vz,w)) + -Vz(v1,v) (19) 

tj211,va : (3~ : -k?(v) An(vl,v) A n(v2,v)) + 111 = 212 (20) 

Table 4: Compatibility formulae F for structures that repre- 
sent a store of the reverse program, which operates on the 
List data-type declaration from Figure l(a). The rules below 
the line are logical consequences of the rules above the line, 
and are generated systematically from the rules above the line, 
as explained in Section 5.2.1. 

(Similar statements hold for the instrumentation predicates, 
as indicated in Table 2.) 

However, not all structures Sb E 2-STRUCT[P] represent 
stores that are compatible with the semantics of C. For exam- 
ple, stores have the property that each pointer variable points 
to at most one element in heap-allocated storage. Conse- 
quently, we are not interested in all structures in 2-STRUCT[P], 
but only in ones compatible with the semantics of C. Table 4 
lists a set of compatibility formulae F (or “hygiene condi- 
tions”) that must be satisfied for a structure to represent a 
store of a C program that operates on the List data-type from 
Figure l(a). Formula (14) captures the fact that every pro- 
gram variable points to at most one list element. Formula (15) 
captures a similar invariant on the n fields of List structures: 
Whenever the n field of a list element is non-NULL, it points to 
at most one list element. 

In addition, for every instrumentation predicate p E Z de- 
fined by a formula ‘pp (vi , . . . , ZIP), we generate a compatibility 
formula of the following form: 

vu1 ,... ,?.Jk : (pp(211 ,... ,vk) w$p(vl,... ,vk) (21) 

This is then broken into two formulae of the form: 

vu l,... , vk : f&,(2)1,. . . ,‘uk) * p(vl,. . . ,vk) 

vu 1,. . . ,Vk : -&‘p(Vl,. . . ,2)k) =i’ -‘p(vl,. . . ,vk) 

For instance, for the instrumentation predicate is, we use 
formula (4) for (Pia to generate compatibility formulae (16) 
and (17). 

In the remainder of the paper, 2-CSTRUCT[P, F] denotes 
the set of two-valued structures that satisfy a set of compati- 
bility formulae F. 

Compatibility constraints for three-valued structures are 
discussed in Section 5.2.1. 

4 A Simple Abstract Semantics 

In this section, we formally work out the abstract-interpretation 
algorithm that was sketched in Section 2.3. In Section 4.1, we 
define how (a potentially infinite number of) concrete struc- 
tures can be represented conservatively using a single three- 
valued structure. In Section 4.2, the meaning functions of the 
program statements are defined. To guarantee that the analy- 
sis of a program containing a loop terminates, we require that 
the number of potential structures for a given program be fi- 
nite. For this reason, in Section 4.3 we introduce the set of 
bounded structures, and show how every three-valued struc- 
ture can be mapped into a bounded structure. Section 4.4 
states the abstract interpretation in terms of a least fixed point 
of a set of equations. 

4.1 The Concrete Stores Represented by a Three-Valued 

Structure 

Deflnition 4.1 (Concretization of Three-Valued Struc- 
tures) For a structure S E 3-STRUCqP], we denote by y(S) 
the set of two-valued structures that S represents, i.e., 

y(S) = {Sb 1 Sh c S, Sb E %CSTRUC~P, F]} (22) 
Cl 

Example 4.2 The structure S2 shown in Figure 2 represents 
lists of length two or more. 0 

4.2 The Meaning of Program Statements 

In this subsection, we present a simple algorithm that, given a 
program, computes for every point in the program a conserva- 
tive approximation of the set of concrete structures that arise 
at that point during execution. (This algorithm is refined in 
Section 5 to obtain a more precise solution.) 

We now formalize the abstract semantics that was dis- 
cussed in Section 2.3. The main idea is that for every state- 
ment st, the new values of every predicate p are defined via a 
predicate-update formula cp;” (referred to as p’ in Section 2.3). 

Definition 4.3 Let st be a program statement, and for every 
a&y-k predicate p in vocabulary P, let ‘pit be the formula over 
free variables vi,. . . , vk that defines the new value of p after 
st. Then the P transformer associated with st, denoted 
by [St], is defined as follows: 

]stl(S) = ( y;;,,, . . . ,t&.[$$];([th +b ‘111,. . . ,Wk ti t&l)) 
0 

Example 4.4 Table 5 lists the predicate-update formulae that 
define the abstract semantics of the five kinds of statements 
that manipulate data structures defined by the List data type 
given in Figure l(a). (For the moment, ignore the case for 
statements of the form x = malloc 0 .) Cl 

Definition 4.3 does not handle statements of the form x = 
malloc0 because the universe of S does not change. Instead, 
for statements of this form, we use the modified definition 
of ]st](S) given in Definition 4.5, which first allocates a new 
individual unew , and then invokes predicate-update formulae 
in a manner similar to Definition 4.3. 

Definition 4.5 Let st E x =malloc() and let new $2 P be 
a unary predicate. For every p E P, let ‘pGt be a predicate- 
update formula over vocabulary PU{new}. Then the P trans- 
former associated with st E x = malloc(), denoted by [z = 
malloc()], is defined as follows: 

[x = malloc()](S) = 

let U’ = Us U {unew}, where unew is an individual not in Us 

xp.xul,. . . ,uk. 
1 p=new Au1 =unew 

and L'= 

I 

0 p=newAul#unew 

l/2 p#new A V ui =unew 
l<i<k -- 

LS(p)(Ul,... , uk) otherwise 

in 
( 

U’, 
xp.xu1, . . * , dbf’p 13 St (“+‘)([Vl k-b ul, . . . , Vk +b Uk]) > 

Cl 

In Definition 4.5, L’ is created from L as follows: (i) new(unew) 
is set to 1, (ii) new(ui) is set to 0 for all other individuals 
‘111 # uncut, and (iii) all predicates are set to l/2 when any 
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st 

x = NULL 

P;” 
&‘(w) def 0 

(Pan def zj:J, for each z E (PVar - {x}) 

cpz (211, v2) = n(211,212) 

&(w) def m(w) 

x=t f&“(w) deft(w) 

p:‘(w) def z(w), for each z E (PVar - {x)) 

cpzLt(wI, w2) dgf n(w1,w2) 

y&(w) def m(w) 

x = t->n &(w) def 3Wl : t(w1) A 7z(Wl, w) 

p:“(w) def z(w), for each z E (PVur - {x}) 

f&(w , w2) 
def 
= n(w1,w2) 

g&(w) def m(w) 

x->n = t &(w) def Z(W), for each z E PVar 
def (n(w, 112) A ~~(211)) 

d(wl,w2) = v (z(w1) A t(w2)) 

cp::, (w) dsf m(w) 

x = malloc() ‘p:‘(w) def new(w) 
def Z(W) A -new(w), 

cp’“(w) = for eac;lu: z2jpVar - {x}) 
def 

cp”,“(Wl,W2) = A -w&(w,) A Tnew(w2) 

p::(w) ef sm(w) A -new(w) 

Table 5: Predicate-update formulae for the core predicates for 
List and reverse. 

argument is uneW. The predicate-update operation in Defi- 
nition 4.5 is very similar to the one in Definition 4.3 after L’ 
has been set. (Note that the p in “L’ = Xp.. . .” ranges over 
P U {new}, whereas the p in “Xp.. . .” appearing in the last 
line of Definition 4.5 ranges over P.) 

The Embedding Theorem immediately implies that the 
three-valued interpretation is conservative with respect to ev- 
ery store that can possibly occur at run-time. 

The above two definitions are not the complete story. In 
the case of the instrumentation predicates, the statements 
need to maintain %orrect instrumentation”. This is formally 
defined as follows: 

Definition 4.6 A predicate-update formula cpg” maintains a 
correct instrumentation for predicate p E Z if for all 
Sb E 2-CSTRUCqP, F] and for all Z, 

[p;*]$ (Z) = [‘pp]yqZ). 
El 

Example 4.7 Table 6 gives the definitions of the predicate- 
update formulae for the instrumentation predicate is. It is 
not hard to see that, for each kind of assignment statement, 
equation (23) holds. 0 

Henceforth, when discussing the general case (i.e., the para- 
metric framework), we assume that all predicate-update for- 
mulae maintain correct instrumentations. 

st st 
(Pis j 

x = NULL I&w) def is(w) 

x=t (cp$w) def is(w) 

x = t->n &w) def is(w) 

is(w) A 3~1,212 : 01 # w2 

x->n = t l&(w) def A n(wl, w) A 4~2, v) 

A +wl) A -4~2) 

V (t(w) A 3~1 : n(w~, w) A x(w~)) 

x = malloc() cp~~(w) gf is(w) A -mew(w) 

Table 6: Predicate-update formulae for the instrumentation 
predicate is. 

structures for a given program be finite. Toward this end, we 
make the following definition: 

Definition 4.8 A bounded structure ozler vocabulary P is 
a structure S = (U’,L’) such that for every UI,UZ E Us, 
where u1 # ‘112, there etists a unary predicate symbol p E P 
such that (i) I’ # l/2, (ii) L’(~)(W) # l/2, and 

(iii) LS(P)(U1) # rS(p)(u2>. 

In the sequel, B-STRlJCljP] denotes the set of such struc- 
tures. 13 

There are two consequences of Definition 4.8: 

l For every fixed set of predicate symbols P containing 
unary predicate symbols A C P, there is an upper bound 
on the size of structures S E B-STRUCT[P], i.e., IUs < 
21-4’. 

l The embedding of any structure into a bounded struc- 
ture S is unique. 

Example 4.9 Consider the class of bounded structures asso- 
ciated with the List data-type declaration from Figure l(a). 
Here the predicate symbols are C = {sm, n) U {z ( x E PVar) 

and Z = {is}.” 
For the reverse program from Figure l(b), the program 

variables are x, y, and t, yielding unary core predicates G, y, 
and t; the other unary predicates are is and sm. Therefore, 
the maximum number of individuals in a structure is 25 = 32; 
however, a consequence of equation (13) is that sm cannot 
have the value 1, and thus the maximum number of individuals 
in a structure is really only 16. On the other hand, Figure 3 
shows that each structure that arises in the analysis of reverse 
has at most two individuals. 0 

One way to obtain a bounded structure is to map individ- 
uals into abstract individuals named by the definite values of 
the unary predicate symbols. That is, to embed unbounded- 
size structures into bounded-size ones, we exploit the following 
abstraction principle, in which the mapping is controlled 
by a fixed set of unary “abstraction predicates”-the unary 
predicates of the vocabulary: 

Individuals are partitioned into equivalence classes 
according to their sets of unary-predicate values. 
Every structure Sb is then represented (conserva- 
tively) by a condensed structure in which each in- 
dividual of S represents an equivalence class of Sb. 

This is formalized in the following definition: 

4.3 Bounded Structures 

To guarantee that shape analysis terminates for a program 
that contains a loop, we require that the number of potential 

*The predicate sm has a slightly different status than the other core 
predicates. It captures the essence of “summary-nodes”, and thus has 
has a fixed meaning in all concrete structures, namely, sm(u) = 0 for 
all u E Us. Including sm in the concrete structures allows us to work 
with the same vocabularies at the concrete and abstract levels. 
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Deflnition 4.10 The canonical abstraction of a structure 
S, denoted by t-embed,(S), is the tight embedding induced by 
the following mapping: 

t-embed,(u) = "{pod-{~n}l‘~(p)(~)=l),(pEA-Iam)JrS(p)(~)=O}. 
Cl 

Note that t-embed, can be applied to any three-valued 
structure, not just two-valued structures, and that t-embed, 
is idempotent (i.e., t_embed,(t_embed,(S)) = t-embed,(S)). 

The name '"{p~d-{dm}l‘s(p)(u)=l),{ ~d-{.m}~~S(p)(u)=O}n 
is known as the canonical name of m J ividual u. 

Example 4.11 In structure Sr from Figure 2, the canonical 
name of individual ui is u{xl,{r,t,ial, and the canonical name 
of ‘11 is "0,{z,y,t,is}* In structure Ss, which arises after the 
first abstract mterpretation of statement sts in Figure 3, the 
canonical name of ui is ~I~,~l,{~,i~l, and the canonical name 
of u is ~0,{,,~.t,i~j. 0 

It is straightforward to generalize Definition 4.10 to use 
just a subset of the unary predicate symbols, rather than all 
of the unary predicate symbols A c P. This alternative yields 
bounded structures that have a smaller number of individu- 
als, but may decrease the precision of the shape-analysis al- 
gorithm. For instance, Definition 4.10 is a generalization of 
the abstraction function used in [19].3 The only abstraction 
predicates used in [19] are the “pointed-to-by-x” predicates; 
the predicate is is used only as an instrumentation predicate 
in [19], but not as an abstraction predicate (i.e., is does not 
contribute to the canonical name of an individual in [19]). 
Consequently, the algorithm from [19] loses precision for stores 
that contain both shared and unshared heap cells that are not 
directly pointed to by any variable. Adopting is as an addi- 
tional abstraction predicate improves the accuracy of shape 
analysis: In this case, shared heap cells and unshared heap 
cells are represented by abstract individuals that have differ- 
ent canonical names. 

4.4 The Shape-Analysis Algorithm 

In this section, we define the actual shape-analysis algorithm. 

Deflnition 4.12 For structure sets XS1, XS1 c 3-STRZJCqP], 
we define: XSI E XSa e VSi E XSz : 3Sz E XSz : Si g .I$. 
cl 

The shape-analysis algorithm itself is an iterative proce- 
dure that computes a set of structures, StructSet[v], for each 
vertex 2) of control-flow graph G, as a least fixed point of the 
following system of equations over the variables StructSet[v]: 

U {t_embed,[st(w)](S) ] S E StructSet[w]} 

{(8,&h,... ,uk.1/2)} 

if u # start 
if v = start 

The iteration starts from the initial assignment StructSet[v] = 
0 for each control-flow-graph vertex v. Because of the t-embed, 
operation, it is possible to check efficiently if two structures 
are isomorphic. 

5 Improved Abstract Semantics 

In this section, we formulate the improved abstract interpre- 
tation referred to in Section 2. This analysis recovers precise 
shape information for many list-manipulation programs, in- 
cluding ones that manipulate cyclic lists. 

‘The shape-analysis algorithm presented in [19] is described in terms 
of Storage Shape Graphs (SSGs), not bounded structures. Our compar- 
ison is couched in terms of the terminology of the present paper. 

II 

{S51 

1 Wl 

{s6} 2 {sS,OtsS,l, s6.2) \COerrF {'95,0,0, '95,o,lrS5,o,2) 

Figure 4: One- vs. three-stage abstract semantics of statement 
sts. The operation [st] was already defined in Section 4. The 
focus and the coerce operations are introduced in Sections 5.1 
and 5.2, respectively. (This example will be discussed in fur- 
ther detail in Sections 5.1 and 5.2.) 

In contrast to the abstract meaning function for a state- 
ment st given in Definition 4.3, in this section we decompose 
the transformer for st into a composition of three functions, 
as depicted in Figure 4 and explained below: 

The operation focus, defined in Section 5.1, refines three- 
valued structures such that the formulae that define the 
meaning of st evaluate to definite values. The focus op- 
eration thus brings these formulae “into focus”. 

The transformer [St], defined in Section 4, is then ap- 
plied (see Definitions 4.3 and 4.5). 

The operation coerce, defined in Section 5.2, converts a 
three-valued structure into a more precise three-valued 
structure by removing incompatibilities. In contrast to 
the other two operations, coerce does not depend on the 
particular statement st; it can be applied at any step 
(e.g., right after focus and before [St]) and may improve 
precision. 

It is worthwhile noting that both focus and coerce are 
semantic-reduction operations (originally defined in [3]). That 
is, they convert a set of three-valued structures into a more 
precise set of structures that describe the same set of stores. 
This property, together with the correctness of the structure 
transformer [St], guarantees that the overall three-stage se- 
mantics is correct. 

5.1 Bringing Formulae Into Focus 

To improve the precision of the simple abstract semantics of 
Section 4 we define an operation, called focus, that forces a 
given formula cp to a definite value. 

5.1.1 The Focus Operation 

First, we define an auxiliary operation, mazimal, that returns 
the set of maximal structures in a given set of structures: 

Definition 5.1 For a set of structures XS C 3-STRUCT[P], 

mazimal(XS) def 

XS-{XEXSI~X’EXS:X[I:X’~~~X’~X} 

Cl 

Definition 5.2 Given a formula cp, the operation focus, yields 
the (potentially infinite) set of structures in which cp evaluates 
to a definite value, i.e., 

focus,(S) = maximal 

0 
for all 2 : [&’ (2) # l/2 }I 

Example 5.3 The upper part of Figure 5 illustrates the ap- 
plication of focus to the formula &(u) and the structure Ss 
that we have in reverse between the first application of state- 
ment sts: y = x and the first application of statement st4: x 
= x->n in Figure 3. This results in three structures: 



The structure S~J,C,, in which ‘pit4(w) evaluates to 0 for 
all individuals. This structure represents a situation in 
which the concrete list that x and y point to has only 
one element, but the store also contains garbage cells, 
represented by summary node U. 

The structure &JJ, in which [‘pzt4 (v)]?‘~*~ ([v I+ u]) 
equals 1. This covers the case where the list that x and 
y point to is a list of exactly two elements: In all of the 
concrete cells that summary node ‘1~ represents, cpz”‘(v) 
must evaluate to 1, and so u must represent just a single 
list node. 

The structure &,,f,2, in which [cpzt4 (v)]~.‘.‘([v * u.01) 

equals 0 and [&‘4(~)]~*f~2([w C) u.l]) equals 1. This 
covers the case where the list that x and y point to is a 
list of three or more elements: In all of the concrete cells 
that u.0 represents, cp:““(v) must evaluate to 0, and in 
all of the cells that 21.1 represents, cpzt4 (w) must evaluate 
to 1. 

This case captures the essence of node materialization 
as described in [19]: individual ‘1~ is bifurcated into two 
individuals. M(S,Z) = 

Notice how foc~~~~t~ CV) is effectively constructed from SS 

by considering the reasons why [&“4(~)]~(Z) evaluates to 
l/2 for a possible assignment 2: [&4(v)]? ([v H ul]) equals 
0, and therefore cpit4(v) is already in focus at ~1; in contrast, 

[‘pzt4 (v)]? ([v e u]) equals l/2. There are three (maximal) 
structures in which [(pit4 (v)]s([~ t+ u]) has a definite value: 

l &,,J,o, in which ~(uI,u) was forced to 0, and thus 

[$&’ (v)]?J*O ([v I+ u]) equals 0. 

l SSJJ, in which n(ul, U) was forced to 1, and thus 

[‘p$4 (?&JJ ([v c) u]) equals 1. 

l &,f,z, in which u was bifurcated into two different in- 
dividuals, u.0 and 21.1. In &,,f,z, n(u1,u.O) was set to 

0, and thus [cp;““(~)],S6,~*~ ([v r-) u.01) equals 0, whereas 

n(z(;;;;‘) was set to 1, and thus [&(~)],s”*‘* ([v I+ ~.l]) 

Of course, there are other structures that can be embedded 
into S5 that would assign a definite value to ‘pjZt4 (v), but these 
are not maximal (according to Definition 5.1) because each of 
them can be embedded into one of &,f,o, Ss,f,l, or &,f,2. 0 

In this paper, we simplify the analysis algorithm by only 
applying focus with respect to spit formulae, which ensures 
that the number of resulting structures is finite: 

Lemma 5.4 For every program variable x E PVar, statement 
st, and structure S, If0cu.9,:~ (S)l 5 31U’I. q 

{(&h’(z(d,-.. , z(vk)) + 01) 

Z(P(‘ul,... , d)(s, 2) = if 0 E b@(z(vl), . . . , z(vk)) 
0 otherwise 

,491 A (P2)(% 2) = 4cpl)(S, Z) u 4cpz)(S, 2) 

4~1 v cp2)(8 2) = 4cpd(s, 2) n 4f72)(s, 2) 

4-v)(f% 2) = o(cp)(S, 2) 

WJ : rp)(S, 2) = u 4cp)(S, Z[v I+ 4 
UEU 

-43v : cpw, 2) = fl 4cpm,GJ * 4 
UEU 

o(Z)(S, 2) = 

o(v1 = ‘u2)(S,Z) = 
z(sm(vl))(S, 2) if Z(~I) = Z(v2) 

otherwise 

{(~,h’(~(‘ul),-.. ,z(vk)) 4- 11)) 

O(P(V1, . . . t vk))(S, 2) = if 1 c L(I)(z(vl), . . . , z(vk))) 
0 otherwise 

4cpl A cpz)(S, 2) = O(cpl)(S, 2) n o(cpz)(S, 2) 

O(cpl v (P2)(% 2) = O(cpl)(S, 2) u o(cp2)(% 2) 

o(-cp)(S, 2) = 4v)(S, 2) 

o(Vv : cp)(S, 2) = /-j o(cp)(S, -qJ ++ 4) 
UEU 

5.1.2 An Algorithm for Focus 

In this section, we present an algorithm that implements focusVlt (“) 

by generating structures in which cp;2’(v) has a definite value. o@v : cpp, 2) = u 4cpK% Zb - 4 
A key aspect of the algorithm is the ability to identify the UEU 

maximal structures in which cpzt (v) has a definite value. Recall 
cI 

that the Hoare order on sets of structures is only a pre-partial Example 5.7 For the formula cpct4(w), structure S5 from Fig- 
order (see Definition 4.12). The following definition provides 
a way to compute a least upper bound and a greatest lower 
bound on sets of structures sharing the same universe U. 

Definition 5.5 Let XSI, XS2 s 3-STRUCqP] such that for 
all S E XS1 U X&, Us = U. We define the following opera- 
tions on XSI and XS2: 

XSl U XS2 def maximal(XS1 U XS2) 

xs 1 l-l xs 2 dsf 

{ 

(u,~p.xUl,. . . Uk.LS1(P)(Ulr.. . ,Uk) n L’“(P)(Ul,. . . ,uk)) 

I S1 E XSI and Sz E XS2 and comparable(S1, SZ) > 

where: 

comparable(S1, SZ) = 

forallpEP,forallu~,... ,uk EU: 
Pqp)(UI,... ,uk) bS2@)(‘111,... ,uk) 

or bs2 (p)(u~, . . . , Uk) c Lsl (p)(Ul, . . . , ‘ilk) 

cl 

We are now ready to define the operations z and o that 
assure that a given formula evaluates to 0 and 1, respectively, 
in a given assignment. 

Definition 5.6 Let S = (U, L) E 3-STRUCljP] be a three- 
valued structure. Let &(u~, . . . , uk) t l] denote the map ob- 
tained from L by updating ~(p)(u~, . . . , uk) to have the value 
1. For a formula cp and assignment 2, we define z(cp)(S,Z) E 

23~STRUCT~p1 and o(cp)(S, 2) E 23-sTRucT[p1 inductively, as 
follows: 
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. . 
input 

4 ; 

struct. s5 

focus 
a 

formulae {$+(2)) = 31 : 2(w) A n(tJ1, v), &qv) = y(v), cp;“yv> = t(v)} 

focused 
struct. %f,O &4(u) = 0 %f,l ‘pg4 (u) = 1 S&f,2 cp:t’(u) = 1 &‘(21) = 0 

..m. 

x,,_@ 4d x,y_@_R x,y_o~~-_:::::::::~.~ 

update ‘pct4 (v) PO; 
t 
4(v) $4 

t 

formulae 
4(v) 

t t 
(PL4 (v) cp:4 (v) 

t 
cp; 4 (211, v2) 

31 : 2(Vl) A n(v1, v)ly(v) It(v) lis(v) m(v) jTz(v1, v2) 

output 
struct . ss,o,o SS,o,l X s5,0,2 X 

. ..?a... 

y+@ j& 0-A 
..*.. 4 .: 

y-u1 n @ Y - ‘111 n, u.1 i ). 0 (I ,:;:;,::r. 21.0 

‘. b 0 ‘.. . ..’ ,: 
coerced 
struct. St?,0 &,l X se,2 

y+@ 4& 0-A Y- Ul 
n 

U y-o-Q . . ?L@ 

Figure 5: The first application of the improved transformer for statement st4: x = x->n in reverse. 

ure 5, and individual u E lJs5, we have: 

4&“)(~5, bJ -+ ul) 
= Z(3Vl : z(w) A n(v1, v))(S5, [v --) U]) 

= n Z(Z(Vl) A n(v1, v))(S5, [v + U, Vl + 21’1) 

u’E{u,u1) 

+(m) A n(vl, v))(s5, [v -+ U, VI + U]) 

= I-I .+(vl) A n(w, v)>(s5, [v + U, VI + UI]) 

( 

42(Vl)(S5, [v -+ U, VI + U]) 

= u z(n(v1, v))(S5, [v + U, Vl + U])) > 

I-I z(z(w) A ~(vI, v))(ss, [v + U, VI + ~11) 

({Ss) u ({U, Ul), +[n(U, 4 * 01)) 

= n r+(w) A n(w, v))(Ss, [v + u, VI + UI]) 

= {Ss} n z(~(vr) A n(v1, v))(Ss, [v + u, vi + ~11) 

= {ss] I-I (u *(n(vr, v),(&, [v + L, vr + u1])) 
(z(z(vl))(ss [v + U 211 --) Ul]) 

= (Ss} l-l +qVl, 4)(S5, [v --) U, Vl + w]) 

> 

= {Ss} n ({U, Ul}, +(Ul, U) I-+ 01) 

= {({U,%}, +[n(Ul,U) I+ 01)) 
= {%f,Ol 

Similarly, 0((0:~~)(S5, [v + ~1) = {&,f,l}. Cl 

Remark. In Definition 5.6 we have ignored the case of for- 
mulae that include the transitive-closure operator. This was 
done both for notational simplicity, and because such formu- 
lae are not useful in the various predicate-update formulae cpi” 
employed by the abstract semantics. It is possible to handle 
such formulae by enumerating structures in which formulae 
evaluate to definite values. 0 

The algorithm for focus, called Focus, is shown in Figure 6. 
When all of structure S’s individuals have definite values for 
I&(V), Focus returns {S}; when S has an individual u that has 
an indefinite value for cp:“(v), Focus applies z and o to gener- 
ate structures in which the indefiniteness is removed, and then 
recursively applies Focus to each of the structures generated. 
The call on auxiliary function Expand creates a structure in 

function Focus(S : 3-STRUCT[P], 9$(v): Formula) 
returns 2s-CsTnrJCW~s(FN 

begin 
if there exists u E Us s.t. [&“]z([v C) u]) = l/2 then 

let u.0 and u.l be individuals not in Us 
and S’ = o(cp:“(v))(z(cp:t(v))(Expand(S, q~0,u.l) 

[v c) u.11) 
[v +) 4>, 

and XS = 
z($u))(S, [v H 4) 

; $“= (u))(S, [u I+ 4 

in return u Focus(S)‘, cp$ (v)) 
S”EXS 

else return {S} 
end 

function Expand(S : 3-STRUCT[P], u, ~0, u.1: elements) 
returns 3-STRUCT[P] 

if u’ = 21.0 V u’ = u.1 
let m = Xu’. :I otherwise 

{ 
in 

return 
(VS - {?J}) u (u.0, ‘1L.l) 
xp.xui,. . . 7 m.LSb)(m(Ul), . . . T m(Uk)) > 

Figure 6: An algorithm for ~ocus~:~(,). 

which individual u is bifurcated into two individuals; this cap- 
tures the essence of shape-node materialization (cf. [19]). 

Example 5.8 Consider the application of Focus to the struc- 
ture S5 from Figure 5 and the formula ‘pzt4. By Example 5.7, 
z(cpgt4)(Ss, 2) yields the singleton set {Ss,f,o} and o(&“~)(SS, 2) 
yields the singleton set {Ss,f,i}. By a similar derivation, 
o(pzt4 (v))(z((p:t4(v))(Expand(S, 21, u.0, u.l), [v I+ u.O]), [v I+ 
u.11) yields the singleton set {Ss,f,2}. Thus, the result of 
Focus(Sa, cp$‘) is the set {Ss,f,o,Ss,f,l,S5,f,2}. 0 
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5.2 Coercing into More Precise Structures 

After focus, we apply the simple transformer [st]l that was 
defined in Definitions 4.3 and 4.5. In the example discussed 
in Section 5.1, we apply [sty] to the structures &J,o, SSJJ, 
and S5,f,2. We see that S+,o is obtained from S,~J,O, &,+,,l 
from SSJJ, and sS,o,Z from S5,f,2. 

Applying focus and then [st] can produce structures that 
are not as precise as we would like. The intuitive reason for 
this state of affairs is that there can be interdependences be- 
tween different properties stored in a structure, and these in- 
terdependences are not necessarily incorporated in the defini- 
tions of the predicate-update formulae. This is demonstrated 
in the following example: 

Example 5.9 Consider structure S5+,,2 from Figure 5. In 
this structure, the n field of u.0 can point to u.l, which sug- 
gests that x may be pointing to a cyclic data structure. How- 
ever, this is incompatible with the fact that is(u.1) = 0-i.e., 
u.1 cannot represent a heap-shared cell-and the fact that 
n(u1,u.l) = 1-i.e., it is known that u.l definitely has an 
incoming selector edge from a cell other than u.0. 0 

for each x E PVar, ~(211) A z(v2) D vl = 212 (27) 
(3213 : n(v3,w) A n(v3,vz)) D vl = 212 (28) 

(h,v2 : VI # 212 An(Vl,v) A n(V2,V)) D is(v) (29) 
$3vl,2)2 : WI # 212 A n(v1, v) A n(v2, v)) D lia(v) (30) 

(Au1 : via v) A v1 # 212 A n(w1, w)) D Tn(v2, v) (31) 

(3~12 : -is(v) A ~1 # 212 A n(v2, w)) D %(2)1, v) (32) 
(3~ : -is(v) A n(v1, w) A n(v2, v)) D v1 = 212 (33) 

Table 7: The compatibility constraints R( clzre(F)) gener- 
ated using Definition 5.13 from the formulae F given above 
the line in Table 4. The constraints below the line come from 
applying r to the formulae listed below the line in Table 4. 

This observation motivates the subject of the remainder of 
this subsection-an investigation of compatibility constraints 
expressed in terms of a new logical connective, ‘D’. 

In this subsection, we show that in many cases we can 
sharpen the structures by removing indefinite values that vi- 
olate certain compatibility rules. In particular, it allows us to 
remedy the imprecision illustrated in Example 5.9. Further- 
more, the shape-analysis actually yields precise information in 
the analysis of reverse. 

Definition 5.12 Let C be a finite set of compatibility con- 
straints of the form cpl D cpz, where cpl is an arbitrary three- 
valued formula, and cpz is either an atomic formula or a nega- 
tion of an atomic formula. We say that a structure S satisfies 
C (denoted by S k C) if for every constraint ‘pl D (~2 in C, 
and for every assignment 2 such that [(pl]t(Z) = 1, we have 

[qJ2]3s(Z)= 1. 0 

5.2.1 Compatibility Constraints 

We can, in many cases, sharpen some of the stored predicate 
values of three-valued structures: 

Example 5.10 Consider a two-valued structure Sb that can 
be embedded in a three-valued structure 5’. By the Property- 
Extraction Principle (Observation 2.1), we know that if the 
formula cpis for “inferring” whether an individual u is shared 
evaluates to, e.g., 1 in S, then in Sk, is(&) must be 1 for any 
individual ‘1~~ that maps to u. The definition of embedding 
(Definition 3.5) would allow the value of is(u) in S to be l/2; 
however, in this case a tighter embedding-in the sense of 
Definition 3.6-is also possible, in which is(u) has the value 
1. In other words, it is needlessly imprecise to let is(u) retain 
the value l/2: The “stored property” is should be at least 
as precise as its inferred value. Thus, in some cases, the fact 
that cpis evaluates to 1 in a three-valued structure allows us 
to sharpen the stored predicate is. 

For a two-valued structure, D has the same meaning as +. 
However, for a three-valued structure D is stronger than 3: if 
‘pl evaluates to 1 and (~2 evaluates to l/2, the constraint ‘pl D 
‘p2 is not satisfied. More precisely, suppose that [pl]i(Z) = 1 
and [(p&(Z) = l/2; the implication ‘pl + (~2 is satisfied (i.e., 
S, 2 b ‘pl * cpz), but the constraint ‘pl D ‘p2 is not satisfied 
(i.e., S, 2 p ‘~1 D ~2). 

The constraint that captures the reasoning used in Exam- 
ple 5.10 is Cpis(V) D is(v). That is, when cpi8 evaluates to 1 at 
u, then is must evaluate to 1 at u. 

Such constraints formalize the Sharpening Principle. They 
will be used to improve the precision of the shape-analysis 
algorithm by (i) sharpening the values of stored predicates, 
and (ii) eliminating structures that violate the constraints. 

The following definition converts formulae into constraints 
in a natural way: 

Definition 5.13 For formula ‘p and atomic formula a, define 
r((p) as follows. 

Similar reasoning allows us to determine, in some cases, 
that a structure is inconsistent. For instance, if 9;s evaluates 
to 1 for an individual u and is(u) is 0, then S is a three-valued 
structure that does not represent any concrete structures at 
all! When this situation arises, the structure can be eliminated 
from further consideration by the abstract-interpretation al- 
gorithm. 

r(Vvl,... Uk : (‘p =s a)) def cp D a 

r(Vvl,... vk : (‘p * -a)) def $7 D -a 

r(Vvl,... Vk : $7) dsf ‘Cp D 9 

(24) 

(25) 

(26) 
For a set of formulae F, we define R(F) to be the set of con- 
straints obtained by applying r to each of the formulae in F. 
0 

This reasoning applies to all instrumentation predicates, Rule (26) was added to enable an arbitrary formula to be 
not just is, and to both of the definite values, 0 and 1. 0 converted to a constraint. 

The reasoning used in Example 5.10 can be summarized as 
the following principle: 

Observation 5.11 [The Sharpening Principle]. In any 
structure S, the valued stored for p(ul, . . . , uk) should be at 
least as precise as the value of p’s defining formula, ‘pp, evalu- 
atedatul,... ,Uk (i.e., [(pp]~([Vl I+ Ul,... ,Vk I-b Uk])). fir- 

thermore, if p(ul,... ,uk) has a definite value and ‘pp evalu- 
ates to an incomparable definite value, then S is a three-valued 
structure that does not represent any concrete structures at all. 
cl 

Example 5.14 The constraints generated for the formulae 
that appear above the line in Table 4 are listed above the line 
in Table 7. c7 

In [18], we define a closure operator cl&&e(F) that gen- 
erates certain logical consequences of a set F of compatibility 
formulae. For instance, the three formulae below the line in 

Table 4 are generated by cE&%e(F), where F is the set of for- 
mulae given above the line in Table 4. The corresponding com- 

patibility constraints that are obtained from R(cl&&e(F)) are 
listed below the line in Table 7. 
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Example 5.15 As we will see in Section 5.2.3, compatibil- 
ity constraints play a crucial role in the shape-analysis algo- 
rithm. Without them the algorithm would often be unable 
to determine that the data structure being manipulated by 
a list-manipulation program is actually a list. In particular, 
constraint (31) allows us to do a more accurate job of ma- 
terialization: When is(u) evaluates to 0 and one incoming 
n edge is 1, to satisfy constraint (31) a second incoming n 
edge cannot have the value l/2-it must have the value 0, 
i.e., no such edge exists (cf. Examples 5.9 and 5.19). This 
allows edges to be removed (safely) that a more naive materi- 
alization process would retain (cf. Sh@AIreS .t&,,2 and S6,2 in 
Figure 5), and permits the improved shape-analysis algorithm 
to generate more precise structures for reverse than the ones 
generated by the simple shape-analysis algorithm described in 
Sections 2.3 and 4. q 

Henceforth, we assume that c&& has been applied to all 
sets of hygiene conditions. 

Definition 5.16 (Compatible Three-Valued Structures). 
The set of compatible three-valued structures 
3-CSTRlJCqP,R(F)] E 3-STRUCqP] is defined by S E 
3-CSTRUCqP,R(F)] i_@S b R(F). •I 

5.2.2 The Coerce Operation 

We are now ready to show how the coerce operation works. 

Example 5.17 Consider structure S&o,2 from Figure 5 again. 
The structure S5+,,2 violates constraint (32) under the assign- 
ment [v I-) u.l,vl I+ ul,v2 C) u.01. Because ~(Is)(u.l) = 0, 
~1 # u.0, and b(n)(ul, 21.1) = 1, yet, ~(n)(u.O, u.1) = l/2, con- 
straint (31) is not, satisfied: The left-hand side evaluates to 1, 
whereas the right-hand side evaluates to l/2. 0 

This example motivates the following definition: 

Definition 5.18 The operation 

coerce: 3-STRlJCqP] -+ 3-CSTRUCqP, R(F)] U {I} 

is defined as follows: coerce(S) def the maximal S’ such that 

S’ c s, US’ = US, and S’ E 3-CSTRUCflP, R(F)], or I if 
no such S’ exists. 0 

Example 5.19 The application of coerce to the structures 
S+.,O, S+,l, and SS,~,Z is shown in the bottom block of Fig- 
ure 5. It yields Ss,O, S&l, and S6,2, respectively. 

There are important differences between the structures 
S&O, Ss,l, and S&2 that reSUk from the improved k_tnSfOrIrXT 

for statement st4 : x = x->n, and the structure Ss that is the 
result of the simple version of the transformer (see the fourth 
entry of Figure 3): x points to a summary node in Ss, whereas 
in none of Ss,O, S&l, and Se,2 does 2 point to a summary node. 
•1 

5.2.3 The Coerce Algorithm 

In this subsection, we describe an algorithm, Coerce, that im- 
plements the operation coerce defined in Section 5.2. This 
algorithm actually finds a maximal solution to a system of 
constraints of the form defined in Definition 5.12. It is conve- 
nient to partition these constraints into the following types: 

(P(v~,vz,... ,v/c) D b (34) 

(p(vl,V2,... ,vk) b (vl =V2)’ (35) 

(P(Vl,VZ,... , vk) D pb(vl,v2,... ,vk) (36) 
where b E (0, 1,1/2} and the superscript notation means the 
following: ppl 3 cp and ‘p” E ycp. We say that constraints in 

function Coerce(S: 3-STRUCT[P], R(F): Constraint set) 
retuns 3-CSTRUCT[P, R(F)] u {I} 

s’ := s 
while there exists a constraint c G ‘pl D ~72 E R(F) and an 

assignment 2: freeVars(c) --t Us such that S’, 2 p c do 
switch ‘p2 

case cp2 z b /* Type I */ 
return I 

case ‘p2 E (211 = ~2)~ /* Type II */ 
if b = 1 and Z(v,) = Z(v2) and 

~~‘(sm)(Z(vl)) = l/2 then ~~‘(sm)(Z(vl)) := 0 
else return I 

case (~2 E pb(vl, . . . , vk) /* Type III */ 

if ~“(p)(Z(v1), . . . , z(Vk)) = l/2 then 

~~‘(p)(.i?(v&. . . , z(vk)) := b 
else return _L 

end switch 
od 
return S’ 

end 

Figure 7: An iterative algorithm for solving three-valued con- 
straints. 

the forms (34), (35), and (36) are Qpe I, Qpe II, and Type 
III constraints, respectively. 

The algorithm for coerce is shown in Figure 7. The input 
is a three-valued structure S E 3-STRUCT[P] and a set of 
constraints R(F). It initializes S’ to the input structure S 
and then repeatedly refines 5” by lowering predicate values in 

L” from l/2 into a definite value, until either: (i) a constraint 
is irreparably violated, i.e., the left-hand and the right-hand 
side have different definite values, in which case the algorithm 
returns I, or (ii) no constraint is violated, in which case the 
algorithm successfully returns S’. The main loop is a case 
switch on the type of the constraint considered: 

l A violation of a Type I constraint is irreparable since the 
right-hand side is a literal. 

l A violation of a Type II constraint can be fixed only 
when the right-hand side is an equality (as opposed to a 
negated equality) that evaluates to l/2. This can happen 
when there is an individual u that is a summary node: 

[VI = V&‘([Vl I+ u, v2 c) ?J]) = lS’(Sm)(a) = l/2. 

In this case, ~~‘(srn)(u) is set, to 0. 

l A violation of a Type III constraint can be fixed when 
the predicate entry is indefinite. 

The correctness of algorithm Coerce stems from the fol- 
lowing lemma: 

Lemma 5.20 For every S, S1 E 3-STRUCljP], such that 
S1 C S and SI /= R(F), and for every structure S’ during 
each e’teration of Coerce, S1 E S’. 
Proof: By induction on the number of iterations. 0 

Coerce must terminate after at most n steps, where n 
is the number of definite values in S’, which is bounded by 
&p lulQr+(p). 

6 Related Work 

The following previous shape-analysis algorithms, which all 
make use of some kind of shape-graph formalism, can be viewed 
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as instances of our framework: 

l The algorithm of [ll], which collapses individuals that 
are not reachable from a pointer variable in k or fewer 
steps, for some fixed k. This algorithm can be captured 
in our framework by using instrumentation predicates of 
the form “reachable-from-x-via-access-path-c?’, for ]a! 5 
k. 

l The algorithms of [12,2], which can be incorporated into 
the framework by introducing unary core predicates that 
record the allocation sites of heap cells. 

l The algorithm of [16], which can be captured in the 
framework using the predicates cf.b(u) and c&f(v) (see 
Tables 2 and 3). 

l The algorithms of [22, 191. These map unbounded-size 
stores into bounded-size abstractions by collapsing con- 
crete cells that are not directly pointed to by program 
variables into one abstract cell, whereas concrete cells 
that are pointed to by different sets of variables are kept 
apart in different abstract cells. (See also the discussion 
in Section 4.3.) 

Throughout this paper, we have focused on precision and 
ignored efficiency. The above-cited algorithms are more ef- 
ficient than the one presented in this paper; however, Sec- 
tion 1.2 discusses reasons why it should be possible to incor- 
porate well-known techniques for improving efficiency into our 
approach. In addition, the techniques presented in this paper 
may also provide a new basis for improving the efficiency of 
shape-analysis algorithms. In particular, the machinery we 
have introduced provides a way both to collapse individuals 
of 3-valued structures, via embedding, as well as to materialize 
them when necessary, via focus. 

Roughly speaking, the chief alternative to the use of shape 
graphs involves representing may-aliases between pointer-access 
paths [8, 14, 4, 5, 201. Compared with shape graphs, these 
methods have certain drawbacks. In particular, shape graphs 
represent the topological properties of the store directly, which 
allows certain operations, such as destructive updates, to be 
tracked more precisely. In addition., shape graphs are a more 
intuitive mechanism for reporting Information back to a hu- 
man, and thus may be more useful in program-understanding 
tools. On the other hand, representations of may-aliases can 
be more compact than shape graphs, and some may-alias al- 
gorithms are capable of representing information that goes 
beyond the capabilities of bounded structures [4, 51. 
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