
Algorithms for Computing the Static Single
Assignment Form

GIANFRANCO BILARDI

Universit̀a di Padova, Padova, Italy

AND

KESHAV PINGALI

Cornell University, Ithaca, New York

Abstract. The Static Single Assignment (SSA) form is a program representation used in many opti-
mizing compilers. The key step in converting a program to SSA form is calledφ-placement. Many
algorithms forφ-placement have been proposed in the literature, but the relationships between these
algorithms are not well understood.

In this article, we propose a framework within which we systematically derive (i) properties of the
SSA form and (ii)φ-placement algorithms. This framework is based on a new relation calledmerge
which captures succinctly the structure of a program’s control flow graph that is relevant to its SSA
form. Theφ-placement algorithms we derive include most of the ones described in the literature, as
well as several new ones. We also evaluate experimentally the performance of some of these algorithms
on the SPEC92 benchmarks.

Some of the algorithms described here are optimal for a single variable. However, their repeated
application is not necessarily optimal for multiple variables. We conclude the article by describing
such an optimal algorithm, based on the transitive reduction of the merge relation, for multi-variable
φ-placement in structured programs. The problem for general programs remains open.
Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers and
optimization; I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms—analysis of algorithms

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Control dependence, optimizing compilers, program optimization,
program transformation, static single assignment form

G. Bilardi was supported in part by the Italian Ministry of University and Research and by the Italian
National Research Council. K. Pingali was supported by NSF grants EIA-9726388, ACI-9870687,
EIA-9972853, ACI-0085969, ACI-0090217, and ACI-0121401.
Section 6 of this article contains an extended and revised version of an algorithm that appeared in a
paper in aProceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM, New York, 1995, pp. 32–46.
Authors’ addresses: G. Bilardi, Dipartimento di Ingegneria dell’Informazione, Universit`a di Padova,
35131 Padova, Italy, e-mail: bilardi@dei.unipd.it; K. Pingali, Department of Computer Science,
Cornell University, Upson Hall, Ithaca, NY 14853, e-mail: pingali@cs.cornell.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax:+1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0004-5411/03/0500-0375 $5.00

Journal of the ACM, Vol. 50, No. 3, May 2003, pp. 375–425.

376 G. BILARDI AND K . PINGALI

1. Introduction

Many program optimization algorithms become simpler and faster if programs are
first transformed toStatic Single Assignment(SSA) form [Shapiro and Saint 1970;
Cytron et al. 1991] in which each use1 of a variable is reached by a single definition
of that variable. The conversion of a program to SSA form is accomplished by
introducingpseudo-assignmentsat confluence points, that is, points with multiple
predecessors, in the control flow graph (CFG) of the program. A pseudo-assignment
for a variableZ is a statement of the formZ = φ(Z, Z, . . . , Z) where theφ-
function on the right-hand side has one argument for each incoming CFG edge at
that confluence point. Intuitively, aφ-function at a confluence point in theCFG
mergesmultiple definitions that reach that point. Each occurrence ofZ on the right
hand side of aφ-function is called apseudo-useof Z. A convenient way to represent
reaching definitions information afterφ-placement is to rename the left-hand side
of every assignment and pseudo-assignment ofZ to a unique variable, and use
the new name at all uses and pseudo-uses reached by that assignment or pseudo-
assignment. In the CFG of Figure 1(a),φ-functions forZ are placed at nodesB and
E; the program after conversion to SSA form is shown in Figure 1(b). Note that no
φ-function is needed at D, since the pseudo-assignment at B is the only assignment
or pseudo-assignment ofZ that reaches node D in the transformed program.

An SSA form of a program can be easily obtained by placingφ-functions for all
variables at every confluence point in the CFG. In general, this approach introduces
moreφ-functions than necessary. For example, in Figure 1, an unnecessaryφ-
function for Z would be introduced at node D.

In this article, we study the problem of transforming an arbitrary program into
an equivalent SSA form by insertingφ-functions only where they are needed. A
φ-function for variableZ is certainly required at a nodev if assignments to variable
Z occur along two nonempty pathsu

+→ v andw
+→ v intersecting only atv. This

observation suggests the following definition [Cytron et al. 1991]:

Definition 1. Given aCFG G = (V, E) and a setS ⊆ V of its nodes such
thatSTART ∈ S, J(S) is the set of all nodesv for which there are distinct nodes
u,w ∈ Ssuch that there is a pair of pathsu

+→ v andw
+→ v, intersecting only at

v. The setJ(S) is called thejoin set of S.

If S is the set of assignments to a variableZ, we see that we need pseudo-
assignments toZ at least in the set of nodesJ(S). By considering the assignments
in S and these pseudo-assignments inJ(S), we see that we might need pseudo-
assignments in the nodesJ(S∪ J(S)) as well. However, as shown by Weiss [1992]
and proved in Section 2.3,J(S∪ J(S)) = J(S). Hence, theφ-assignments in the
nodesJ(S) are sufficient.2

The need forJ sets arises also in the computation of theweak control dependence
relation [Podgurski and Clarke 1990], as shown in [Bilardi and Pingali 1996], and
briefly reviewed in Section 5.1.1.

1 Standard definitions of concepts like control flow graph, dominance, defs, uses, etc. can be found
in the Appendix.
2 Formally, we are looking for the least setφ(S) (where pseudo-assignments must be placed) such that
J(S∪ φ(S)) ⊆ φ(S). If subsets ofV are ordered by inclusion, the functionJ is monotonic. Therefore,
φ(S) is the largest element of the sequence{}, J(S), J(S∪ J(S)), SinceJ(S∪ J(S)) = J(S),
φ(S) = J(S).

Algorithms for Computing the Static Single Assignment Form 377

FIG. 1. A program and its SSA form.

If several variables have to be processed, it may be efficient to preprocess the CFG
and obtain a data structure that facilitates the construction ofJ(S) for any givenS.
Therefore, the performance of aφ-placement algorithm is appropriately measured
by thepreprocessing time Tp andpreprocessing space Sp used to build and store
the data structure corresponding toG, and by thequery time Tq used to obtainJ(S)
from S, given the data structure. Then, the total time spent forφ-placement of all
the variables is

Tφ−placement= O

(
Tp +

∑
Z

Tq(SZ)

)
. (1)

Once the setJ(SZ) has been determined for each variableZ of the program, the
following renamingsteps are necessary to achieve the desired SSA form. (i) For each
v ∈ SZ ∪ J(SZ), rename the assignment toZ as an assignment toZv. (ii) For each
v ∈ J(SZ), determine the arguments of theφ-assignmentZv = φ(Zx1, . . . , Zxq).
(iii) For each nodeu ∈ UZ whereZ is used in the original program, replaceZ by
the appropriateZv. The above steps can be performed efficiently by an algorithm
proposed in [Cytron et al. 1991]. This algorithm visits the CFG according to a
top-down ordering of its dominator tree, and works in time

Trenaming= O

(
|V | + |E| +

∑
Z

(|SZ| + |J(SZ)| + |UZ|)
)
. (2)

Preprocessing timeTp is at least linear in the size|V |+|E|of the program and query
timeTq(SZ) is at least linear in the size of its input and output sets (|SZ|+ |J(SZ)|).
Hence, assuming the number of uses

∑
Z |UZ| to be comparable with the number

of definitions
∑

Z |SZ|, we see that the main cost of SSA conversion is that of
φ-placement. Therefore, the present article focuses onφ-placement algorithms.

1.1. SUMMARY OF PRIORWORK. A number of algorithms forφ-placement have
been proposed in the literature. An outline of an algorithm was given by Shapiro
and Saint [1970]. Reif and Tarjan [1981] extended the Lengauer and Tarjan [1979]

378 G. BILARDI AND K . PINGALI

dominator algorithm to computeφ-placement for all variables in a bottom-up walk
of the dominator tree. Their algorithm takesO(|E|α(|E|)) time per variable, but it
is complicated because dominator computation is folded intoφ-placement. Since
dominator information is required for many compiler optimizations, it is worth sep-
arating its computation fromφ-placement. Cytron et al. [1991] showed how this
could be done using the idea ofdominance frontiers. Since the collective size of
dominance frontier sets can grow asθ (|V |2) even for structured programs, numerous
attempts were made to improve this algorithm. Anon-the-flyalgorithm computing
J sets inO(|E|α(|E|)) time per variable was described by Cytron and Ferrante
[1993]; however, path compression and other complications made this procedure
not competitive with the Cytron et al. [1991] algorithm, in practice. An algorithm
by Johnson and Pingali [1993], based on the dependence flow graph [Pingali et al.
2001] and working inO(|E|) time per variable, was not competitive in practice
either. Sreedhar and Gao [1995] described another approach that traversed the
dominator tree of the program to computeJ sets on demand. This algorithm re-
quiresO(|E|) preprocessing time, preprocessing space, and query time, and it is
easy to implement, but it is not competitive with the Cytron et al. [1991] algorithm
in practice, as we discuss in Section 7. The first algorithm with this asymptotic
performance that is competitive in practice with the Cytron et al. [1991] algorithm
was described by us in an earlier article on optimal control dependence compu-
tation [Pingali and Bilardi 1995], and is namedlazy pushingin this article. Lazy
pushing uses a data structure called theaugmented dominator treeADT with a pa-
rameterβ that controls a particular space-time trade-off. The algorithms of Cytron
et al. [1991] and of Sreedhar and Gao can be essentially viewed as special cases of
lazy pushing, obtained for particular values ofβ.

1.2. OVERVIEW OF THE ARTICLE. This article presents algorithms forφ-
placement, some from the literature and some new ones, placing them in a frame-
work where they can be compared, based both on the structural properties of the
SSA form and on the algorithmic techniques being exploited.3

In Section 2, we introduce a new relation called themergerelationM that holds
between nodesv andw of the CFG wheneverv ∈ J({START,w}); that is,v is aφ-
node for a variable assigned only atw andSTART. This is written as (w, v) ∈ M , or
asv ∈ M(w). Three key properties makeM the cornerstone of SSA computation:

(1) If {START} ⊆ S⊆ V , thenJ(S) = ∪w∈SM(w).
(2) v ∈ M(w) if and only if there is a so-calledM-path fromw to v in the CFG (as

defined later, anM-path fromw to v is a path that does not contain any strict
dominator ofv).

(3) M is a transitive relation.

Property 1 reduces the computation ofJ to that of M . Conversely,M can be
uniquely reconstructed from theJ sets, sinceM(w) = J({START,w}). Hence,the
merge relation summarizes the information necessary and sufficient to obtain any
J set for a given CGF.

3 Ramalingam [2000] has proposed a variant of the SSA form which may placeφ-functions at nodes
other than those of the SSA form as defined by Cytron et al. [1991]; thus, it is outside the scope of
this article.

Algorithms for Computing the Static Single Assignment Form 379

Property 2 provides a handle for efficient computation ofM by linking the
merge relation to the extensively studieddominancerelation. A first step in this
direction is taken in Section 2.2, which presents two simple but inefficient algo-
rithms for computing theM relation, one based on graph reachability and the other
on dataflow analysis.

Property 3, established in Section 2.3, opens the door to efficient preprocessing
techniques based on any partial transitive reductionR of M (R+ = M). In fact,
J(S) = ∪x∈SM(x) = ∪x∈SR+(x). Hence,for any partial reduction R of M, J(S)
equals the set R+(S) of nodes reachable from some x∈ S in graph GR = (V, R),
via a nontrivial path (a path with at least one edge).

As long as relations are representedelement-wiseby explicitly storing each
element (pair of CFG nodes), any SSA technique based on constructing relationR
leads to preprocessing spaceSp = O(|V | + |R|) and to query timeTq = O(|V | +
|R|); these two costs are clearly minimized whenR = Mr , the (total)transitive
reductionof M . However, the preprocessing timeTp to obtainR from the CFG
G = (V, E) is not necessarily minimized by the choiceR = Mr . Since there
are CFGs for which the size of any reduction ofM is quadratic in the size of
the CFG itself, working with the element-wise representations might be greatly
inefficient. This motivates the search for a partial reduction ofM for which there
are representations that (i) have small size, (ii) can be efficiently computed from the
CFG, and (iii) support efficient computation of the reachability information needed
to obtainJ sets.

A candidate reduction ofM is identified in Section 3. There, we observe that
anyM-path can be uniquely expressed as the concatenation ofprime M-paths that
are not themselves expressible as the concatenation of smallerM-paths. It turns
out that there is a primeM-path fromw to v if and only if v is in thedominance
frontier of w, where dominance frontierDF is the relation defined in Cytron et al.
[1991]. As a consequence,DF is a partial reduction ofM ; that is,DF+ = M . This
is a remarkable characterization of the iterated dominance frontiersDF+ since the
definition of M makes no appeal to the notion of dominance.

Thus, we arrive at the following characterization of theJ sets:

(1) GDF = f (G), where f is the function that maps a control flow graphG into
the corresponding dominance frontier graph;

(2) J(S) = g(S,GDF), whereg is the function that, given a setSof nodes and the
dominance frontier graphGDF of G, outputsDF+(S).

The algorithms described in this article are produced by choosing (a) a specific
way of representing and computingGDF, and (b) a specific way of combining Steps
(1) and (2).

Algorithms for computingGDF can be classified broadly intopredecessor-
orientedalgorithms, which work with the setDF−1(v) of the predecessors inGDF

of each nodev, andsuccessor-orientedalgorithms, which work with the setDF(w)
of the successors inGDF of each nodew. Section 3.2 develops the key expressions
for these two approaches.

The strategies by which theDF and the reachability computations are combined
are shown pictorially in Figure 2 and discussed next.

1.2.1. Two-Phase Algorithms.The entireDF graph is constructed, and then
the nodes reachable from input setSare determined. With the notation introduced

380 G. BILARDI AND K . PINGALI

FIG. 2. Three strategies for computingφ-placement.

above, this corresponds to computingg(f (x)), by computingf (x) first and passing
its output tog.

The main virtue of two-phase algorithms is simplicity. In Section 4, we describe
two such algorithms:edge-scan, a predecessor-oriented algorithm first proposed
here, andnode-scan, a successor-oriented algorithm due to Cytron et al. [1991].
Both algorithms use preprocessing timeTp = O(|V | + |E| + |DF|) and prepro-
cessing spaceSp = O(|V | + |DF|). To compute a setJ(S), they visit the portion
of GDF reachable fromS, in timeTq = O(|V | + |DF|).

1.2.2. Lock-Step Algorithms.A potential drawback of two-phase algorithms is
that the size of theDF relation can be quite large (e.g.,|DF| = Ä(|V |2), even for
some very sparse (|E| = O(|V |)), structured CFGs) [Cytron et al. 1991]. A lock-
step algorithm interleaves the computation of the reachable setDF+(S) with that
of theDF relation. Once a node is reached, further paths leading to it do not add
useful information, which ultimately makes it possible to construct only a subgraph
G′DF = f ′(G, S) of theDF graph that is sufficient to determineJ(S) = g′(S,G′DF).

The idea of simplifying the computation off (g(x)) by interleaving the computa-
tions of f andg is quite general. In the context of loop optimizations, this is similar
to loop jamming[Wolfe 1995], which may permit optimizations such as scalariza-
tion. Frontal algorithms for out-of-core sparse matrix factorizations [George and
Liu 1981] exploit similar ideas.

In Section 5, we discuss two lock-step algorithms, a predecessor-orientedpulling
algorithm and a successor-orientedpushingalgorithm; for both,Tp, Sp, Tq =
O(|V | + |E|). A number of structural properties of the merge and dominance
frontier relations, established in this section, are exploited by the pulling and push-
ing algorithms. In particular, we exploit a result that permits us to topologically
sort a suitable acyclic condensate of the dominance frontier graph without actually
constructing this graph.

1.2.3. Lazy Algorithms. A potential source of inefficiency of lock-step algo-
rithms is that they perform computations at all nodes of the graph, even though
only a small subset of these nodes may be relevant for computingM(S) for a given
S. A second source of inefficiency in lock-step algorithms arises when several sets
J(S1), J(S2) · · ·have to be computed, since theDF information is derived from
scratch for each query.

Algorithms for Computing the Static Single Assignment Form 381

Both issues are addressed in Section 6 with the introduction of theaug-
mented dominator tree, a data structure similar to the augmented postdomina-
tor tree [Pingali and Bilardi 1997]. The first issue is addressed by construct-
ing the DF graph lazily as needed by the reachability computation. The idea
of lazy algorithms is quite general and involves computingf (g(x)) by com-
puting only that portion ofg(x) that is required to produce the output off
[Peterson et al. 1997]. In our context, this means that we compute only that por-
tion of theDF relation that is required to perform the reachability computation.
The second issue is addressed by precomputing and cachingDF sets for cer-
tain carefully chosen nodes in the dominator tree.Two-phase algorithms can be
viewed as one extreme of this approach in which the entire DF computation is
performed eagerly.

In Section 7, lazy algorithms are evaluated experimentally, both on a micro-
benchmark and on the SPEC benchmarks.

Although theseφ-placement algorithms are efficient in practice, a query time
of O(|V | + |E|) is not asymptotically optimal whenφ sets have to be found for
several variables in the same program. In Section 8, for the special case of struc-
tured programs, we achieveTq = O(|S|+ |J(S)|), which is asymptotically optimal
because it takes at least this much time to read the input (setS) and write the
output (setJ(S)). We follow the two-phase approach; however, the total transitive
reductionMr of M is computed instead ofDF. This is becauseMr for a structured
program is a forest which can be constructed, stored, and searched very efficiently.
Achieving query timeTq = O(|S| + |J(S)|) for general programs remains an
open problem.

In summary, the main contributions of this article are the following:

(1) We define themergerelation on nodes of a CFG and use it to derive systemat-
ically all known properties of the SSA form.

(2) We place existingφ-placement algorithms into a simple framework (Figure 3).
(3) We present two newO(|V | + |E|) algorithms forφ-placement,pushingand

pulling, which emerged from considerations of this framework.
(4) For the special case of structured programs, we present the first approach to

answerφ-placement queries in optimal timeO(|S| + |J(S)|).

2. The Merge Relation and Its Use inφ-Placement

In this section, we reduceφ-placement to the computation of a binary relationM
on nodes called themergerelation. We begin by establishing a link between the
merge and the dominance relations. Based on this link, we derive two algorithms
to computeM and show how these provide simple but inefficient solutions to the
φ-placement problem. We conclude the section by showing that the merge relation
is transitive but that it might prove difficult to compute its transitive reduction effi-
ciently. This motivates the search for partial reductions and leads to the introduction
of theDF relation in Section 3.

2.1. THE MERGERELATION.

Definition 2. Mergeis a binary relationM ⊆ V × V defined as follows:

M = {(w, v)|v ∈ J({START,w})}.

382 G. BILARDI AND K . PINGALI

Approach Order Tp Sp Tq

M relation (Section 2):
Reachability pred. |V ||E| |V |2 ∑

v∈S |M(v)|
Backward dataflow succ. |V ||E|2 |V ||E| ∑

v∈S |M(v)|

DF relation (Section 3):
Two phase (Section 4):
Edge scan pred. |V | + |DF| |V | + |DF| ∑

v∈S∪J(S) |DF(v)|
Node scan [Cytron et al. 1991] succ. |V | + |DF| |V | + |DF| ∑

v∈S∪J(S) |DF(v)|
Lock-step (Section 5):
Pulling pred. |V | + |E| |V | + |E| |V | + |E|
Pushing succ. |V | + |E| |V | + |E| |V | + |E|
Lazy (Section 6):
Fully lazy [Sreedhar and Gao 1995] succ. |V | + |E| |V | + |E| |V | + |E|
Lazy pulling [Pingali and Bilardi 1995] succ. hβ (|V |, |Eup|) hβ (|V |, |Eup|) hβ (|V |, |Eup|)

hβ (|V |, |Eup|) = |Eup| + (1+ 1/β)|V |
Mr relation (Section 8):
Two phase for structured programs (Section 8):
Forest succ. |V | + |E| |V | + |E| |S| + |J(S)|

FIG. 3. Overview ofφ-placement algorithms.O() estimates are reported for preprocessing timeTp,
preprocessing spaceSp, and query timeTq.

For any nodew, themerge setof nodew, denoted byM(w), is the set{v|(w, v) ∈
M}. Similarly, we letM−1(v) = {w|(w, v) ∈ M}.

Intuitively, M(w) is the set of the nodes whereφ-functions must be placed if the
only assignments to the variable are atSTART andw; conversely, aφ-function is
needed atv if the variable is assigned in any node ofM−1(v). Trivially, M(START) =
{}. Next, we show that ifScontainsSTART, thenJ(S) is the union of the merge sets
of the elements ofS.

THEOREM 1. Let G= (V, E) and{START}⊆ S⊆V . Then, J(S)= ∪w∈SM(w).

PROOF. It is easy to see from the definitions ofJ and M that∪w∈SM(w) ⊆
J(S). To show thatJ(S) ⊆ ∪w∈SM(w), consider a nodev ∈ J(S). By Definition 1,
there are pathsa

+→ v andb
+→ v, with a, b ∈ S, intersecting only atv. By Defini-

tion 18, there is also a pathSTART
+→ v. There are two cases:

(1) PathSTART
+→ v intersects patha

+→ v only at v. Then,v ∈ M(a), hence
v ∈ ∪w∈SM(w).

(2) PathSTART
+→ v intersects patha

+→ v at some node different fromv. Then,
let z be the first node on pathSTART

+→ v occurring on eithera
+→ v or b

+→ v.
Without loss of generality, letz be ona

+→ v. Then, there is clearly a path
START

+→ z
+→ v intersecting withb

+→ v only at v, so thatv ∈ M(b), hence
v ∈ ∪w∈SM(w).

The control flow graph in Figure 4(a) is the running example used in this paper.
RelationM defines a graphGM = (V,M). TheM graph for the running example
is shown in Figure 4(c). Theorem 1 can be interpreted graphically as follows:for
any subset S of the nodes in a CFG, J(S) is the set of neighbors of these nodes in
the corresponding M graph. For example,J({b, c}) = {b, c, f,a}.

Algorithms for Computing the Static Single Assignment Form 383

FIG. 4. A control flow graph and its associated graphs.

There are deep connections between merge sets and the standard notion ofdom-
inance(reviewed in the Appendix), rooted in the following result:

THEOREM 2. For any w∈ V , v ∈ M(w) iff there is a path w
+→ v not contain-

ing idom(v).

PROOF

(⇒) If v ∈ M(w), Definition 2 asserts that there are pathsP1= START
+→ v and

P2 = w
+→ v which intersect only atv. Since, by Definition 20, every dominator

of v must occur onP1, no strict dominator ofv can occur onP2. Hence,P2 does
not containidom(v).

(⇐) Assume now the existence of a pathP = w
+→ v that does not contain

idom(v). By induction on the length (number of arcs) of pathP, we argue that there
exists pathsP1= START

+→ v andP2= w
+→ v which intersect only atv, that is,

w ∈ M(v).

Base case. Let the length ofP be 1, that is,P consists only of edgew→ v. If
v = w, let P2= P and letP1 be any simple path fromSTART to v, and the result
is obtained. Otherwise,v andw are distinct. There must be a pathT = START

+→ v
that does not containw, since otherwise,w would dominatev, contradicting
Lemma 1(ii). The required result follows by settingP2= P andP1= T .

384 G. BILARDI AND K . PINGALI

FIG. 5. Case analysis for Theorem 2.

Inductive step. Let the length ofP be at least two so thatP = w → y
+→ v.

By the inductive assumption, there are pathsR1 = START
+→ v and R2 = y

+→ v
intersecting only atv. LetC be the path obtained by concatenating the edgew→ y
to the pathR2 and consider the following two cases:

—w 6∈ (R1−{v}). Then, letP1= R1 andP2= C. Figures 5(i) and 5(ii) illustrate
the subcasesw 6= v andw = v, respectively.

—w ∈ (R1 − {v}). Let D be the suffixw
+→ v of R1 and observe thatC and

D intersect only at their endpointsw andv (see Figure 5(iii)). Let alsoT =
START

+→ v be a path that does not containw (the existence ofT was established
earlier). Letn be the first node onT that is contained in eitherC or D (such
a node must exist since all three paths terminate atv). Consider the following
cases:

(1) n = v. Then, we letP1= T , andP2= C.
(2) n ∈ (D−C). Referring to Figure 5, letP1 be the concatenation of the prefix

START
+→ n of T with the suffixn

+→ v of D, which is disjoint fromP2= C
except forv.

(3) n ∈ (C−D). The proof is analogous to the previous case and is omitted.

The dominator tree for the running example of Figure 4(a) is shown in Figure 4(b).
Consider the pathP = e→ b→ d→ f in Figure 4(a). This path does not contain
idom(f) = a. As required by the theorem, there are pathsP1 = START → a →
b→ d→ f andP2 = e→ f with only f in common, that is,f ∈ M(e).

The preceding result motivates the following definition ofM-paths.

Definition 3. Given aCFG G= (V, E), anM-path is a pathw
+→ v that does

not containidom(v).

Note thatM-paths are paths in the CFG, not in the graph of theM relation. They
enjoy the following important property, illustrated in Figure 6.

LEMMA 1. If P = w
+→ v is an M-path, then (i) idom(v) strictly dominates all

nodes on P, hence (ii) no strict dominator of v occurs on P.

Algorithms for Computing the Static Single Assignment Form 385

FIG. 6. A pictorial representation of Lemma 1.

PROOF

(i) (By contradiction.) Letn be a node onP that is not strictly dominated by
idom(v). Then, there is a pathQ = START→ n that does not containidom(v);
concatenatingQ with the suffixn→ v of P, we get a path fromSTART to v
that does not containidom(v), a contradiction.

(ii) Since dominance is tree-structured, any strict dominatord of v dominates
idom(v), henced is not strictly dominated byidom(v) and, by (i), can not occur
on P.

We note that in Figure 6,idom(v) strictly dominatesw (Lemma 1(i)); so from
the definition ofidom, it follows thatidom(v) also dominatesidom(w).

2.2. COMPUTING THEMERGERELATION. Approaches to computingM can be
naturally classified as beingsuccessor oriented(for eachw, M(w) is determined) or
predecessor oriented(for eachv, M−1(v) is determined). Next, based on Theorem 2,
we describe a predecessor-oriented algorithm that uses graph reachability and a
successor-oriented algorithm that solves a backward dataflow problem.

2.2.1. Reachability Algorithm. The reachability algorithmshown in Figure 7
computes the setM−1(y) for any nodey in the CFG by finding the the set of nodes
reachable fromy in the graph obtained by deletingidom(y) from the CFG and
reversing all edges in the remaining graph (we call this graph (G− idom(y))R. The
correctness of this algorithm follows immediately from Theorem 2.

PROPOSITION 1. The reachability algorithm for SSA has preprocessing time
Tp = O(|V ||E|), preprocessing space Sp = O(|V | + |M |) ≤ O(|V |2), and query
time Tq = O(

∑
v∈S |M(v)|).

PROOF. The bound on preprocessing time comes from the fact that there are
|V | visits each to a subgraph ofG = (V, E), hence taking timeO(|E|). The
bound on preprocessing space comes from the need to store|V | nodes and|M |
arcs to represent theM relation. The bound on query time comes from the fact that
eachM(v) for v ∈ S is obtained in time proportional to its own size. The bound
on Tp also subsumes the time to construct the dominator tree, which isO(|E|),
(cf. Appendix).

2.2.2. Dataflow Algorithm. We now show that the structure of theM-paths
leads to an expression for setM(w) in terms of the setsM(u) for successorsu of

386 G. BILARDI AND K . PINGALI

Procedure Merge(CFG);
{
1: Assume CFG = (V, E);
2: M = {};
3: for v ∈ V do
4: Let G′ = (G− idom(v))R;
5: TraverseG′ from v, appending (w, v) to M for each visitedw.
6: od
7: returnM ;
}
Procedureφ-placement(M, S);
{
1: J = {};
2: for eachv ∈ S
3: for each (v,w) ∈ M appendw to J;
4: returnJ;
}

FIG. 7. Reachability algorithm.

w in the CFG. This yields a system of backward dataflow equations that can be
solved by any one of the numerous methods in the literature [Aho et al. 1986].

Here and in several subsequent discussions, it is convenient to partition the edges
of the control flow graphG = (V, E) asE = Etree+ Eup, where (u→ v) ∈ Etree

(a tree edge of the dominator tree of the graph) ifu = idom(v), and (u→ v) ∈ Eup

(an up-edge) otherwise. Figure 4(a,b) shows a CFG and its dominator tree. In
Figure 4(a),a → b and g → h are tree edges, whileh → a ande → b are
up-edges. For future reference, we introduce the following definition.

Definition 4. Given aCFG G = (V, E), (u → v) ∈ E is an up-edge if
u 6= idom(v). The subgraph (V, Eup) of G containing only the up-edges is called
the α-DF graph.

Figure 4(d) shows theα-DF graph for the CFG of Figure 4(a). Since an up-edge
(u→ v) is a path fromu to v that does not containidom(v), its existence implies
v ∈ M(u) (from Theorem 2); then, from the transitivity ofM , E+up ⊆ M . In general,
the latter relation does not hold with equality (e.g., in Figure 4,a ∈ M(g) but a
is not reachable fromg in the α-DF graph). Fortunately, the setM(w) can be
expressed as a function ofα-DF(w) and the setsM(u) for all CFG successorsu of
w as follows. We letchildren(w) represent the set of children ofw in the dominator
tree.

THEOREM 3. The merge sets of the nodes of a CFG satisfy the following set of
relations, for w∈ V :

M(w) = α−DF(w) ∪ (∪u∈succ(w)M(u)− children(w)). (3)

PROOF

(a) We first prove thatM(w) ⊆ α-DF(w) ∪ (∪u∈succ(w)M(u) − children(w)). If
v ∈ M(w), Theorem 2 implies that there is a pathP = w

+→ v that does
not containidom(v); therefore,w 6= idom(v). If the length of P is 1, then

Algorithms for Computing the Static Single Assignment Form 387

M(START) = M(a)− {a}
M(a) = M(b) ∪ M(c)− {b, c, f }
M(b) = {c} ∪ M(c) ∪ M(d)− {d}
M(c) = M(e)− {e}
M(d) = {c, f } ∪ M(c) ∪ M(f)

M(e) = { f } ∪ M(b) ∪ M(f)

M(f) = M(g)− {g, h, END}
M(g) = M(h) ∪ M(END)− {h, END}
M(h) = {a} ∪ M(a)

M(END) = {}

M(START) = {}
M(a) = {a}
M(b) = {b, c, f,a}
M(c) = {b, c, f,a}
M(d) = {b, c, f,a}
M(e) = {b, c, f,a}
M(f) = {a}
M(g) = {a}
M(h) = {a}

M(END) = {}

(a) Dataflow equations (b) Solution of dataflow equations

FIG. 8. Equations set up and solved by the dataflow algorithm, for the CFG in Figure 4(a).

v ∈ succ(w) andw 6= idom(v), sov ∈ α-DF(w). OtherwiseP can be written
asw→ u

+→ v. Sinceidom(v) does not occur on the subpathu
+→ v, v ∈ M(u);

furthermore, sincew 6= idom(v), v ∈ M(u)− children(w).
(b) We now show thatM(w) ⊇ α-DF(w) ∪ (∪u∈succ(w)M(u) − children(w)). If

v ∈ α-DF(w), the CFG edgew→ v is anM-path fromw to v; sov ∈ M(w)
from Theorem 2. Ifv ∈ (∪u∈succ(w)M(u)−children(w)), (i) there is a CFG edge
w → u, (ii) v ∈ M(u) and (iii) w 6= idom(v). From Theorem 2, there is an
M-pathP1 = u

+→ v. The path obtained by prepending edgew→ u to pathP1
is anM-path; therefore,v ∈ M(w).

We observe that sinceα−DF(w) andchildren(w) are disjoint, no parentheses are
needed in Eq. (3), if set union is given precedence over set difference. For the CFG
of Figure 4(a), theM(w) sets are related as shown in Figure 8. For an acyclic CFG,
the system of equations (3) can be solved forM(w) in a single pass, by processing
the nodesw’s in reversal topological order of the CFG. For a CFG with cycles,
one has to resort to the more general, well-established framework of equations over
lattices [Aho et al. 1986], as outlined next.

THEOREM 4. The M relation is the least solution of the dataflow equations(3),
where the unknowns{M(w) : w ∈ V} range over the latticeL of all subsets of V ,
ordered by inclusion.

PROOF. Let L be the least solution of the dataflow equations. Clearly,L ⊆ M ,
sinceM is also a solution. To conclude thatM = L it remains to prove thatM ⊆ L.
We establish this by induction on the length of shortest (minimal length)M-paths.

Consider any pair (w, v) ∈ M such that there is anM-path of length 1 fromw
to v. This means thatv ∈ α-DF(w), so from Eq. (3), (w, v) ∈ L.

Inductively, assume that if (u, v) ∈ M and the minimal lengthM-path fromu
to v has lengthn, then (u, v) ∈ L. Consider a pair (w, v) ∈ M for which there is a
minimal lengthM-pathw→ u

+→ v of length (n+ 1). The subpathu
+→ v is itself

anM-path and is of lengthn; therefore, by inductive assumption, (u, v) ∈ L. Since
w 6= idom(v), it follows from Eq. (3) that (w, v) ∈ L.

The least solution of dataflow equations (3) can be determined by any of the
techniques in the literature [Aho et al. 1986]. A straightforward iterative algo-
rithm operates in spaceO(|V |2) and timeO(|V |2|E|2), charging timeO(|V |) for

388 G. BILARDI AND K . PINGALI

bit-vector operations. The above considerations, together with arguments already
developed in the proof of Proposition 1, lead to the following result:

PROPOSITION 2. There is a dataflow algorithm for SSA with preprocessing time
Tp = O(|V |2|E|2), preprocessing space Sp = O(|V |+|M |) ≤ O(|V |2), and query
time Tq = O(

∑
v∈S |M(v)|).

In Section 5, as a result of a deeper analysis of the structure of theM relation, we
shall show that a topological ordering of the (acyclic condensate) of theM graph
can be constructed in timeO(|E|), directly from the CFG. Using this ordering,
a single-pass over the dataflow equations becomes sufficient for their solution,
yielding Tp = O(|V ||E|) for the computation ofM .

2.3. M IS TRANSITIVE. In general, the merge relation of a CFG can be quite
large, so it is natural to explore ways to avoid computing and storing the entire
relation. As a first step in this direction, we show that the fact thatM-paths are
closed under concatenation leads immediately to a proof thatM is transitive.

THEOREM 5. If P1 = x
+→ y and P2 = y

+→ z are M-paths, then so is their
concatenation P= P1P2 = x

+→ z. Hence, M is transitive.

PROOF. By Definition 3,P1 does not containidom(y) andP2 does not contain
idom(z). We show thatidom(z) cannot occur inP1, so concatenatingP1 and P2
gives a pathP from x to z that does not containidom(z), as claimed. We note that
idom(z) is distinct fromy since it does not occur on pathP2. Furthermore, from
Lemma 1(i),idom(z) must strictly dominatey. If idom(z) = idom(y), then this
node does not occur onP, and the required result is proved. Otherwise,idom(z)
strictly dominatesidom(y), so we conclude from Lemma 1(ii) thatidom(z) does
not occur onP1.

From Theorem 2, it follows thatP is anM-path.

As an illustration of the above theorem, with reference to Figure 4(a), consider
the M-pathsP1 = b→ d→ f (which does not containidom(f) = a) andP2 =
f → g→ h→ a (which does not containidom(a) = START). Their concatenation
P = P1P2 = b→ d → f → g→ h→ a does not containidom(a) = START;
hence it is anM-path.

Combining Theorems 1 and 5, we obtain another graph-theoretic interpretation
of a join set J(S) as the set of nodes reachable in the M graph by nonempty paths
originating at some node in S.It follows trivially that J(S∪ J(S)) = J(S), as first
shown by Weiss [1992].

2.4. TRANSITIVE REDUCTIONS OFM . We observe that ifR is a relation such
that M = R+, the set of nodes reachable from any node by nonempty paths is
the same in the two graphsGR = (V, R) andGM = (V,M). Since|R| can be
considerably smaller than|M |, usingGR instead ofGM as the data structure to
support queries could lead to considerable savings in space. The query time can
also decrease substantially. Essentially, a query requires a visit to the subgraph
GR(S) = (S∪ M(S), RS) containing all the nodes and arcs reachable fromS in
GR. Therefore, since the visit will spend constant time per node and per edge, query
time isTq = O(|S| + |M(S)| + |RS|).

Determining a relationR such thatR+ = M for a given transitiveM is a well-
known problem. Usually, anR of minimum size, called thetransitive reductionof

Algorithms for Computing the Static Single Assignment Form 389

M is the goal. UnlessM is acyclic (i.e., the graphGM is a dag),R is not necessarily
unique. However, if the strongly connected components ofM are collapsed into
single vertices, the resulting acyclic condensate (call itMc) has a unique transitive
reductionMr which can be computed in timeO(|V ||Mc|) [Cormen et al. 1992] or
O(|V |γ) by using anO(nγ) matrix multiplication algorithm.4 In summary:

PROPOSITION 3. The reachability algorithm forφ-placement (with transitive
reduction preprocessing) has preprocessing time Tp = O(|V |(|E| + min(|M |,
|V |γ−1)), preprocessing space Sp = O(|V |+ |Mr |), and query time Tq = O(|V |+
|M+r (S)|).

Clearly, preprocessing time is too high for this algorithm to be of much practical
interest. It is natural to ask whether the merge relationM has any special structure
that could facilitate the transitive reduction computation. Unfortunately, for general
programs, the answer is negative. Given an arbitrary relationR⊆ (V − START)×
(V − START), it can be easily shown that the CFGG = (V, R∪ ({START} × (V −
START))) has exactlyR+ as its own merge relationM . In particular, ifR is transitive
to start with, thenM = R.

Rather than pursuing thetotal transitive reduction ofM , we investigatepartial
reductions next.

3. The Dominance Frontier Relation

We have seen that theM relation is uniquely determined by the set ofM-paths
(Theorem 2), which is closed under concatenation (Theorem 5). We can therefore
ask the question: “what is the smallest subset ofM-paths by concatenating which
one obtains allM-paths?” We characterize this subset in Section 3.1 and discover
that it is intimately related to the well-known dominance frontier relation [Cytron
et al. 1991]. Subsequent subsections explore a number of properties of dominance
frontier, as a basis for the development of SSA algorithms.

3.1. PRIME FACTORIZATION OF M-PATHS LEADS TO DOMINANCE FRONTIER.
We begin by defining the key notion needed for our analysis ofM .

Definition 5. Given a graphG = (V, E) and a setM of paths closed under
concatenation, a pathP ∈M is primewhenever there is no pair of nonempty paths
P1 andP2 such thatP = P1P2.

With reference to the example immediately following Theorem 5 and lettingM
denote the set ofM-paths, we can see thatP is not prime whileP1 andP2 are prime.
Our interest in prime paths stems from the following fact, whose straightforward
proof is omitted.

PROPOSITION 4. With the notation of Definition5, path P can be expressed as
the concatenation of one or more prime paths if and only if P∈M.

Next, we develop a characterization of the prime paths for the set ofM-paths.

4 For instance,γ = 3 for the standard algorithm andγ = log2 7 ≈ 2.81 for Strassen’s algorithm
[Cormen et al. 1992].

390 G. BILARDI AND K . PINGALI

PROPOSITION 5. LetMbe the set of M-paths in a CFG and let P= w→ x1→
· · · → xn−1→ v be a CFG path. Then, P is prime if and only if

(1) w strictly dominates nodes x1, x2, . . . , xn−1, and

(2) w does not strictly dominate v.

PROOF. AssumeP to be a prime path. SinceP is an M-path, by Lemma 1,
w does not strictly dominatev. Then, letP1 be the shortest, nonempty prefix ofP
terminating at a vertexxi that is not strictly dominated byw. Clearly, P1 satisfies
Properties (1) and (2). We claim thatP1 = P. Otherwise, the primality ofP would
be contradicted by the factorizationP = P1P2 where (i)P1 is anM-path, since by
constructionidom(xi) is not dominated byw, hence does not occur onP1, and (ii)
P2 is anM-path sinceidom(v) does not occur onP (an M-path ending atv) and a
fortiori on P2.

Assume now thatP is a path satisfying Properties (1) and (2). We show thatP
is prime, that is, it is inM and it is not factorable.

(a) P is anM-path. In fact, ifidom(v) were to occur onP, then by Property (1),
w would dominateidom(v) and, by transitivity of dominance, it would strictly
dominatev, contradicting Property (2). ThusP does not containidom(v) and
hence, by Theorem 2 it is anM-path.

(b) P can not be factored asP = P1P2 where P1 and P2 are both nonempty
M-paths. In fact, for any proper prefixP1 = w

+→ xi , xi is strictly dominated
by w. Then, by Lemma 1,idom(xi) occurs onP1, which therefore is not an
M-path.

The reader familiar with the notion of dominance frontier will quickly recognize
that Properties (1) and (2) of Proposition 5 imply thatv belongs to the dominance
frontier of w. Before exploring this interesting connection, let us recall the rele-
vant definitions:

Definition 6. A CFG edge (u→ v) is in theedge dominance frontier EDF(w)
of nodew if

(1) w dominatesu, and
(2) w does not strictly dominatev.

If (u → v) ∈ EDF(w), thenv is said to be in thedominance frontier DF(w) of
nodew and the dominance frontier relation is said to hold betweenw andv, written
(w, v) ∈ DF.

It is often useful to consider theDF graphGDF = (V,DF) associated with binary
relationDF, which is illustrated in Figure 4(e) for the running example. We are
now ready to link the merge relation to dominance frontier.

PROPOSITION 6. There exists a prime M-path from w to v if and only if(w, v) ∈
DF.

PROOF. Assume first thatP is a primeM-path fromw to v. Then,P satisfies
Properties (1) and (2) of Proposition 5, which straightforwardly imply, according
to Definition 6, that (xn−1→ v) ∈ EDF(w), hence (w, v) ∈ DF.

Algorithms for Computing the Static Single Assignment Form 391

Assume now that (v,w) ∈ DF. Then, by Definition 6, there is in the CFG an
edgeu → v such that (i)w dominatesu and (ii) w does not strictly dominatev.
By (i) and Lemma 8, there is a pathQ = w

∗→ u on which each node is dominated
by w. If we let R= w

∗→ u be the smallest suffix ofQ whose first node equalsw,
then each node onR except for the first one is strictly dominated byw. This fact
together with (ii) implies that the pathP = R(u→ v) satisfies Properties (1) and
(2) of Proposition 5, hence it is a primeM-path fromw to v.

The developments of this section lead to the sought partial reduction ofM .

THEOREM 6. M = DF+.

PROOF. The stated equality follows from the equivalence of the sequence of
statements listed below, where the reason for the equivalence of a statement to its
predecessor in the list is in parenthesis.

—(w, v) ∈ M ;

—there exists anM-pathP from w to v, (by Theorem 2);

—for somek ≥ 1, P = P1P2 · · · Pk wherePi = wi
+→ vi are primeM-paths such

thatw1 = w, vk = v, and fori = 2, . . . , k, wi = vi−1, (by Proposition 4 and
Theorem 5);

—for somek ≥ 1, for i = 1, . . . , k, (wi , vi) ∈ DF, with w1 = w, vk = v, and for
i = 2, . . . , k, wi = vi−1, (by Proposition 6);

—(w, v) ∈ DF+, (by definition of transitive closure).

In general,DF is neither transitively closed nor transitively reduced, as can be
seen in Figure 4(e). The presence ofc→ f and f → a and the absence ofc→ a
in theDF graph show that it is not transitively closed. The presence of edgesd→ c,
c→ f , andd→ f shows that it is not transitively reduced.

Combining Theorems 1 and 6, we obtain a simple graph-theoretic interpretation
of a join set J(S) = g(S,GDF) as the set of nodes reachable in the DF graph by
nonempty paths originating at some node in S.

3.2. TWO IDENTITIES FOR THEDF RELATION. Most of the algorithms described
in the rest of this article are based on the computation of all or part of theDF graph
GDF = f (G) corresponding to the given CFGG. We now discuss two identities
for theDF relation, the first one enabling efficient computation ofDF−1(v) sets (a
predecessor-oriented approach), and the second one enabling efficient computation
of DF(w) sets (a successor-oriented approach).

Definition 7. Let T =< V, F > be a tree. Forx, y ∈ V , let [x, y] denote the
set of vertices on the simple path connectingx and y in T , and let [x, y) denote
[x, y] − {y}. In particular, [x, x) is empty.

For example, in the dominator tree of Figure 4(b), [d,a] = {d, b,a}, [d,a) =
{d, b}, and [d, g] = {d, b,a, f, g}.

THEOREM 7. EDF=⋃(u→v)∈E[u, idom(v))×{u→ v}, where
[u, idom(v))×{u→ v} = {(w, u→ v)| w ∈ [u, idom(v))}.

392 G. BILARDI AND K . PINGALI

PROOF

⊇: Suppose (w,a→ b) ∈ ⋃
(u→v)∈E[u, idom(v)) × u→ v. Therefore, [a,

idom(b)) is non-empty which means that (a → b) is an up-edge. Applying
Lemma 1 to this edge, we see thatidom(b) strictly dominatesa. Therefore,w
dominatesa but does not strictly dominateb, which implies that (w, v) ∈ DF from
Definition 6.

⊆: If (w, v) ∈ DF, there is an edge (u→ v) such thatw dominatesu but does not
strictly dominatev. Thereforew ∈ [u, START] − [idom(v), START], which implies
u 6= idom(v). From Lemma 1, this means thatidom(v) dominatesu. Therefore, the
expression [u, START] − [idom(v), START] can be written as [u, idom(v)), and the
required result follows.

Based on Theorem 7,DF−1(v) can be computed as the union of the sets
[u, idom(v)) for all incoming edges (u → v). Theorem 7 can be viewed as the
DF analog of the reachability algorithm of Figure 7 for theM relation: to find
DF−1(v), we overlay on the dominator tree all edges (u → v) whose destination
is v and find all nodes reachable fromv without going throughidom(v) in the
reverse graph.

The next result [Cytron et al. 1991] provides a recursive characterization of
the DF(w) in terms of DF sets of the children ofw in the dominator tree.
There is a striking analogy with the expression forM(w) in Theorem 3. How-
ever, the dependence of theDF expression on the dominator-tree children (rather
than on the CFG successors needed forM) is a great simplification, since it en-
ables solution in a single pass, made according to any bottom-up ordering of the
dominator tree.

THEOREM 8. Let G= (V, E) be a CFG. For any node w∈ V ,
DF(w) = α-DF(w) ∪ (∪c∈children(w)DF(c)− children(w)).

For example, consider nodesd andb in Figure 4(a). By definition,α-DF(d) =
{c, f }. Since this node has no children in the dominator tree,DF(d) = {c, f }.
For nodeb, α-DF(b) = {c}. Applying Theorem 8, we see thatDF(b) = {c} ∪
({c, f } − {d}) = {c, f }, as required.

PROOF

(⊆) We show that, ifv ∈DF(w), thenv is contained in the set described by the
right-hand side expression. Applying Definition 6, we see that there must be an
edge (u→ v) such thatw dominatesu but does not strictly dominatev. There are
two cases to consider:

(1) If w = u, thenv ∈ α−DF(w), sov is contained in the set described by the
right-hand side expression.

(2) Otherwise,w has a childc such thatc dominatesu. Moreover, sincew does
not strictly dominatev, c (a descendant ofd) cannot strictly dominatev either.
Therefore,v ∈ DF(c). Furthermore,v is not a child ofw (otherwise,w would
strictly dominatev). Therefore,v is contained in the set described by the right-
hand side expression.

Algorithms for Computing the Static Single Assignment Form 393

(⊇) We show that ifv is contained in the set described by the right-hand side
expression, thenv ∈ DF(w). There are two cases to consider.

(1) If v ∈ α−DF(w), there is a CFG edge (w → v) such thatw does not strictly
dominatev. Applying Definition 6 withu = w, we see thatv ∈ DF(w).

(2) If v ∈ (∪c∈children(w)DF(c) − children(w)), there is a childc of w and an edge
(u→ v) such that (i)c dominatesu, (ii) c does not strictly dominatev, and (iii)
v is not a child ofw. From (i) and the fact thatw is the parent ofc, it follows
thatw dominatesu.

Furthermore, ifw were to strictly dominatev, then either (a)v would be a
child ofw, or (b)v would be a proper descendant of some child ofw. Possibility
(a) is ruled out by fact (iii). Fact (ii) means thatv cannot be a proper descendant
of c. Finally, if v were a proper descendant of some childl of w other thanc,
then idom(v) would not dominateu, which contradicts Lemma 1. Therefore,
w cannot strictly dominatev. This means thatv ∈ DF(w), as required.

3.3. STRONGLY CONNECTEDCOMPONENTS OF THEDF AND M GRAPHS. There
is an immediate and important consequence of Theorem 7, which is useful in proving
many results about theDF andM relations. Thelevelof a node in the dominator
tree can be defined in the usual way: the root has a level of 0; the level of any
other node is 1 more than the level of its parent. From Theorem 7, it follows that
if (w, v) ∈ DF, then there is an edge (u → v) ∈ E such thatw ∈ [u, idom(v));
therefore,level(w) ≥ level(v). Intuitively, this means thatDF (andM) edges are
oriented in a special way with respect to the dominator tree: aDF or M edge
overlayed on the dominator tree is always directed “upwards” or “sideways” in
this tree, as can be seen in Figure 4. Furthermore, if (w, v) ∈ DF, then idom(v)
dominatesw (this is a special case of Lemma 1). For future reference, we state
these facts explicitly.

LEMMA 2. Given a CFG =(V, E) and its dominator tree D, let level(v) be the
length of the shortest path in D fromSTART to v. If (w, v) ∈ DF, then level(w) ≥
level(v) and idom(v) dominates w. In particular, if level(w) = level(v), then w
and v are siblings in D.

This result leads to an important property of strongly connected components
(scc’s) in theDF graph. If x and y are two nodes in the same scc, every node
reachable fromx is reachable fromy and vice-versa; furthermore, ifx is reachable
from a node,y is reachable from that node too, and vice-versa. In terms of the
M relation, this means thatM(x) = M(y) andM−1(x) = M−1(y). The following
lemma states that the scc’s have a special structure with respect to the dominator tree.

LEMMA 3. Given a CFG =(V, E) and its dominator tree D, all nodes in a
strongly connected component of the DF relation (equivalently, the M relation) of
this graph are siblings in D.

PROOF. Consider any cyclen1 → n2 → n3 → · · · → n1 in the scc. From
Lemma 2, it follows thatlevel(n1) ≥ level(n2) ≥ level(n3) ≥ · · · ≥ level(n1);
therefore, it must be true thatlevel(n1) = level(n2) = level(n3) · · · . From
Lemma 2, it also follows thatn1, n2, etc. must be siblings inD.

In Section 5, we show how the strongly connected components of theDF graph
of a CFG (V, E) can be identified inO(|E|) time.

394 G. BILARDI AND K . PINGALI

3.3.1. Self-Loops in the M Graph.In general, relationM is not reflexive. How-
ever, for some nodesw, (w,w) ∈ M and the merge graph (V,M) has a self-loop
at w. As a corollary of Theorem 2 and of Lemma 1, such nodes are exactly those
w’s contained in some cycle whose nodes are all strictly dominated byidom(w).
An interesting application of self-loops will be discussed in Section 5.1.1.

3.3.2. Irreducible Programs. There is a close connection between the existence
of nontrivial cycles in theDF (or M) graph and the standard notion ofirreducible
control flow graph [Aho et al. 1986].

PROPOSITION 7. A CFG G= (V, E) is irreducible if and only if its M graph
has a nontrivial cycle.

PROOF

(⇒) AssumeG is irreducible. Then,G has a cycleC on which no node dominates
all other nodes onC. Therefore, there must be two nodesa andb for which neither
idom(a) nor idom(b) is contained inC. Cycle C obviously contains two paths
P1 = a

+→ b and P2 = b
+→a. SinceC does not containidom(b), neither doesP1

which is therefore is anM-path, implying thatb ∈ M(a). Symmetrically,a ∈ M(b).
Therefore, there is a nontrivial cycle containing nodesa andb in the M graph.

(⇐) Assume theM graph has a nontrivial cycle. Leta andb be any two nodes on
this cycle. From Lemma 3,idom(a) = idom(b). By Theorem 2, there are nontrivial
CFG paths P1 = a

+→ b which does not containidom(b) (equivalently,idom(a)),
andP2 = b

+→a which does not containidom(a) (equivalently,idom(b)). Therefore,
the concatenationC = P1P2 is a CFG cycle containinga andb but not containing
idom(a) or idom(b). Clearly, no node inC dominates all other nodes, so that CFG
G is irreducible.

It can also be easily seen that the absence fromM of self loops (which implies
the absence of nontrivial cycles) characterizes acyclic programs.

3.4. SIZE OF DF RELATION. How large isDF? SinceDF ⊆ V × V , clearly
|DF| ≤ |V |2. From Theorem 7, we see that an up-edge of the CFG generates a
number ofDF edges equal to one plus the difference between the levels of its
endpoints in the dominator tree. If the dominator tree is deep and up-edges span
many levels, then|DF| can be considerably larger than|E|. In fact, it is not difficult
to construct examples of sparse (i.e.,|E| = O(|V |)), structured CFGs, for which
|DF| = Ä(|V |2), proportional to the worst case. For example, it is easy to see that
a program with a repeat-until loop nest withn loops such as the program shown in
Figure 18 has aDF relation of sizen(n+ 1)/2.

It follows that an algorithm that builds the entireDF graph to doφ-placement
must takeÄ(|V |2) time, in the worst case. As we will see, it is possible to do better
than this by building only those portions of theDF graph that are required to answer
aφ-placement query.

4. Two-Phase Algorithms

Two-phase algorithmscompute the entireDF graphGDF = f (G) in a preprocessing
phase before doing reachability computationsJ(S) = g(S,GDF) to answer queries.

Algorithms for Computing the Static Single Assignment Form 395

4.1. EDGE SCAN ALGORITHM. The edge scan algorithm (Figure 9) is essen-
tially a direct translation of the expression forDF given by Theorem 7. A little
care is required to achieve the time complexity ofTp = O(|V | + |DF|) given in
Proposition 8. Letv be the destination of a number of up-edges (sayu1 → v,
u2 → v, . . .). A naive algorithm would first visit all the nodes in the interval
[u1, idom(v)) addingv to theDF set of each node in this interval, then visit all
nodes in the interval [u2, idom(v)) addingv to theDF sets of each node in this
interval, etc. However, these intervals in general are not disjoint; ifl is the least
common ancestor ofu1, u2, . . . , nodes in the interval [l , idom(v)) will in general
be visited once for each up-edge terminating atv, but only the first visit would do
useful work. To make the preprocessing time proportional to the size of theDF sets,
all up-edges that terminate at a givenCFGnodev are considered together. TheDF
sets at each node are maintained essentially as a stack in the sense that the first node
of a (ordered)DF set is the one that was added most recently. The traversal of the
nodes in interval [uk → idom(v)) checks each node to see ifv is already in theDF
set of that node by examining the first element of thatDF set in constant time; if
that element isv, the traversal is terminated.

Once theDF relation is constructed, procedureφ-placementis executed for each
variable Z to determine, given the setS where Z is assigned, all nodes where
φ-functions forZ are to be placed.

PROPOSITION 8. The edge scan algorithm for SSA in Figure9has preprocessing
time Tp = O(|V | + |DF|), preprocessing space Sp = O(|V | + |DF|), and query
time Tq = O(

∑
v∈(S∪M(S)) |DF(v)|).

PROOF. In the preprocessing stage, timeO(|V |+|E|) is spent to visit the CFG,
and additional constant time is spent for each of the|DF| entries of (V,DF), for a
total preprocessing timeTp = O(|V | + |E| + |DF|) as described above. The term
|E| can be dropped from the last expression since|E| = |Etree|+|Eup| ≤ |V |+|DF|.
The preprocessing space is that needed to store (V,DF). Query is performed by
procedureφ-placement of Figure 9. Query time is proportional to the size of the
portion of (V,DF) reachable fromS.

4.2. NODE SCAN ALGORITHM. The node scan algorithm (Figure 9) scans the
nodes according to a bottom-up walk in the dominator tree and constructs the
entire setDF(w) when visitingw, following the approach in Theorem 8. TheDF
sets can be represented, for example, as linked lists of nodes; then, union and
difference operations can be done in time proportional to the size of the operand
sets, exploiting the fact that they are subsets ofV . Specifically, we make use of
an auxiliary Boolean arrayB, indexed by the elements ofV and initialized to 0.
To obtain the union of two or more sets, we scan the corresponding lists. When
a nodev is first encountered (B[v] = 0), it is added to the output list and then
B[v] is set to 1. Further occurrences ofv are then detected (B[v] = 1) and are not
appended to the output. Finally, for eachv in the output list,B[v] is reset to 0, to
leaveB properly initialized for further operations. Set difference can be handled
by similar techniques.

PROPOSITION 9. The node scan algorithm for SSA in Figure9has preprocessing
time Tp = O(|V | + |DF|), preprocessing space Sp = O(|V | + |DF|), and query
time Tq = O(

∑
v∈(S∪M(S)) |DF(v)|).

396 G. BILARDI AND K . PINGALI

Procedure EdgeScanDF(CFG, DominatorTree D):returns DF;
{
1: Assume CFG = (V, E);
2: DF = {};
3: for each nodev
4: for each edgee= (u→ v) ∈ E do
5: if u 6= idom(v) then
6: w = u;
7: while (w 6= idom(v))&(v 6∈ DF(w)) do
8: DF(w) = DF(w) ∪ {v};
9: w = idom(w)
10: od
11: endif
12: od
13: od
14: returnDF;
}
Procedure NodeScanDF(CFG,DominatorTree D):returns DF;
{
1: Assume CFG = (V, E);
2: Initialize DF(w) = {} for all nodesw;
3: for each CFG edge (u→ v) do
4: if (u 6= idom(v)) DF(u) = DF(u) ∪ {v}
5: od
6: for each nodew ∈ D in bottom-up orderdo
7: DF(w) = DF(w) ∪ (∪c∈children(w)DF(c)− children(w));
8: od
9: return DF;
}
Procedureφ-placement(DF,S):returns set of nodes whereφ-functions are needed;
{
1: In DF, mark all nodes in setS;
2: M(S) = {};
3: Enter all nodes inSonto work-listM ;
4: while work-list M is not emptydo
5: Remove nodew from M ;
6: for each nodev in DF(w) do
7: M(S) = M(S) ∪ {v};
8: if v is not markedthen
9: Mark v;
10: Enterv into work-list M ;
11: endif
12: od
13: od
14: returnM(S);
}

FIG. 9. Edge scan and node scan algorithms.

Algorithms for Computing the Static Single Assignment Form 397

PROOF. Time O(|V | + |E|) is required to walk over CFG edges and compute
the α-DF sets for all nodes. In the bottom-up walk, the work performed at node
w is bounded as follows:

work(w) ∝ |α(w)| +
∑

c∈children(w)

|DF(c)| + |children(w)|.

Therefore, the total work for preprocessing is bounded byO(|V | + |E| + |DF|)
which, as before, isO(|V | + |DF|). The preprocessing space is the space needed
to store (V,DF). Query time is proportional to the size of the subgraph of (V,DF)
that is reachable fromS.

4.3. DISCUSSION. Node scan is similar to the algorithm given by Cytron et al.
[1991]. As we can see from Propositions 8 and 9, the performance of two-phase
algorithms is very sensitive to the size of theDF relation. We have seen in Section 3
that the size of theDF graph can be much larger than that of the CFG. However, real
programs often have shallow dominator trees; hence, theirDF graph is comparable
in size to the CFG; thus, two-phase algorithms may be quite efficient.

5. Lock-Step Algorithms

In this section, we describe twolock-stepalgorithms that visitall the nodes of the
CFG but compute only a subgraphG′DF = f ′(G, S) of theDF graph that is sufficient
to determineJ(S) = g′(S,G′DF). Specifically, the set reachable by nonempty paths
that start at a node inSin G′DF is the same as inGDF. The f ′ andg′ computations are
interleaved: when a nodev is reached through the portion of theDF graph already
built, there is no further need to examine otherDF edges pointing tov.

The setDF+(S) of nodes reachable from an input setSvia nonempty paths can
be computed efficiently in an acyclicDF graph, by processing nodes in topological
order. At each step, apulling algorithm would add the current node toDF+(S) if
any of its predecessors in theDF graph belongs toS or has already been reached,
that is, already inserted inDF+(S). A pushingalgorithm would add the successors
of current node toDF+(S) if it belongs toSor has already been reached.

The class of programs with an acyclicDF graph is quite extensive since it is
identical to the class of reducible programs (Proposition 7). However, irreducible
programs haveDF graphs with nontrivial cycles, such as the one between nodes
b andc in Figure 4(e). A graph with cycles can be conveniently preprocessed by
collapsing into a “supernode” all nodes in the same strongly connected component,
as they are equivalent as far as reachability is concerned [Cormen et al. 1992]. We
show in Section 5.1 that it is possible to exploit Lemma 3 to compute a topological
ordering of (the acyclic condensate of) theDF graph inO(|E|) time, directly from
the CFG,without actually constructing the DF graph. This ordering is exploited
by the pulling and the pushing algorithms presented in subsequent subsections.

5.1. TOPOLOGICAL SORTING OF THEDF AND M GRAPHS. It is convenient to
introduce theM-reduced CFG, obtained from a CFGG by collapsing nodes that
are part of the same scc in theM graph ofG. Figure 10 shows theM-reduced CFG
corresponding to the CFG of Figure 4(a). The only nontrivial scc in theM graph
(equivalently, in theDF graph) of the CFG in Figure 4(a) contains nodes b and c,
and these are collapsed into a single node named bc in theM-reduced graph. The

398 G. BILARDI AND K . PINGALI

FIG. 10. M-reduced CFG corresponding to CFG of Figure 4(a).

dominator tree for theM-reduced graph can be obtained by collapsing these nodes
in the dominator tree of the original CFG.

Definition 8. Given aCFG G = (V, E), the correspondingM-reduced CFG
is the graphG̃ = (Ṽ, Ẽ) whereṼ is the set of strongly connected components of
M , and (a→ b) ∈ Ẽ if and only if there is an edge (u→ v) ∈ E such thatu ∈ a
andv ∈ b.

Without loss of generality, theφ-placement problem can be solved on the reduced
CFG. In fact, if M̃ denotes the merge relation iñG, and w̃ ∈ Ṽ denotes the
component to whichw belongs, thenM(w) = ∪x̃∈M̃(w̃)x̃ is the union of all the
scc’s x̃ reachable viaM̃-paths from the scc ˜w containingw. The key observation
permitting the efficient computation of scc’s in theDF graph is Lemma 3, which
states that all the nodes in a single scc of theDF graph are siblings in the dominator
tree. Therefore, to determine scc’s, it is sufficient to consider the subset of theDF
graph, called theω-DF graph, that is defined next.

Definition 9. Theω-DF relation of a CFG is the subrelation of itsDF relation
that contains only those pairs (w, v) for whichw andv are siblings in the dominator
tree of that CFG.

Figure 4(f) shows theω-DF graph for the running example. Figure 11 shows an
algorithm for computing this graph.

Algorithms for Computing the Static Single Assignment Form 399

Procedureω-DF(CFG, DominatorTree);
{
1: Assume CFG = (V, E);
2: DFω = {};
3: Stack ={};
4: Visit(Root of DominatorTree);
5: returnGω = (V,DFω);

6: Procedure Visit(u);
7: Pushu on Stack;
8: for each edgee= (u→ v) ∈ E do
9: if u 6= idom(v) then
10: let c = node pushed afteridom(v) on Stack;
11: Append edgec→ v to DFω;
12: endif
13: od
14: for each childd of u do
15: Visit(d); od
16: Popu from Stack;
}

FIG. 11. Building theω-DF graph.

LEMMA 4. Theω-DF graph for CFG G= (V, E) is constructed in O(|E|) time
by the algorithm in Figure11.

PROOF. From Theorem 7, we see that each CFG up-edge generates one edge
in theω-DF graph. Therefore, for each CFG up-edgeu → v, we must identify
the childc of idom(v) that is an ancestor ofu, and introduce the edge (c→ v) in
theω-DF graph. To do this in constant time per edge, we build theω-DF graph
while performing a depth-first walk of the dominator tree, as shown in Figure 11.
This walk maintains a stack of nodes; a node is pushed on the stack when it is first
encountered by the walk, and is popped from the stack when it is exited by the
walk for the last time. When the walk reaches a nodeu, we examine all up-edges
u→ v; the child ofidom(v) that is an ancestor ofu is simply the node pushed after
idom(v) on the node stack.

PROPOSITION 10. Given the CFG G= (V, E), its M-reduced versioñG =
(Ṽ, Ẽ) can be constructed in time O(|V | + |E|).

PROOF. The steps involved are the following, each taking linear time:

(1) Construct the dominator tree [Buchsbaum et al. 1998].
(2) Construct theω-DF graph (V,DFω) as shown in Figure 11.
(3) Compute strongly connected components of (V,DFω) [Cormen et al. 1992].
(4) Collapse each scc into one vertex and eliminate duplicate edges.

It is easy to see that the dominator tree of theM-reduced CFG can be obtained by
collapsing the scc’s of theω-DF graph in the dominator tree of the original CFG.
For the CFG in Figure 4(a), the only nontrivial scc in theω-DF graph is{b, c}, as

400 G. BILARDI AND K . PINGALI

is seen in Figure 4(f). By collapsing this scc, we get theM-reduced CFG and its
dominator tree shown in Figures 10(a) and 10(b).

It remains to compute a topological sort of theDF graph of theM-reduced
CFG (without building theDF graph explicitly). Intuitively, this is accomplished
by topologically sorting the children of each node according to theω-DF graph of
theM-reduced CFG and concatenating these sets in some bottom-up order such as
post-order in the dominator tree. We can describe this more formally as follows:

Definition 10. Given aM-reduced CFGG = (V, E), let the children of each
node in the dominator tree be ordered left to right according to a topological sorting
of the ω-DF graph. A postorder visit of the dominator tree is said to yield an
ω-orderingof G.

Theω-DF graph of theM-reduced CFG of the running example is shown in
Figure 10(d). Note that the children of each node in the dominator tree are ordered
so that the left-to-right ordering of the children of each node is consistent with a topo-
logical sorting of these nodes in theω-DF graph. In particular, nodebc is ordered
before its siblingf . The postorder visit yields the sequence< d, e, bc, h, g, f,a >,
which is a topological sort of the acyclic condensate of theDF graph of the original
CFG in Figure 4(a).

THEOREM 9. Anω-ordering of an M-reduced CFG G= (V, E) is a topolog-
ical sorting of the corresponding dominance frontier graph(V,DF) and merge
graph(V,M) and it can be computed in time O(|E|).

PROOF. Consider an edge (w → v) ∈ DF. We want to show that, in the
ω-ordering,w precedesv.

From Theorem 7, it follows that there is a siblings of v such that (i)s is an
ancestor ofw and (ii) there is an edge (s→ v) in theDF (andω-DF) graph. Since
theω-ordering is generated by a postorder walk of the dominator tree,w precedes
s in this order; furthermore,s precedesv because anω-ordering is a topological
sorting of theω-DF graph. SinceM = DF+, anω-ordering is a topological sorting
of the merge graphs as well. The time bound follows from Lemma 4, Proposition 10,
Definition 10, and the fact that a postorder visit of a tree takes linear time.

From Proposition 7, it follows that for reducible CFGs, there is no need to
determine the scc’s of theω-DF graph in order to computeω-orderings.

5.1.1. An Application to Weak Control Dependence.In this section, we take a
short detour to illustrate the power of the techniques just developed by applying
these techniques to the computation ofweak control dependence. This relation,
introduced in [Podgurski and Clarke 1990], extends standard control dependence
to include nonterminating program executions. We have shown in [Bilardi and
Pingali 1996] that, in this context, the standard notion of postdominance must be
replaced with the notion of loop postdominance. Furthermore, loop postdominance
is transitive and its transitive reduction is a forest that can be obtained from the
postdominator tree by disconnecting each node in a suitable setB from its parent.
As it turns out,B = J(K ∪ {START}), whereK is the set of self-loops of the merge
relation of thereverse CFG, which are called thecrowns. The following proposition
is concerned with the efficient computation of the self-loops ofM .

Algorithms for Computing the Static Single Assignment Form 401

Procedure Pulling(D,S);//D is dominator tree,S is set of assignment nodes
{
1: Initialize DF+(S) to {};
2: Initialize all nodes in dominator tree as off;

3: for each nodev in ω-orderingdo
4: if v ∈ S then TurnOn(D,v) endif ;
5: for each up-edgeu→ v do
6: if u is onthen
7: Add v to DF+(S);
8: if v is off then TurnOn(D,v) endif ;
9: break //exit inner loop
10: endif
11: od
}
ProcedureTurnOn(D, x);
{
1: Switchx on;
2: for eachc ∈ children(x) in D do
3: if c is off then TurnOn(D,c)
}

FIG. 12. Pulling algorithm.

PROPOSITION 11. The self-loops of the M-graph for CFG G= (V, E) can be
found in O(|V | + |E|).

PROOF. It is easy to see that there is a self-loop forM at a nodew ∈ V if
and only if there is a self-loop at ˜w (the scc containingw) in theM-reduced graph
G̃ = (Ṽ, Ẽ). By Proposition 10,G̃ can be constructed in timeO(|V | + |E|) and
its self-loops can be easily identified in the same amount of time.

When applied to the reverse CFG, Proposition 11 yields the set of crownsK .
Then, J(K ∪ {START}) can be obtained fromK ∪ {START} by using any of the
φ-placement algorithms presented in this article, several of which also run in time
O(|V | + |E|). In conclusion, the loop postdominance forest can be obtained from
the postdominator tree in time proportional to the size of the CFG. As shown in
[Bilardi and Pingali 1996], once the loop postdominance forest is available, weak
control dependence sets can be computed optimally by the algorithms of [Pingali
and Bilardi 1997].

In the reminder of this section, we assume that the CFG isM-reduced.

5.2. PULLING ALGORITHM. The pulling algorithm (Figure 12) is a variation of
the edge scan algorithm of Section 4.1. A bit-map representation is kept for the
input setS and for the output setJ(S) = DF+(S), which is built incrementally.
We process nodes inω-ordering and maintain, for each nodeu, anoff/on binary
tag, initially off and turned on when processing the first dominator ofu which is
S∪DF+(S), denotedwu. Specifically, when a nodev is processed, either if it belongs
to Sor if it is found to belong toDF+(S), a top-down walk of the dominator subtree
rooted atv is performed turning on all visited nodes. If we visit a nodex already

402 G. BILARDI AND K . PINGALI

Procedure Pushing(S);S is set of assignment nodes
{
1: Initialize DF+(S) set to{};
2: Initialize α-DF andPDF sets of all nodes to{};

3: for each CFG edge (u→ v) do
4: if (u 6= idom(v)) α-DF(u) = α-DF(u) ∪ {v}
5: od
6: for each nodew in ω-orderingdo
7: PDF(S,w) = α-DF(w) ∪ (∪

c∈(children(w)−S−DF+(S))
PDF(c));

8: if w ∈ S∪ DF+(S) then
9: for each nodev in PDF(w) do
10: if v >ω w andv /∈ DF+(S) then Add v to DF+(S) endif
11: endif ;
12: od
}

FIG. 13. Pushing algorithm.

turned on, clearly the subtree rooted atx must already be entirely on, making it
unnecessary to visit that subtree again. Therefore, the overall overhead to maintain
the off/on tags isO(|V |).

To determine whether to add a nodev to DF+(S), each up-edgeu→ v incoming
into v is examined: ifu is turned on, thenv is added and its processing can stop.
Let TurnOn (D,wu) be the call that has switchedu on. Clearly,wu belongs to
the set [u, idom(v)) of the ancestors ofu that precedev in ω-ordering which, by
Theorem 7, is a subset ofDF−1(v). Hence,v is correctly added toDF+(S) if and
only if one of itsDF predecessors (wu) is in S∪ DF+(S). Such predecessor could
bev itself, if v ∈ S and there is a self-loop atv; for this reason, whenv ∈ S, the
call TurnOn (D,v) (Line 4) is made before processing the incoming edges. Clearly,
the overall work to examine and process the up-edges isO(|Eup|) = O(|E|). In
summary, we have:

PROPOSITION 12. The pulling algorithm for SSA of Figure12has preprocessing
time Tp = O(|V | + |E|), preprocessing space Sp = O(|V | + |E|), and query time
Tq = O(|V | + |E|).

Which subgraphG′DF = f ′(G, S) of theDF graph gets (implicitly) built by the
pulling algorithm? The answer is that, for eachv ∈ DF+(S), G′DF contains edge
(wu→ v), whereu is the first predecessor in the CFG adjacency list of nodev that
has been turned on whenv is processed, andwu is the ancestor that turned it on.
As a corollary,G′DF contains exactly|DF+(S)| edges.

5.3. PUSHING ALGORITHM. The pushing algorithm (Figure 13) is a variation
of the node scan algorithm in Section 4.2. It processes nodes inω-ordering and
buildsDF+(S) incrementally; when a nodew ∈ S∪DF+(S) is processed, nodes in
DF(w) that are not already in setDF+(S) are added to it. A setPDF(S,w), called
thepseudo-dominance frontier, is constructed with the property that any node in
DF(w)− PDF(w) has already been added toDF+(S) by the timew is processed.
Hence, it is sufficient to add toDF+(w) the nodes inPDF(S,w) ∩ DF(w), which
are characterized by being afterw in theω-ordering. Specifically,PDF(S,w) is

Algorithms for Computing the Static Single Assignment Form 403

defined (and computed) as the union ofα-DF(w) with thePDFs of those children
of w that are not inS∪ DF+(S).

It is efficient to represent eachPDF set as a singly linked list with a header
that has a pointer to the start and one at the end of the list, enabling constant time
concatenations. The union at Line 7 of procedurePushing is implemented as list
concatenation, hence in constant time per child for a globalO(|V |) contribution. The
resulting list may have several entries for a given node, but each entry corresponds
to a unique up-edge pointing at that node. Ifw ∈ S∪DF+(S), then each nodev in
the list is examined and possibly added toDF+(S). Examination of each list entry
takes constant time. Once examined, a list no longer contributes to thePDF set of
any ancestor; hence, the global work to examine lists isO(|E|). In conclusion, the
complexity bounds are as follows:

PROPOSITION 13. The pushing algorithm forφ-placement of Figure13 is cor-
rect and has preprocessing time Tp = O(|V | + |E|), preprocessing space Sp =
O(|V | + |E|), and query time Tq = O(|V | + |E|).

PROOF. Theorem 8 implies that a node the setPDF(S,w) computed in Line 7
either belongs toDF(w) or is dominated byw. Therefore, every node that is added
to DF+(S) by Line 10, belongs to it (sincev <ω w implies thatv is not dominated
by w). We must also show that every node inDF+(S) gets added by this procedure.
We proceed by induction on the length of theω-ordering. The first node in such an
ordering must be a leaf and, for a leafw, PDF(S,w) = DF(w). Assume inductively
that for all nodesn beforew in theω-ordering, those inDF(n) − PDF(S, n) are
added. Since all the children ofw precede it in theω-ordering, it is easy to see that
all nodes inDF(w)−PDF(S,w) are added afterw has been visited, satisfying the
inductive hypothesis.

The DF subgraphG′DF = f ′(G, S) implicitly built by the pushing algorithm
contains, for eachv ∈ DF+(S), theDF edge (w → v) wherew is the first node
of DF−1(v) ∩ (S∪ DF+(S)) occurring inω-ordering. In general, this is a differ-
ent subgraph from the one built by the pulling algorithm, except when the latter
works on a CFG representation where the predecessors of each node are listed in
ω-ordering.

5.4. DISCUSSION. Theω-DF graph was introduced in [Bilardi and Pingali 1996]
under the name ofsibling connectivity graphto solve the problem of optimal
computation ofweak control dependence[Podgurski and Clarke 1990].

The pulling algorithm can be viewed as an efficient version of the reachability
algorithm of Figure 7. At any nodev, the reachability algorithm visits all nodes that
are reachable fromv in the reverse CFG alongpathsthat do not containidom(v),
while the pulling algorithm visits all nodes that are reachable fromv in the reverse
CFG along asingle edgethat does not contain (i.e., originate from)idom(v). The
pulling algorithm achieves efficiency by processing nodes inω-order, which ensures
that information relevant tov can be found by traversing single edges rather than
entire paths. It is the simplestφ-placement algorithm that achieves linear worst-case
bounds for all three measuresTp, Sp andTq.

For the pushing algorithm, the computation of theM-reduced graph can be
eliminated and nodes can simply be considered in bottom-up order in the dominator
tree, at the cost of having to revisit a node if it gets marked after it has been visited
for computing itsPDF set.

404 G. BILARDI AND K . PINGALI

Reif and Tarjan [1981] proposed a lock-step algorithm that combinedφ-
placement with the computation of the dominator tree. Their algorithm is a modi-
fication of the Lengauer and Tarjan algorithm which computes the dominator tree
in a bottom-up fashion [Lengauer and Tarjan 1979]. Since the pushing algorithm
traverses the dominator tree in bottom-up order, it is possible to combine the com-
putation of the dominator tree with pushing to obtainφ-placement inO(|E|α(|E|))
time per variable. Cytron and Ferrante [1993] have described a lock-step algorithm
which they callon-the-flycomputation of merge sets, withO(|E|α(|E|)) query time.
Their algorithm is considerably more complicated than the pushing and pulling
algorithms described here, in part because it does not useω-ordering.

6. Lazy Algorithms

A drawback of lock-step algorithms is that they visit all the nodes in the CFG,
including those that are not inM(S). In this section, we discuss algorithms that
compute setsEDF(w) lazily, that is, only ifw belongs toM(S), potentially saving
the effort to process irrelevant parts of theDF graph. Lazy algorithms have the
same the asymptotic complexity as lock-step algorithms, but outperform them in
practice (Section 7).

We first discuss a lazy algorithm that is optimal for computingEDFsets, based on
the approach of [Pingali and Bilardi 1995, 1997] to compute the control dependence
relation of a CFG. Then, we apply these results toφ-placement. The lazy algorithm
works for arbitrary CFGs (i.e.,M-reduction is not necessary).

6.1.ADT : THE AUGMENTED DOMINATOR TREE. One way to compute
EDF(w) is to appeal directly to Definition 6: traverse the dominator subtree rooted at
w and for each visited nodeu and edge (u→ v), output edge (u→ v) if w does not
strictly dominatev. Pseudocode for this query procedure, calledTopDownEDF, is
shown in Figure 14. Here, each nodeu is assumed to have a node listL containing
all the targets of up-edges whose source isu (i.e., α-DF(u)). TheVisit procedure
calls itself recursively, and the recursion terminates when it encounters aboundary
node. For now, boundary nodes coincide with the leaves of tree. However, we shall
soon generalize the notion of boundary node in a critical way. For the running
example of Figure 4, the callEDF(a) would visit nodes{a, b, d, c, e, f, g, h, END}
and output edge (h→ a) to answer theEDF query.

This approach islazy because theEDF computation is done only when it is
required to answer the query. TheTopDownEDF procedure takes timeO(|E|)
since, in the worst case, the entire dominator tree has to be visited and all the
edges in the CFG have to be examined. To decrease query time, one can take an
eagerapproach by precomputing the entireEDF graph, storing eachEDF(w) in
list L(w), and lettingeverynode be a boundary node. We still useTopDownEDF
to answer a query. The query would visit only the queried nodew and complete
in time O(|EDF(w)|). This is essentially the two-phase approach of Section 4—
the query time is excellent but the preprocessing time and space requirements are
O(|V | + |EDF|).

As a trade-off between fully eager and fully lazy evaluation, we can arbitrarily
partition V into boundary and interior nodes;TopDownEDF will work correctly
if L(w) is initialized as follows:

Algorithms for Computing the Static Single Assignment Form 405

Procedure TopDownEDF(QueryNode);
{
1: EDF= {};
2: Visit (QueryNode, QueryNode);
3: return EDF;
}
Procedure Visit(QueryNode, VisitNode);
{
1: for each edge (u→ v) ∈ L[VisitNode] do
2: if idom(v) is a proper ancestor ofQueryNode
3: then EDF= EDF∪ {(u→ v)}; endif
4: od ;
5: if VisitNodeis not a boundary node
6: then
7: for each child C ofVisitNode
8: do
9: Visit (QueryNode,C)
10: od ;
11: endif ;
}

FIG. 14. Top-down query procedure forEDF.

Definition 11. L[w] = EDF(w) if w is aboundarynode andL[w] = α-EDF(w)
if w is aninterior node.

In general, we assume that leaves are boundary nodes, to ensure proper termi-
nation of recursion (this choice has no consequence onL[w] since, for a leaf,
EDF(w) = α-DF(w).) The correctness ofTopDownEDF is argued next. It is easy
to see that if edge (u→ v) is added toEDF by Line 3 ofVisit , then it does belong
to EDF(w). Conversely, let (u→ v) ∈ EDF(w). Consider the dominator tree path
fromw tou. If there is no boundary node on this path, then procedureTopDownEDF
outputs (u→ v) when it visitsu. Else, letb be the first boundary node on this path:
then (u→ v) ∈ EDF(b) and it will be output when the procedure visitsb.

So far, no specific order has been assumed for the edges (u1 → v1), (u2 →
v2), . . . in list L[w]. We note from Lemma 2 thatidom(v1), idom(v2), . . . dominate
w and are therefore totally ordered by dominance. To improve efficiency, the edges
in L[w] are ordered so that, in the sequenceidom(v1), idom(v2), . . . , a node appears
after its ancestors. Then, the examination loop of Line 1 in procedureTopDownEDF
can terminate as soon as a nodev is encountered whereidom(v) does not strictly
dominate the query node.

Different choices of boundary nodes (solid dots) and interior nodes (hollow dots)
are illustrated in Figure 15. Figure 15(a) shows one extreme in which onlySTART
and the leaves are boundary nodes. SinceEDF(START) = ∅ andEDF(w) = α-
DF(w) for any leafw, by Definition 11, onlyα-EDF edges are stored explicitly,
in this case. Figure 15(b) shows the other extreme in which all nodes are boundary
nodes, hence allEDFedges are stored explicitly. Figure 15(c) shows an intermediate
point where the boundary nodes areSTART, END,a, d, e, f , andh.

If the edges from a boundary node to any of its children, which are never
traversed by procedureTopDownEDF, are deleted, the dominator tree becomes

406 G. BILARDI AND K . PINGALI

FIG. 15. Zone structure for different values ofβ.

partitioned into smaller trees calledzones. For example, in Figure 15(c), there are
seven zones, with node sets :{START}, {END}, {a}, {b, d}, {c, e}, { f }, {g, h}. A
queryTopDownEDF(q) visits the portion of a zone below nodeq, which we call
thesubzoneassociated withq. Formally:

Definition 12. A nodew is said to be in thesubzone Zq associated with a node
q if (i) w is a descendant ofq, and (ii) the path [q,w) does not contain any boundary
nodes. Azoneis a maximal subzone; that is, a subzone that is not strictly contained
in any other subzone.

In the implementation, we assume that for each node there is a Boolean variable
Bndry?set to true for boundary nodes and set to false for interior nodes. In Line 2
of ProcedureVisit , testing whetheridom(v) is a proper ancestor ofQueryNode
can be done in constant time by comparing theirdfs (depth-first search) number
or their levelnumber. (Both numbers are easily obtained by preprocessing; the dfs
number is usually already available as a byproduct of dominator tree construction.)
It follows immediately that the query timeQq is proportional to the sum of the
number of visited nodes and the number of reported edges:

Qq = O(|Zq| + |EDF(q)|). (4)

To limit query time, we shall define zones so that, in terms of a design parameter
β (a positive real number), for every nodeq we have:

|Zq| ≤ β|EDF(q)| + 1. (5)

Intuitively, the number of nodes visited whenq is queried is at most one more than
some constant proportion of the answer size. We observe that, whenEDF(q) is
empty (e.g., whenq = START or whenq = END), Condition (5) forcesZq = {q},
for anyβ.

Algorithms for Computing the Static Single Assignment Form 407

By combining Eqs. (4) and (5), we obtain

Qq = O((β + 1)|EDF(q)|). (6)

Thus, for constantβ, query time is linear in the output size, hence asymptotically
optimal. Next, we consider space requirements.

6.1.1. Defining Zones. Can we define zones so as to satisfy Inequality (5) and
simultaneously limit the extra space needed to store an up-edge (u → v) at each
boundary nodew dominatingu and properly dominated byv? A positive answer
is provided by a simple bottom-up, greedy algorithm that makes zones as large
as possible subject to Inequality (5) and to the condition that the children of a
given node are either all in separate zones or all in the same zone as their parent.5

More formally:

Definition 13. If nodev is a leaf or (1+∑u∈children(v) |Zu|) > (β|EDF(v)|+1),
thenv is a boundarynode andZv is {v}. Else,v is an interior node andZv is
{v} ∪u∈children(v) Zu.

The term (1+∑u∈children(v) |Zu|) is the number of nodes that would be visited
by a query at nodev if v were made an interior node. If this quantity is larger than
(β|EDF(v)| + 1), Inequality (5) fails, so we makev a boundary node.

To analyze the resulting storage requirements, letX denote the set of boundary
nodes that are not leaves. Ifw ∈ (V− X), then onlyα-DF edges out ofw are listed
in L[w]. Each up-edge inEup appears in the list of its bottom node and, possibly,
in the list of some other node inX. For a boundary nodew, |L[w]| = |EDF(w)|.
Hence, we have:∑

w∈V

|L[w]| =
∑

w∈(V−X)

|L[w]| +
∑
w∈X

|L[w]| ≤ |Eup| +
∑
w∈X

|EDF(w)|. (7)

From Definition 13, ifw ∈ X, then

|EDF(w)| <
∑

u∈children(w)

|Zu|
β
. (8)

When we sum overw ∈ X both sides of Inequality (8), we see that the right-hand
side evaluates at most to|V |/β, since all subzonesZu’s involved in the resulting
double summation are disjoint. Hence,

∑
w∈X |EDF(w)| ≤ |V |/β, which, used in

Relation (7) yields:

|L[w]| ≤ |Eup| + |V |
β
. (9)

Therefore, to store this data structure, we needO(|V |) space for the dominator
tree,O(|V |) further space for theBndry? bit and for list headers, and finally, from
Inequality (9),O(|Eup| + |V |/β) for the list elements. All together, we haveSp =
O(|Eup| + (1+ 1/β)|V |).

5 The removal of this simplifying condition might lead to further storage reductions.

408 G. BILARDI AND K . PINGALI

We summarize theAugmented Dominator TreeADT for answeringEDFqueries:

(1) T : dominator tree that permits top-down and bottom-up traversals.
(2) dfs[v]: dfsnumber of nodev.
(3) Bndry?[v]: Boolean. Set to true ifv is a boundary node, and set to false other-

wise.
(4) L[v]: list of CFG edges. Ifv is a boundary node,L[v] is EDF(v); otherwise, it

is α-DF(v).

6.1.2. ADT Construction. The preprocessing algorithm that constructs the
search structureADT takes three inputs:

—The dominator treeT , for which we assume that the relative order of two nodes
one of which is an ancestor of the other can be determined in constant time.

—The setEup of up-edges (u→ v) ordered byidom(v).
—Real parameterβ > 0, which controls the space/query-time trade-off.

The stages of the algorithm are explained below and translated into pseudocode in
Figure 16.

(1) For each node x, compute the number b[x] (respectively, t[x]) of up-edges
(u→ v) with u= x (respectively, idom(v) = x). Set up two counters initialized
to zero and, for each (u → v) ∈ Eup, increment the appropriate counters of
its endpoints. This stage takes timeO(|V | + |Eup|), for the initialization of the
2|V | counters and for the 2|Eup| increments of such counters.

(2) For each node x, compute|EDF(x)|. It is easy to see that|EDF(x)| = b[x] −
t [x] +∑y∈children(x) |EDF(y)|. Based on this relation, the|EDF(x)| values can
be computed in bottom-up order, using the values ofb[x] and t [x] computed
in Step (1), in timeO(|V |).

(3) Determine boundary nodes,by appropriate setting of a Boolean variable
Bndry?[x] for each nodex. Lettingz[x] = |Zx|, Definition 13 becomes:

If x is a leaf or (1+∑y∈children(x) z[y]) > (β|EDF(x)| + 1), thenx is a
boundary node, andz[x] is set to 1. Otherwise,x is an interior node, and
z[x] = (1+∑y∈children(x) z[y]).

Again, z[x] andBndry?[x] are easily computed in bottom-up order, taking
time O(|V |).

(4) Determine, for each node x, the next boundary node NxtBndry[x] in the path
from x to the root.If the parent ofx is a boundary node, then it is the next
boundary forx. Otherwise,x has the same next boundary as its parent. Thus,
NxtBndry[x] is easily computed in top-down order, takingO(|V |) time. The
next boundary for root ofT set to a conventional value−∞, considered as a
proper ancestor of any node in the tree.

(5) Construct list L[x] for each node x.By Definition 11, given an up-edge
(u → v), v appears in listL[x] for x ∈ Wuv{w0 = u,w1, . . . ,wk}, where
Wuv containsu as well as all boundary nodes contained in the dominator-tree
path [u, idom(v)) from u (included) toidom(v) (excluded).

Specifically,wi = NxtBndry[wi−1], for i = 1, 2, . . . , k andwk is the proper
descendant ofidom(v) such thatidom(v) is a descendant ofNxtBndry[wk].

Algorithms for Computing the Static Single Assignment Form 409

Procedure BuildADT(T: dominator tree, E up: array of up-edges,β: real);
{
1: // b[x]/t [x]: number of up-edges u→ v with u/idom(v) equal x
2: for each nodex in T do
3: b[x] := t [x] := 0; od
4: for each up-edgeu→ v in Eup do
5: Incrementb[u];
6: Incrementt [idom(v)];
7: od ;
8: //Determine boundary nodes.
9: for each nodex in T in bottom-up orderdo
10: //Compute output size when x is queried.
11: a[x] := b[x] - t [x] + 6y∈children(x)a[y];
12: z[x] := 1 +6y∈children(x)z[y]; //Tentative zone size.
13: if (x is a leaf) or (z[x] > β ∗ a[x] + 1)
14: then // Begin a new zone
15: Bndry?[x] := true;
16: z[x] := 1;
17: else//Put x into same zone as its children
18: Bndry?[x] := false;
19: endif
20: od ;
21: // Chain each node to the first boundary node that is an ancestor.
22: for each nodex in T in top-down orderdo
23: if x is root of dominator tree
24: thenNxtBndry[x] := -∞;
25: else ifBndry?[idom(x)]
26: thenNxtBndry[x] := idom(x);
27: elseNxtBndry[x] := NxtBndry[idom(x)];
28: endif
29: endif
30: od
31: // Build the lists L[x]
32: for each up-edge (u→ v) do
33: w := u;
34: while idom(v) properly dominatesw do
35: appendv to end of listL[w];
36: w := NxtBndry[w];
37: od
}

FIG. 16. Constructing theADT structure.

Lists L[x]’s are formed by scanning the edges (u→ v) in Eup in decreasing
order ofidom(v). Each nodev is appended at the end of (the constructed portion
of) L[x] for eachx in Wuv. This procedure ensures that, in each listL[x], nodes
appear in decreasing order ofidom(v).

This stage takes time proportional to the number of append operations, which
is
∑

x∈V |L[x]| = O(|Eup| + |V |/β).

410 G. BILARDI AND K . PINGALI

In conclusion, the preprocessing time isT = O(|Eup| + (1 + 1/β)|V |). The
developments of the present subsection are summarized in the following theorem.

THEOREM 10. Given a CFG, the corresponding augmented dominator tree
can be constructed in time Tp = O(|Eup| + (1+ 1/β)|V |) and stored in space
Sp = O(|Eup| + (1+ 1/β)|V |). A query to the edge dominance frontier of a node
q can be answered in time Qq = O((β + 1)|EDF(q)|).

6.1.3. The Role ofβ. Parameterβ essentially controls the degree of caching
of EDF information. For a given CFG, asβ increases, the degree of caching and
space requirements decrease while query time increases. However, for a fixedβ,
the degree of caching adapts to the CFG being processed in a way that guarantees
linear performance bounds. To take a closer look at the role ofβ, it is convenient
to consider two distinguished values associated with each CFGG.

Definition 14. Given a CFGG = (V, E), let Y be the set of nodesq such that
(i) q is not a leaf of the dominator tree, and (ii)EDF(q) 6= ∅. Let Dq be the set of
nodes dominated byq.

We define two quantitiesβ1(G) andβ2(G) as follows:6

β1(G) = 1/max
q∈Y
|EDF(q)| (10)

and

β2(G) = max
q∈Y

(|Dq| − 1)/|EDF(q)|. (11)

Since, forq ∈ Y, 1≤ |EDF(q)| < |E| and 2≤ Dq < |V |, it is straightforward to
show that

1

|E| < β1(G) ≤ 1, (12)

1

|E| < β2(G) ≤ |V |, (13)

β1(G) ≤ β2(G). (14)

With a little more effort, it can also be shown that each of the above bound is
achieved, to within constant factors, by some family of CFGs.

Next, we argue that the valuesβ1(G) andβ2(G) for parameterβ correspond to
extreme behaviors for theADT . We begin by observing that, by Definition 13, if
q /∈ Y, thenq is a boundary node of theADT , for any value ofβ. Furthermore,
EDF(q) = α-EDF(q).

Whenβ < β1(G), theADT stores the fullEDF relation. In fact, in this case,
the right-hand-side of Condition (5) is strictly less than 2 for allq′s. Hence, each
node is a boundary node.

Whenβ ≥ β2(G), theADT stores theα-EDF relation. In fact, in this case, each
q ∈ Y is an interior node, since the right-hand side of Condition (5) is no smaller
than|Dq|, thus permittingZq to contain all descendants ofq.

6 Technically, we assumeY is not empty, a trivial case that, under Definition 18, arises only when the
CFG consists of a single path fromSTART to END.

Algorithms for Computing the Static Single Assignment Form 411

Finally, in the rangeβ1(G) ≤ β < β2(G), one can expect intermediate behaviors
where theADT stores something in betweenα-EDF andEDF.

To obtain linear space and query time,β must be chosen to be a constant, inde-
pendent ofG. A reasonable choice can beβ = 1, illustrated in Figure 15(c) for
the running example. Depending on the values ofβ1(G) andβ2(G), this choice can
yield anywhere from no caching to full caching. For many CFG’s arising in prac-
tice,β1(G) < 1 < β2(G); for such CFG’s,β = 1 corresponds to an intermediate
degree of caching.

6.2. LAZY PUSHING ALGORITHM. We now develop a lazy version of the the
pushing algorithm. Preprocessing consists in constructing theADT data structure.
The query to findJ(S) = DF+(S) proceeds along the following lines:

—The successorsDF(w) are determined only for nodesw ∈ S∪ J(S).
—Set DF(w) is obtained by a queryEDF(w) to theADT , modified to avoid

reporting of some nodes already found to be inJ(S).
—The elements ofJ(S) are processed according to a bottom-up ordering of the

dominator tree.

To develop an implementation of the above guidelines, consider first the simpler
problem where a setI ⊆ V is given, with its nodes listed in order of nonincreasing
level, and the set∪w∈I EDF(w) must be computed. For each element ofI in the given
order, anEDF query is made to theADT . To avoid visiting tree nodes repeatedly
during differentEDF queries, a node is marked when it is queried and the query
procedure of Figure 14 is modified so that it never visits nodes below a marked
node. The timeT ′q(I) to answer this simple form of query is proportional to the size
of the setVvis ⊆ V of nodes visited and the total number of up-edges in theL[v]
lists of these nodes. Considering Bound 9 on the latter quantity, we obtain

T ′q(I) = O(|Vvis| + |Eup| + |V |/β) = O(|E| + (1+ 1/β)|V |). (15)

For constantβ, the above time bound is proportional to program size.
In our context, setI = I (S) = S∪DF+(S) is not given directly; rather, it must be

incrementally constructed and sorted, from inputS. This can be accomplished by
keeping those nodes already discovered to be inI but not yet queried forEDF in a
priority queue [Cormen et al. 1992], organized by level number in the tree. Initially,
the queue contains only the nodes inS. At each step, a nodew of highest level is
extracted from the priority queue and anEDF (w) query is made in theADT ; if a
reported nodev is not already in the output set, it is added to it as well as inserted
into the queue. From Lemma 2,level(v) ≤ level(w), hence the level number is non-
increasing throughout the entire sequence of extractions from the priority queue.
The algorithm is described in Figure 17. Its running time can be expressed as

Tq(S) = T ′q(I (S))+ TPQ(I (S)). (16)

The first term accounts for theADT processing and satisfies Eq. (15). The second
term accounts for priority queue operations. The range for the keys has size
K , equal to the number of levels of the dominator tree. If the priority queue is
implemented using a heap, the time per operation isO(log K) [Cormen et al.
1992], whenceTPQ(I (S)) = O(|I (S)| log K). A more sophisticated data structure,
exploiting the integer nature of the keys, achievesO(log logK) time per operation
[Van Emde Boas et al. 1977]; hence,TPQ(I (S)) = O(|I (S)| log logK).

412 G. BILARDI AND K . PINGALI

A simpler implementation, which exploits the constraint on insertions, consists
of an arrayA of K lists, one for each possible key in decreasing order. An element
with key r is inserted, in timeO(1), by appending it to listA[r]. Extraction of an
element with maximum key entails scanning the array from the component where
the last extraction has occurred to the first component whose list is not empty.
Clearly, TPQ(I (S)) = O(|I (S)| + K) = O(|V |). Using this result together with
Eq. (15) in Eq. (16), the SSA query time can be bounded as

Tq(S) = O(|E| + (1+ 1

β
)|V |). (17)

TheDF subgraphG′DF = f ′(G, S) implicitly built by the lazy pushing algorithm
contains, for eachv ∈ DF+(S), theDF edge (w → v) wherew is the first node
of DF−1(v) ∩ (S∪DF+(S)) occurring in the processing ordering. This ordering is
sensitive to the specific way the priority queue is implemented and ties between
nodes of the same level are broken.

7. Experimental Results

In this section, we evaluate the lazy pushing algorithm of Figure 17 experimentally,
focusing on the impact that the choice of parameterβ has on performance. These
experiments shed light on the two-phase and fully lazy approaches because the
lazy algorithm reduces to these approaches for extreme values ofβ, as explained in
Section 6.1.3. Intermediate values ofβ in the lazy algorithm let us explore trade-
offs between preprocessing time (a decreasing function ofβ) and query time (an
increasing function ofβ).

The programs used in these experiments include a standard model problem
and the SPEC92 benchmarks. The SPEC programs tend to have sparse domi-
nance frontier relations, so we can expect a two-phase approach to benefit from
small query time without paying much penalty in preprocessing time and space;
in contrast, the fully lazy approach might be expected to suffer from excessive
recomputation of dominance frontier information. The standard model problem
on the other hand exhibits a dominance frontier relation that grows quadratically
with program size, so we can expect a two-phase approach to suffer consider-
able overhead, while a fully lazy algorithm can get by with little preprocess-
ing effort. The experiments support these intuitive expectations and at the same
time show that intermediate values ofβ (say,β = 1) are quite effective for all
programs.

Next, we describe the experiments in more detail.
A model problem for SSA computation is a nest ofl repeat-until loops, whose

CFG we denoteGl , illustrated in Figure 18. Even thoughGl is structured, itsDF
relation grows quadratically with program size, making it a worst-case scenario for
two-phase algorithms. The experiments reported here are based onG200. Although
a 200-deep loop nest is unlikely to arise in practice, it is large enough to exhibit
the differences between the algorithms discussed in this article. We used the lazy
pushing algorithm to computeDF+(n) for different nodesn in the program, and
measured the corresponding running time as a function ofβ on a SUN-4. In the 3D
plot in Figure 19, thex axis is the value oflog2(β), they-axis is the node number
n, and thez-axis is the time for computingDF+(n).

Algorithms for Computing the Static Single Assignment Form 413

Procedureφ-placement (S: set of nodes);
{
1: // ADT data structure, is global
2: Initialize a Priority Queue PQ;
3: DF+(S) = {}; Set of output nodes (global variable)
4: Insert nodes in setS into P Q; //key is level in tree
5: In treeT , mark all nodes in setS;
6:
7: while P Q is not emptydo
8: w := ExtractMax(P Q); //w is deepest in tree
9: QueryIncr (w);
10: od ;
11: Delete marks from nodes inT ;
12: OutputDF+(S);
}
Procedure QueryIncr(QueryNode);
{
1: VisitIncr (QueryNode, QueryNode);
}
Procedure VisitIncr(QueryNode,VisitNode);
{
1: for each nodev in L[VisitNode]
2: in list orderdo
3: if idom(v) is strict ancestor ofQueryNode
4: then
5: DF+(S) = DF+(S) ∪ {v};
6: if v is not marked
7: then
8: Mark v;
9: Insertv into P Q;
10: endif ;
11: else break; // exit from the loop
12: od ;
13: if VisitNode is not a boundary node
14: then
15: for each child C ofVisitNode
16: do
17: if C is not marked
18: then VisitIncr (QueryNode,C);
19: od ;
20: endif ;
}

FIG. 17. Lazy pushing algorithm, based onADT .

The 2D plot in Figure 18 shows slices parallel to theyzplane of the 3D plot for
three different values ofβ—a very large value (Sreedhar–Gao), a very small value
(Cytron et al.), and 1.

From these plots, it is clear that for small values ofβ (full caching/two-phase),
the time to computeDF+ grows quadratically as we go from outer loop nodes to

414 G. BILARDI AND K . PINGALI

FIG. 18. Repeat-until loop nestG4.

FIG. 19. Time forφ-placement in model problemG200 by lazy pushing with parameterβ.

inner loop nodes. In contrast, for large values ofβ (no caching/fully lazy), this time
is essentially constant. These results can be explained analytically as follows.

The time to computeDF+ sets depends on the number of nodes and the number
of DF graph edges that are visited during the computation. It is easy to show that,
for 1≤ n ≤ l , we haveDF(n) = DF(2l − n+ 1)= {1, 2, . . . ,n}.

For very small values ofβ, the dominance frontier information of every node is
stored at that node (full caching). For 1≤ n ≤ l , computingDF+(n) requires a visit
to all nodes in the set{1, 2, . . . ,n}. The number ofDF edges examined during these
visits is 1+2+· · ·+n = n(n+1)/2; each of these edge traversals involves a visit
to the target node of theDF edge. The reader can verify that a symmetric formula
holds for nodes numbered betweenl and 2l . These results explain the quadratic
growth of the time forDF+ set computation when full caching is used.

For large values ofβ, we have no caching of dominance frontier information.
Assume that 1≤ n ≤ l . To computeDF(n), we visit all nodes in the dominator
tree subtree belown, and traversel edges to determine thatDF(n) = {1, 2, . . . ,n}.
Subsequently, we visit nodes (n− 1), (n− 2) etc., and at each node, we visit only
that node and the node immediately below it (which is already marked); since no

Algorithms for Computing the Static Single Assignment Form 415

FIG. 20. Time forφ-placement in SPEC92 benchmarks by lazy pushing with parameterβ.

DF edges are stored at these nodes, we traverse noDF edges during these visits.
Therefore, we visit (3l + n) nodes, and traversel edges. Sincen is small compared
to 3l , we see that the time to computeDF+(n) is almost independent ofn, which is
borne out by the experimental results.

Comparing the two extremes, we see that for small values ofn, full caching
performs better than no caching. Intuitively, this is because we suffer the overhead
of visiting all nodes belown to computeDF(n) when there is no caching; with full
caching, theDF set is available immediately at the node. However, for large values
of n, full caching runs into the problem of repeatedly discovering that certain nodes
are in the output set—for example, in computingDF+(n), we find that node 1 is
in the output set when we examineDF(m) for everym betweenn and 1. It is easy
to see that with no caching, this discovery is made exactly once (when node 2l is
visited during the computation ofDF+(n)). The cross-over value ofn at which no
caching performs better than full caching is difficult to estimate analytically but
from Figure 19, we see that a value ofβ = 1 outperforms both extremes for almost
all problem sizes.

Since deeply nested control structures are rare in real programs, we would expect
the time required forφ-function placement in practice to look like a slice of Figure 19
parallel to thexzplane for a small value ofn. That is, we would expect full caching
to outperform no caching, and we would expect the use ofβ = 1 to outperform full
caching by a small amount. Figure 20 shows the total time required to doφ-function
placement for all unaliased scalar variables in all of the programs in the SPEC92
benchmarks. It can be seen that full caching (smallβ) outperforms no caching
(largeβ) by a factor between 3 and 4. In Sreedhar and Gao [1995], reported that
their algorithm, essentially lazy pushing with no caching, outperformed the Cytron

416 G. BILARDI AND K . PINGALI

et al. algorithm by factors of 5 to 10 on these benchmarks. These measurements
were apparently erroneous, and new measurements taken by them are in line with
our numbers (Vugranam C. Sreedhar and Guang R. Gao, personal communication).
Usingβ = 1 gives the best performance, although the advantage over full caching
is small in practice.

Other experiments we performed showed that lock-step algorithms were not
competitive with two phase and lazy algorithms because of the overhead of
preprocessing that requires finding strongly connected components and perform-
ing topological sorting. The pulling algorithm is a remarkably simpleφ-placement
algorithm that achieves linear space and time bounds for preprocessing and query,
but for these benchmarks, for example, the time it took forφ-placement was almost
10 seconds, an order of magnitude slower than the best lazy pushing algorithm.

Therefore, for practical intra-procedural SSA computation, we recommend the
lazy pushing algorithm based on theADT with a value ofβ = 1 since its imple-
mentation is not much more complicated than that of two-phase algorithms.

8. φ-Placement for Multiple Variables in Structured Programs

Theφ-placement algorithms presented in the previous sections are quite efficient,
and indeed asymptotically optimal when only one variable is processed for a given
program. However, when several variables must be processed, the query timeTq
for each variable could be improved by suitable preprocessing of the CFG. Clearly,
query time satisfies the lower bound

Tq = Ä(|S| + |J(S)|),
whereJ(S) = ∪x∈SJ(x), because|S| and|J(S)| are the input size and the output
size of the query, respectively. The quantity|S|+|J(S)| can be considerably smaller
than|E|.

Achieving optimal, that is,O(|S| + |J(S)|), query time for arbitrary programs is
not a trivial task, even if we are willing to tolerate high preprocessing costs in time
and space. For instance, letR+ = M . Then, a search in the graph (V, R) starting at
the nodes inSwill visit a subgraph (S∪ J(S), ES) in time Tq = O(|S| + |J(S)| +
|ES|). Since|ES| can easily be the dominating term in the latter sum,Tq may well
be considerably larger than the target lower bound. Nevertheless, optimal query
time can be achieved in an important special case described next.

Definition 15. We say that theM relation for a CFGG = (V, E) is forest
structuredif its transitive reductionMr is a forest, with edges directed from child
to parent and with additional self-loops at some nodes.

PROPOSITION 14. If M is forest structured, then, for any S⊆ V , the set J(S)
can be obtained in query time Tq = O(|S| + |J(S)|).

PROOF. To compute the setJ(S) of all nodes that are reachable fromS by
nontrivial M-paths, for eachw ∈ S, we mark and outputw if it has a self-loop;
then we mark and output the interior nodes on the path inMr from w to its highest
ancestor that is not already marked.

In the visited subforest, each edge is traversed only once. The number of visited
nodes is no smaller than the number of visited edges. A nodev is visited if and
only if it is a leaf of the subforest (v ∈ S), or an internal node of the subforest
(v ∈ J(S)). Hence,Tq = O(|S| + |J(S)|), as stated.

Algorithms for Computing the Static Single Assignment Form 417

For the interesting class ofstructured programs(defined in Section 8.1), we
show (in Section 8.2) that the merge relation is indeed forest structured. Hence, by
Proposition 14,J(S) can be computed in optimal query time. In Section 8.3, we
also show thatMr can be constructed optimally in preprocessing timeO(|V |+|E|).

8.1. STRUCTURED PROGRAMS. We begin with the following inductive defini-
tion of structured programs.

Definition 16. TheCFG G0 = (START = END, ∅) is structured. If G1 =
(V1, E1) and G2 = (V2, E2) are structuredCFGs, with V1 ∩ V2 = ∅, then the
following CFGs are alsostructured:

—The series G1G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {END1 → START2}), with START =
START1 andEND = END2. We say thatG1G2 is aseriesregion.

—The parallel or if-then-else G1 ⊗ G2 = (V1 ∪ V2 ∪ {START, END}, E1 ∪ E2 ∪
{START → START1, START → START2, END1 → END, END2 → END}). We say
thatG1⊗ G2 is aconditionalregion.

—The repeat-until G∗1 = (V1 ∪ {START, END}, E1 ∪ {START→ START1, END1 →
END, END→ START}). We say thatG∗1 is a loop region.

If W ⊆ V is (the vertex set of) a series, loop, or a conditional region in a structured
CFG G = (V, E), we use the notationSTART(W) andEND(W) for the entry and
the exit points ofW, respectively, we letboundary(W) = {START(W), END(W)},
interior(W) = W − boundary(W), and writeW =< START(W), END(W) >.

Abusing notation, we will useW =< START(W), END(W) > to denote also the
subgraph ofG induced by the vertex setW.

The following lemma lists a number of useful properties of dominance in a
structured program. The proofs are simple exercises and hence are omitted.

LEMMA 5. Let W =< s, e > be a series, loop, or conditional region in a
structured CFG. Then:

(1) Node s dominates any w∈ W.
(2) Node e does not properly dominate any w∈ W.
(3) If w is dominated by s and not properly dominated by e, then w∈ W.
(4) A node w∈ W dominates e if and only if w does not belong to the interior of

any conditional region C⊆ W.
(5) Any loop or conditional region U is either (i) disjoint from, (ii) equal to, (iii)

subset of, or (iv) superset of W.

8.2. THE M RELATION IS FOREST-STRUCTURED. It is easy to see that, in a
structured program, an up-edge is either a back-edge of a loop or an edge to theEND
of a conditional. The nodes whoseEDF set contains a given up-edge are characte-
rized next.

LEMMA 6. Let W=< s, e> be a region in a structured CFG G= (V, E).

(1) If W is a loop, then(e→ s) ∈ EDF(w) iff (i) w ∈ W and (ii) w dominates e.
(2) If W =< s1, e1 > ⊗ < s1, e2 > is a conditional, then, for i= 1, 2, (ei → e)∈

EDF(w) iff w ∈< si , ei > and w dominates ei .

418 G. BILARDI AND K . PINGALI

PROOF. We give the proof only for (1) and omit the proof for (2), which is
similar.

(⇒) By the assumption (e → s) ∈ EDF(w) and Definition 6, we have that
(ii) w dominateseand (iii) w does not strictly dominates. Thus, (ii) is immediately
established. To establish (i), we show that (iv)e does not strictly dominatew, that
(v) s dominatesw, and then invoke part (3) of Lemma 5.

Indeed, (iv) follows from (ii) and the asymmetry of dominance.
Observe next that boths andw are dominators ofe (from part (1) of Lemma 5

and (ii), respectively); hence, one of them must dominate the other. In view of (iii),
the only possibility remains (v).

(⇐) By assumption, (ii)w dominatese. Also by assumption,w ∈ W so that,
by part (3) of Lemma 5, (v)s dominatesw. By (v) and asymmetry of dominance,
we have that (iii)w does not strictly dominates. By (ii), (iii), and Definition 6, it
follows that (e→ s) ∈ EDF(w).

Lemma 6 indicates thatDF(w) can be determined by examining the loop and con-
ditional regionsC that containw and checking whetherw dominates an appropriate
node. By part (4) of Lemma 5, this check amounts to determining whetherw belongs
to the interior of some conditional regionC ⊆ W. Since the regions containingw
are not disjoint, by part (5) of Lemma 5, they form a sequence ordered by inclu-
sion. Thus, each region in a suitable prefix of this sequence contributes one node
to DF(w). To help formalizing these considerations, we introduce some notation.

Definition 17. Given a nodew in a structured CFG, letH1(w) ⊂ H2(w) ⊂
· · · ⊂ Hd(w)(w) be the sequence of loop regions containingw and of conditional
regions containingw as an interior node. We also let`(w) be the largest index̀for
which H1(w), . . . , H`(w)(w) are all loop regions.

Figure 21(a) illustrates a structured CFG. The sequence of regions for nodek
is H1(k) =< j, l >, H2(k) =< i,m >, H3(k) =< h, n >, H4(k) =< g,q >,
H5(k) =< a, r >, withd(w) = 5, and̀ (w) = 1, sinceH2(w) is the first conditional
region in the sequence. With the help of the dominator tree shown in Figure 21(b),
one also sees thatDF(k) = { j,m} = {START(H1(k)), END(H2(k))}. For nodec, we
haveH1(c) =< b, e>, H2(c) =< a, r >, d(c) = 2, `(c) = 0, andDF(c) = {r } =
{END(H1(c))}.

PROPOSITION 15. For w ∈ V , if `(w) < d(w), then we have:

DF(w) = {START(H1(w)
)
, . . . , START

(
H`(w)(w)

)
, END

(
H`(w)+1(w)

)}
,

else(`(w) = d(w), that is, no conditional region contains w in its interior) we
have:

DF(w) = {START(H1(w)), . . . , START
(
H`(w)(w)

)}
.

PROOF. · · · ⊆ DF(w). Consider a nodeSTART(Hi (w)) where i ≤ `(w). By
definition,w ∈ Hi (w) and there is no conditional regionC ⊂ Hi (w) that containsw
as an internal node; by part (4) of Lemma 5,w dominatesEND(Hi (w)). By Lemma 6,
START(Hi (w)) ∈ DF(w). A similar argument establishes thatEND(H`(w)+1(w)) ∈
DF(w).

DF(w) ⊆ · · · . Let (u → v) ∈ EDF(w). If (u → v) is the back-edge of a loop
regionW =< v, u >, Lemma 6 asserts thatw dominatesu and is contained in

Algorithms for Computing the Static Single Assignment Form 419

FIG. 21. A structured CFG and itsMr forest.

W. Sincew dominatesu, no conditional regionC ⊆ W containsw as an internal
node. Therefore,w ∈ {START(H1(w)), . . . , START(H`(w)(w))}. A similar argument
if v is theEND node of a conditional region.

We can now establish that theM relation for structured programs is forest
structured.

THEOREM 11. The transitive reduction Mr of the M relation for a structured
CFG G = (V, E) is a forest, with an edge directed from child w to its parent,
denoted iM(w). Specifically, w is a root of the forest whenever DF(w)− {w} = ∅
and iM(w) = min(DF(w) − {w}) otherwise. In addition, there is a self-loop at w
if and only if w is the start node of a loop region.

PROOF

Forest Structure. From Proposition 15, the general case is

DF(w) = {START(H1(w)), . . . , START
(
H`(w)(w)

)
, END

(
H`(w)+1(w)

)}
.

Let x and y be distinct nodes inDF(w). If x = START(Hi (w)) and y = START
(Hj (w)), with i < j ≤ `, thenHi (w) ⊂ Hj (w) (see Definition 17). Furthermore,
there is no conditional regionC such thatHi (w) ⊂ C ⊂ Hj (w), otherwise, we
would havè (w)+ 1< j against the assumption. From Proposition 15, it follows
that y ∈ DF(x).

The required result can be argued similarly ifx = START(Hi (w)) andy = END
(H`(w)+1(w)).

Self-Loop Property. If w ∈ DF(w), there is a primeM-pathw
∗→ u→ w on

which every node other thanw is strictly dominated byw. Therefore, the last edge
u → w is an up-edge. With reference to Lemma 6 and its preamble, the fact that

420 G. BILARDI AND K . PINGALI

Procedure BuildMForest(CFG G, DominatorTree D):returns Mr ;
{
1: Assume CFG = (V, E);
2: for w ∈ V do
3: MSelfLoop[w] = FALSE;
4: iM[w] = NIL;
5: od
6: Stack ={};
7: for eachw ∈ V in ω-orderdo
8: for eachv s.t. (w→ v) ∈ Eup in reverseω-orderdo
9: PushOnStack(v) od
10: if NonEmptyStackthen
11: if TopOfStack =w then
12: MSelfLoop[w] = TRUE;
13: DeleteTopOfStack;
14: endif
15: if NonEmptyStackthen
16: iM[w] = TopOfStack;
17: if (idom(TopOfStack)=idom(w))
18: DeleteTopOfStack;
19: endif
20: od
21: returnMr = (iM, MSelfLoop);
}

FIG. 22. Computing forestMr for a structured program.

w dominatesv rules out case 2 (w is theEND of a conditional). Therefore,u→ w
is the back-edge of a loop, of whichw is theSTART node.

Conversely, suppose thatw is theSTART node of a loop< w, e>. Consider the
path P = w

+→w obtained by appending back-edgee→ w to any pathw
+→ e

on which every node is contained in the loop. Sincew strictly dominates all other
nodes onP, P is a primeM-path, whencew ∈ DF(w).

8.3. COMPUTING Mr . The characterization developed in the previous section
can be the basis of an efficient procedure for computing theMr forest of a structured
program. Such a procedure would be rather straightforward if the program were
represented by its abstract syntax tree. However, for consistency with the frame-
work of this article, we present here a procedure BuildMForest based on the CFG
representation and the associated dominator tree. This procedure exploits a property
of dominator trees of structured programs stated next, omitting the simple proof.

LEMMA 7. Let D be the dominator tree of a structured CFG where the children
of each node in D are ordered left to right inω-order. If node s has more than one
child, then

(1) s is theSTART of a conditional region< s, e>=< s1, e1 > ⊗ < s2, e2 >;
(2) the children of s are s1, s2, and e, with e being the rightmost one;
(3) e1 and e2 are leaves.

The algorithm in Figure 22 visits nodes inω-order and maintains a stack. When
visiting w, first the nodes inα-DF(w) are pushed on the stack in reverseω-order.

Algorithms for Computing the Static Single Assignment Form 421

Node c d f e b l k j p q n m i h g r a

Stack
at Line 10

e e r r r
j
m

j
m

j
m

m
g
r

h
g
r

h
g
r

h
g
r

h
g
r

g
r

.. ..

FIG. 23. Algorithm of Figure 22 operating on program of Figure 21.

Second, if the top of the stack isw itself, then it is removed from the stack. Third,
if the top of the stack is now a sibling ofw, it also gets removed. We show that, at
Line 10 of the algorithm, the stack contains the nodes ofDF(w) in w-order from top
to bottom. Therefore, examination of the top of the stack is sufficient to determine
whether there is a self-loop atw in the M-graph and to find the parent ofw in
the forestMr , if it exists. Figure 23 shows the contents of the stack at Line 10 of
Figure 22 when it is processing the nodes of the program of Figure 21 inω-order.

PROPOSITION 16. Let G= (V, E) be a structured CFG. Then, the parent iM(w)
of each node w∈ V in forest Mr and the presence of a self-loop at w can be
computed in time O(|E| + |V |) by the algorithm of Figure22.

PROOF. Let w1,w2, . . . ,w|V | be theω-ordered sequence in which nodes are
visited by the loop beginning at Line 7. We establish the loop invariantIn: at Line
10 of the nth loop iteration, the stack holds the nodes in DF(wn), in ω-order from
top to bottom. This ensures that self-loops andiM(w) are computed correctly. The
proof is by induction onn.

Base case. The stack is initially empty and Lines 8 and 9 will push the nodes
of α-DF(w1), in reverse-ω-order. Sincew1 is a leaf of the dominator tree, by
Theorem 8,DF(w1) = α-DF(w1), andI1 is established.

Inductive step. We assumeIn and proveIn+1. From the properties of post-order
walks of trees, three cases are easily seen to exhaust all possible mutual positions
of wn andwn+1.

(1) wn+1 is the leftmost leaf of the subtree rooted at the first sibling r of wn
tothe right of wn. From Lemma 7 applied toparent(wn), there is a region
< parent(wn), e >=< wn, e1 > ⊗ < s2, e2 >. From Proposition 15,
DF(wn) ⊆ {wn, e}. Nodeswn ande will be popped off the stack by the time
control reaches the bottom of the loop at thenth iteration, leaving an empty
stack at Line 7 of the (n+ 1)st iteration. Then the nodes inα-DF(wn+1) will
be pushed on the stack in reverse-ω order. Sincewn+1 is a leaf,DF(wn+1) =
α-DF(wn+1) and In+1 holds.

(2) wn is the rightmost child of wn+1, with wn+1 having other children. From
Lemma 7,< wn+1,wn > is a conditional region. Since every loop and con-
ditional region that containswn also containswn+1 and vice-versa, it follows
from Proposition 15 thatDF(wn+1) = DF(wn). Furthermore, the children of
wn+1 cannot be inDF(wn+1), so they cannot be inDF(wn) either. By assump-
tion, at Line 10 of thenth iteration, the stack containsDF(wn). We see that
nothing is removed from the stack in Lines 10–19 during thenth iteration be-
cause neitherwn nor the siblings ofwn are in DF(wn). Also, α-DF(wn+1)
is empty, as no up-edges emanate from the end of a conditional, so nothing is
pushed on the stack at Line 9 of the (n+1)-st iteration, which then still contains
DF(wn) = DF(wn+1). Thus,In+1 holds.

422 G. BILARDI AND K . PINGALI

(3) wn is the only child of wn+1. By Theorem 8,DF(wn+1) = α-DF(wn+1) ∪
(DF(wn)− {wn}). At thenth iteration, the stack containsDF(wn), from which
Lines 10–14 will removewn from the stack, if it is there, and Lines 15–
19 will not pop anything, sincewn has no siblings. At the (n + 1)st itera-
tion, Lines 8–9 will push the nodes inα-DF(wn+1) on the stack, which will
then containDF(wn+1). It remains to show that the nodes on the stack are in
ω-order.

If α-DF(wn+1) is empty,ω-ordering is a corollary ofIn. Otherwise, there are
up-edges emanating fromwn+1. Sincewn+1 is not a leaf, part (3) of Lemma 7
rules out case (2) of Lemma 6. Therefore,wn+1 must be the end node of a loop
< s,wn+1 > and α-DF(wn+1) = {s}.

From Lemma 5, any other regionW =< s′, e > that containswn+1 in the
interior will properly include< s,wn+1 >, so thats′ strictly dominatess (from
Lemma 5, part (1).) IfW is a loop region, thens ∈ DF(wn) occurs befores′ in
ω-order. If W is a conditional region, then sincee ∈ DF(wn) is the rightmost
child of s′, s must occur beforee in ω-order. In either case,s will correctly be
aboves′ or e in the stack.

The complexity bound ofO(|E|+|V |) for the algorithm follows from the obser-
vation that each iteration of the loop in Lines 7–20 pushes the nodes inα-DF(w)
(which is charged toO(|E|)) and performs a constant amount of additional work
(which is charged toO(|V |)).

The class of programs with forest-structuredM contains the class of struc-
tured programs (by Theorem 11) and is contained in the class of reducible pro-
grams (by Proposition 7). Both containments turn out to be strict. For exam-
ple, it can be shown that for any CFG whose dominator tree is a chainMr is
a forest even though such a program may not be structured, due to the pres-
ence of non-well-nested loops. One can also check that the CFG with edges
(s,a), (s, b,), (s, c), (s, d), (a, b), (b, d), (a, c), (a, d) is reducible but itsMr re-
lation is not a forest.

If the Mr relation for a CFGG is a forest, then it can be shown easily that
iM(w) = minDF(w), where the min is taken with respect to anω-ordering of the
nodes. Then,Mr can be constructed efficiently by a simple modification of the node-
scan algorithm, where theDF sets are represented as balanced trees, thus enabling
dictionary and merging operations in logarithmic time. The entire preprocessing
then takes timeTp = O(|E| log |V |). Once the forest is available, queries can be
handled optimally as in Proposition 14.

8.4. APPLICATIONS TOCONTROL DEPENDENCE. In this section, we briefly and
informally discuss how theMr forest enables the efficient computation of setDF(w)
for a givenw. This is equivalent to the well-known problem of answeringnode
control dependencequeries [Pingali and Bilardi 1997]. In fact, the node control
dependence relation in a CFGG is the same as the dominance frontier relation in
the reverse CFGGR, obtained by reversing the direction of all arcs inG. Moreover,
it is easy to see thatG is structured if and only ifGR is structured.

By considering the characterization ofDF(w) provided by Proposition 15, it is
not difficult to show thatDF(w) containsw if and only if Mr has a self-loop atw
and, in addition, it contains all the proper ancestors ofw in Mr up to and including
the first one that happens to be the end node of a conditional region. Thus, a simple

Algorithms for Computing the Static Single Assignment Form 423

modification of the procedure in the proof of Proposition 14 will outputDF(w) in
time O(|DF(w)|).

One can also extend the method to compute setEDF(w) or, equivalently (edge)
control dependencesets, often calledcd sets. The key observation is that each edge
in Mr is “generated” by an up-edge in the CFG, which could be added to the data
structure forMr and output when traversing the relevant portion of the forest path
starting atw.

Finally, observe thatDF(u) = DF(w) if and only if, in Mr , (i) u and w are
siblings or are both roots and (ii)u andv have no self-loops. On this basis, one
can obtainDF-equivalence classes which, in the reverse CFG, correspond to the so
calledcdequivclasses.

In summary, for control dependence computations on structured programs, an
approach based on augmentations of theMr data structure offers a viable alternative
to the more general, but more complex approach using augmented postdominator
trees, proposed in Pingali and Bilardi [1997].

9. Conclusions

This article is a contribution to the state of the art ofφ-placement algorithms for
converting programs to SSA form. Our presentation is based on a new relation on
CFG nodes called themergerelation that we use to derive all known properties of
the SSA form in a systematic way. Consideration of this framework led us to invent
new algorithms forφ-placement that exploit these properties to achieve asymptotic
running times that match those of the best algorithms in the literature. We presented
both known and new algorithms forφ-placement in the context of this framework,
and evaluated performance on the SPEC benchmarks.

Although these algorithms are fast in practice, they are not optimal when
φ-placement has to be done for multiple variables. In the multiple variable problem,
a more ambitious goal can be pursued. Specifically, after suitable preprocessing of
the CFG, one can try to determineφ-placement for a variable in timeO(|S|+|J(S)|)
(i.e., proportional to the number of nodes where that variable generates a defini-
tion in the SSA form). We showed how this could be done for the special case of
structured programs by discovering and exploiting the forest structure of the merge
relation. The extension of this result to arbitrary programs remains a challenging
open problem.

Appendix A.

Definition 18. A control flow graph (CFG) G= (V, E) is a directed graph in
which a node represents a statement and an edgeu→ v represents possible flow
of control fromu to v. SetV contains two distinguished nodes:START, with no
predecessors and from which every node is reachable; andEND, with no successors
and reachable from every node.

Definition 19. A path from x0 to xn in graphG is a sequence of edges ofG
of the formx0 → x1, x1 → x2, . . . , xn−1 → xn. Such a path is said to besimple
if nodesx0, x1, . . . , xn−1 are all distinct; ifxn = x0 the path is also said to be a
simple cycle. The length of a path is the numbern of its edges. A path with no edges

424 G. BILARDI AND K . PINGALI

(n = 0) is said to beempty. A path fromx to y is denoted asx
∗→ y in general and

asx
+→ y if it is not empty. Two paths of the formP1 = x0→ x1, . . . , xn−1→ xn

and P2 = xn → xn+1, . . . , xn+m−1 → xn+m (last vertex onP1 equals first vertex
on P2) are said to beconcatenableand the pathP = P1P2 = x0 → x1, x1 →
x2, . . . , xn+m−1→ xn+m is referred to as theirconcatenation.

Definition 20. A nodew dominatesa nodev, denoted (w, v) ∈ D, if every
path fromSTART to v containsw. If, in addition,w 6= v, thenw is said tostrictly
dominate v.

It can be shown that dominance is a transitive relation with a tree-structured
transitive reduction called thedominator tree, T = (V, Dr). The root of this tree
is START. The parent of a nodev (distinct fromSTART) is called theimmediate
dominatorof v and is denoted byidom(v). We letchildren(w) = {v : idom(v) = w}
denote the set of children of nodew in the dominator tree. The dominator tree can
be constructed inO(|E|α(|E|)) time by an algorithm due to Lengauer and Tarjan
[1979], or inO(|E|) time by a more complicated algorithm due to Buchsbaum et al.
[1998]. The following lemma is useful in proving properties that rely on dominance.

LEMMA 8. Let G= (V, E) be a CFG. If w dominates u, then there is a path
from w to u on which every node is dominated by w.

PROOF. Consider any acyclic pathP = START
∗→ u. Sincew dominatesu, P

must containw. Let P1 = w
+→ u be the suffix of pathP that originates at nodew.

Suppose there is a noden on pathP1 that is not dominated byw. We can write
pathP1 asw

+→ n
+→ u; let P2 be the suffixn

+→ u of this path. Nodew cannot occur
on P2 becauseP is acyclic.

Sincen is not dominated byw, there is a pathQ = START
+→ n that does not

containw. The concatenation ofQ with P2 is a path fromSTART tou not containing
w, which contradicts the fact thatw dominatesu.

A key data structure in optimizing compilers is thedef-use chain[Aho et al.
1986]. Briefly, a statement in a program is said todefinea variableZ if it may write
to Z, and it is said touse Zif it may read the value ofZ before possibly writing
to Z. By convention, theSTART node is assumed to be a definition of all variables.
Thedef-use graphof a program is defined as follows:

Definition 21. Thedef-use graphof a control flow graphG = (V, E) for
variable Z is a graphDU = (V, F) with the same vertices asG and an edge
(n1, n2) whenevern1 is a definition of aZ, n2 is a use ofZ, and there is a path
in G from n1 to n2 that does not contain a definition ofZ other thann1 or n2. If
(n1, n2) ∈ F , then definitionn1 is said toreachthe use ofZ atn2.

In general, there may be several definitions of a variable that reach a use of that
variable. Figure 1(a) shows the CFG of a program in which nodesSTART, A and C
are definitions ofZ. The use ofZ in node F is reached by the definitions in nodes
A and C.

REFERENCES

AHO, A. V., SETHI, R.,AND ULLMAN , J. D. 1986. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, Mass.

Algorithms for Computing the Static Single Assignment Form 425

BILARDI , G.,AND PINGALI , K. 1996. A framework for generalized control dependence. InProceedings
of the SIGPLAN ’96 Conference on Programming Language Design and Implementation. ACM, New
York, 291–300.

BUCHSBAUM, A. L., KAPLAN, H., ROGERS, A., AND WESTBROOK, J. R. 1998. Linear-time pointer-
machine algorithms for least common ancestors, MST verification, and dominators. InProceedings of
the ACM Symposium on the Theory of Computing. ACM, New York, pp. 279–288.

CYTRON, R., AND FERRANTE, J. 1993. Efficiently computingφ-nodes on-the-fly. InProceedings of the
6th Workshop on Languages and Compilers for Parallel Computing(Aug.). Lecture Notes in Computer
Science, vol. 768, Springer-Verlag, New York, pp. 461–476.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph.ACM Trans. Prog. Lang.
Syst. 13, 4, (Oct.), 451–490.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1992. Introduction to Algorithms. The MIT Press,
Cambridge, Mass.

GEORGE, A., AND LIU, J. W.-H. 1981. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, N.J.

JOHNSON, R., AND PINGALI , K. 1993. Dependence-based program analysis. InProceedings of the
SIGPLAN ’93 Conference on Programming Language Design and Implementation(Albuquerque, N. M.,
June 23–25). ACM, New York, pp. 78–89.

LENGAUER, T., AND TARJAN, R. E. 1979. A fast algorithm for finding dominators in a flowgraph.ACM
Trans. Prog. Lang. Syst. 1, 1 (July), 121–141.

PETERSON, J.ET AL. 2002. Haskell: A purely functional language. http://www.haskell.org.
PEYTON JONES, S., AUGUSTSSON, L. BARTON, D., BOUTEL, B., BURTON, W., FASEL, J., HAMMOND, K.,

HINZE, R., HUDAK, P., HUGHES, J., JOHNSSON, T., JONES, M., LAUNCHOURY, J., MEIJER, E., PETERSON,
J., REID, A., RUNCIMAN, C.,AND WADLER, P. 2002. Haskell 98 Language and Libraries: The Revised
Report. Available at www.haskell.org.

PINGALI , K., AND BILARDI , G. 1995. APT: A data structure for optimal control dependence com-
putation. InProceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York, pp. 32–46.

PINGALI , K., AND BILARDI , G. 1997. Optimal control dependence computation and the Roman Chariots
problem. InACM Trans. Prog. Lang. Syst. 19, 3 (May), pp. 462–491.

PINGALI , K., BECK, M., JOHNSON, R., MOUDGILL, M.,AND STODGHILL, P. 1991. Dependence flow graphs:
An algebraic approach to program dependencies. InConference Record of the 18th Annual ACM Sym-
posium on Principles of Programming Languages(Jan.). ACM, New York, pp. 67–78.

PODGURSKI, A., AND CLARKE, L. 1990. A formal model of program dependences and its implications
for software testing, debugging and maintenance.IEEE Trans. Softw. Eng. 16, 9 (Sept.) 965–979.

RAMALINGAM , G. 2002. On loops, dominators, and dominance frontiers InProceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’00). ACM,
New York, pp. 233–241.

REIF, H., AND TARJAN, R. 1981. Symbolic program analysis in almost-linear time.J. Comput. 11, 1
(Feb.), 81–93.

SREEDHAR, V. C., AND GAO, G. R. 1995. A linear time algorithm for placingφ-nodes. InConference
Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages(San Francisco, Calif., Jan.). ACM, New York, pp. 62–73.

SHAPIRO, R. M., AND SAINT, H. 1970. The representation of algorithms. Tech. Rep. CA-7002-1432,
Massachusetts Computer Associates.

VAN EMDE BOAS, P., KAAS, R., AND ZIJLSTRA, E. 1977. Design and implementation of an efficient
priority queue.Math. Syst. Theory 10, 99–127.

WEISS, M. 1992. The transitive closure of control dependence: The iterated join.ACM Lett. Prog. Lang.
Syst. 1, 2 (June), 178–190.

WOLFE, M. 1995. High Performance Compilers for Parallel Computing. Addison-Wesley, Reading, Mass.

RECEIVED JULY1999;REVISED JANUARY2003;ACCEPTED JANUARY2003

Journal of the ACM, Vol. 50, No. 3, May 2003.

