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1. Introduction

Many program optimization algorithms become simpler and faster if programs are
first transformed t&tatic Single Assignme(BSA) form [Shapiro and Saint 1970;
Cytron et al. 1991] in which each usef a variable is reached by a single definition

of that variable. The conversion of a program to SSA form is accomplished by
introducingpseudo-assignmenas confluence points, that is, points with multiple
predecessors, in the control flow graph (CFG) of the program. A pseudo-assignment
for a variableZ is a statement of the forrd = ¢(Z, Z, ..., Z) where theg-
function on the right-hand side has one argument for each incoming CFG edge at
that confluence point. Intuitively, @-function at a confluence point in tHeFG
mergesnultiple definitions that reach that point. Each occurrencg oh the right

hand side of @-function is called gseudo-usef Z. A convenient way to represent
reaching definitions information afteérplacement is to rename the left-hand side

of every assignment and pseudo-assignmerZ ¢d a unique variable, and use

the new name at all uses and pseudo-uses reached by that assignment or pseudo-
assignment. In the CFG of Figure 1(a@)}functions forZ are placed at nodeésand

E; the program after conversion to SSA form is shown in Figure 1(b). Note that no
¢-function is needed at D, since the pseudo-assignment at B is the only assignment
or pseudo-assignment dfthat reaches node D in the transformed program.

An SSA form of a program can be easily obtained by plagirfgnctions for all
variables at every confluence point in the CFG. In general, this approach introduces
more ¢-functions than necessary. For example, in Figure 1, an unnecegsary
function for Z would be introduced at node D.

In this article, we study the problem of transforming an arbitrary program into
an equivalent SSA form by insertingrfunctions only where they are needed. A
¢-function for variableZ is certainly required at a nodef assignments to variable
Z occur along two nonempty paths— v andw — v intersecting only at. This
observation suggests the following definition [Cytron et al. 1991]:

Definition 1. Given aCFG G = (V, E) and a setS C V of its nodes such
thatSTART € S, J(S) is the set of all nodes for which there are distinct nodes
u, w € Ssuch that there is a pair of paths—> v andw = v, intersecting only at
v. The setd(S) is called thgoin set of S

If Sis the set of assignments to a variallle we see that we need pseudo-
assignments td at least in the set of nodegS). By considering the assignments
in S and these pseudo-assignments] {i8), we see that we might need pseudo-
assignments in the nodd¢SuU J(9)) as well. However, as shown by Weiss [1992]
and proved in Section 2.3,(SU J(9) = J(9). Hence, thep-assignments in the
nodesJ(S) are sufficient

The need fod sets arises also in the computation ofwesak control dependence
relation [Podgurski and Clarke 1990], as shown in [Bilardi and Pingali 1996], and
briefly reviewed in Section 5.1.1.

! Standard definitions of concepts like control flow graph, dominance, defs, uses, etc. can be found
in the Appendix.

2 Formally, we are looking for the least &(tS) (where pseudo-assignments must be placed) such that
J(SU ¢(9)) C ¢(S). If subsets oV are ordered by inclusion, the functidris monotonic. Therefore,

¢(9) is the largest element of the sequergel(S), J(SU J(9)), . ... SinceJ(SU J(9)) = J(S),

P(S) = I(9).
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Fic. 1. A program and its SSA form.

If several variables have to be processed, it may be efficientto preprocess the CFG
and obtain a data structure that facilitates the constructid{®ffor any givenS.
Therefore, the performance offaplacement algorithm is appropriately measured
by thepreprocessing time jfand preprocessing space,$ised to build and store
the data structure correspondingdpand by thequery time § used to obtaird (S)
from S, given the data structure. Then, the total time spentfptacement of all
the variables is

T¢—placement: O (Tp + Z Tq(SZ)) . (1)
z

Once the sef(S;) has been determined for each variablef the program, the
following renamingsteps are necessary to achieve the desired SSA form. (i) For each
v e Sz U J(S;), rename the assignmentZoas an assignment @, . (ii) For each
v € J(&), determine the arguments of theassignmentZ, = ¢(Zy,, ..., Zx)).

(iif) For each nodes € Uz whereZ is used in the original program, replaZeby

the appropriatZ,. The above steps can be performed efficiently by an algorithm
proposed in [Cytron et al. 1991]. This algorithm visits the CFG according to a
top-down ordering of its dominator tree, and works in time

Trenaming= O <|V| FHIEI+ ) (1Sl +13(S)1 + |Uz|)) : 2
z

Preprocessing timg, is at least linear in the siz¥ |+ | E| of the program and query
time Tq(S2) is at least linear in the size of its input and output sE8s|(H- | J(Sz)1).
Hence, assuming the number of uges |Uz| to be comparable with the number
of definitions ), |Sz|, we see that the main cost of SSA conversion is that of
¢-placement. Therefore, the present article focusag-ptacement algorithms.

1.1. SIMMARY OF PRIORWORK. A number of algorithms fap-placement have
been proposed in the literature. An outline of an algorithm was given by Shapiro
and Saint [1970]. Reif and Tarjan [1981] extended the Lengauer and Tarjan [1979]
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dominator algorithm to computg-placement for all variables in a bottom-up walk

of the dominator tree. Their algorithm takeg| E |« (| E|)) time per variable, but it

is complicated because dominator computation is foldedgrpdacement. Since
dominator information is required for many compiler optimizations, it is worth sep-
arating its computation from-placement. Cytron et al. [1991] showed how this
could be done using the idea ddminance frontiersSince the collective size of
dominance frontier sets can growgd$V |?) even for structured programs, numerous
attempts were made to improve this algorithm.@&mthe-flyalgorithm computing

J sets inO(|E|«(|EJ)) time per variable was described by Cytron and Ferrante
[1993]; however, path compression and other complications made this procedure
not competitive with the Cytron et al. [1991] algorithm, in practice. An algorithm
by Johnson and Pingali [1993], based on the dependence flow graph [Pingali et al.
2001] and working inO(|E|) time per variable, was not competitive in practice
either. Sreedhar and Gao [1995] described another approach that traversed the
dominator tree of the program to compultesets on demand. This algorithm re-
quiresO(|E|) preprocessing time, preprocessing space, and query time, and it is
easy to implement, but it is not competitive with the Cytron et al. [1991] algorithm

in practice, as we discuss in Section 7. The first algorithm with this asymptotic
performance that is competitive in practice with the Cytron et al. [1991] algorithm
was described by us in an earlier article on optimal control dependence compu-
tation [Pingali and Bilardi 1995], and is nam&ky pushingn this article. Lazy
pushing uses a data structure calledahgmented dominator tredD7 with a pa-
rameterB that controls a particular space-time trade-off. The algorithms of Cytron
et al. [1991] and of Sreedhar and Gao can be essentially viewed as special cases of
lazy pushing, obtained for particular valuesfof

1.2. OVERVIEW OF THE ARTICLE. This article presents algorithms fa#-
placement, some from the literature and some new ones, placing them in a frame-
work where they can be compared, based both on the structural properties of the
SSA form and on the algorithmic techniques being explotted.

In Section 2, we introduce a new relation called thergerelationM that holds
between nodeg andw of the CFG whenever € J({START, w}); thatis,v is a¢-
node for a variable assigned onlwaBndSTART. This is written aswW, v) € M, or
asv € M(w). Three key properties makd the cornerstone of SSA computation:

(1) If {START} C SC V, thenJ(S) = UyesM(w).

(2) v € M(w) if and only if there is a so-callel-path fromw to v in the CFG (as
defined later, aiM-path fromw to v is a path that does not contain any strict
dominator ofv).

(3) M is a transitive relation.

Property 1 reduces the computation.bto that of M. ConverselyM can be
uniquely reconstructed from thksets, sincevl(w) = J({START, w}). Hencethe
merge relation summarizes the information necessary and sufficient to obtain any
J set for a given CGF

3 Ramalingam [2000] has proposed a variant of the SSA form which may gkaaections at nodes
other than those of the SSA form as defined by Cytron et al. [1991]; thus, it is outside the scope of
this article.
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Property 2 provides a handle for efficient computationMfby linking the
merge relation to the extensively studiddminancerelation. A first step in this
direction is taken in Section 2.2, which presents two simple but inefficient algo-
rithms for computing théV relation, one based on graph reachability and the other
on dataflow analysis.

Property 3, established in Section 2.3, opens the door to efficient preprocessing
techniques based on any partial transitive reduckoof M (Rt = M). In fact,

J(9) = UxesM(X) = UyxesRT(x). Hence for any partial reduction R of M, (5)
equals the set R(S) of nodes reachable from some=xS in graph G = (V, R),
via a nontrivial path (a path with at least one edge).

As long as relations are representdment-wisdoy explicitly storing each
element (pair of CFG nodes), any SSA technique based on constructing r&ation
leads to preprocessing spae= O(|V| + |R]) and to query timdy = O(|V| +
|R|); these two costs are clearly minimized when= M;, the (total)transitive
reductionof M. However, the preprocessing tinig to obtain R from the CFG
G = (V, E) is not necessarily minimized by the choiée = M,. Since there
are CFGs for which the size of any reduction Mf is quadratic in the size of
the CFG itself, working with the element-wise representations might be greatly
inefficient. This motivates the search for a partial reductioMofor which there
are representations that (i) have small size, (ii) can be efficiently computed from the
CFG, and (iii) support efficient computation of the reachability information needed
to obtainJ sets.

A candidate reduction oM is identified in Section 3. There, we observe that
any M-path can be uniquely expressed as the concatenatjgninoé M-paths that
are not themselves expressible as the concatenation of srivelfeths. It turns
out that there is a prim#-path fromw to v if and only if v is in thedominance
frontier of w, where dominance frontiédF is the relation defined in Cytron et al.
[1991]. As a consequencBF is a partial reduction oM; that is,DF* = M. This
is a remarkable characterization of the iterated dominance fromiférssince the
definition of M makes no appeal to the notion of dominance.

Thus, we arrive at the following characterization of theets:

(1) Gpe = f(G), where f is the function that maps a control flow gra@hinto
the corresponding dominance frontier graph;

(2) J(S) = g(S, Gpr), whereg is the function that, given a s&of nodes and the
dominance frontier grapBor of G, outputsDF*(S).

The algorithms described in this article are produced by choosing (a) a specific
way of representing and computi@gr, and (b) a specific way of combining Steps
(1) and (2).

Algorithms for computingGpr can be classified broadly intpredecessor-
orientedalgorithms, which work with the s@F~*(v) of the predecessors Bp¢
of each node, andsuccessor-orientealgorithms, which work with the s&F(w)
of the successors iBpr of each nodav. Section 3.2 develops the key expressions
for these two approaches.

The strategies by which tHgF and the reachability computations are combined
are shown pictorially in Figure 2 and discussed next.

1.2.1 Two-Phase Algorithms.The entireDF graph is constructed, and then
the nodes reachable from input Sire determined. With the notation introduced
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(1) Two-phase algorithms (2) Lock-step algorithms (3) Lazy algorithms

Fic. 2. Three strategies for computiggplacement.

above, this corresponds to computind (x)), by computingf (x) first and passing
its output tog.

The main virtue of two-phase algorithms is simplicity. In Section 4, we describe
two such algorithmsedge-scana predecessor-oriented algorithm first proposed
here, anchode-scana successor-oriented algorithm due to Cytron et al. [1991].
Both algorithms use preprocessing tifig = O(|V| + |E| + |DF|) and prepro-
cessing spac&, = O(|V| + |DF|). To compute a sel(S), they visit the portion
of Gpr reachable frong, in time Ty = O(|V| + |DF]).

1.2.2 Lock-Step Algorithms. A potential drawback of two-phase algorithms is
that the size of th®F relation can be quite large (e.gDF| = Q(|V|?), even for
some very sparsei| = O(|V])), structured CFGs) [Cytron et al. 1991]. A lock-
step algorithm interleaves the computation of the reachablBBe(S) with that
of the DF relation. Once a node is reached, further paths leading to it do not add
useful information, which ultimately makes it possible to construct only a subgraph
Gpe = 1/(G, S) of theDF graph that is sufficient to determiidéS) = g'(S, Gpy).

The idea of simplifying the computation d{g(x)) by interleaving the computa-
tions of f andg is quite general. In the context of loop optimizations, this is similar
to loop jammingWolfe 1995], which may permit optimizations such as scalariza-
tion. Frontal algorithms for out-of-core sparse matrix factorizations [George and
Liu 1981] exploit similar ideas.

In Section 5, we discuss two lock-step algorithms, a predecessor-orpiilied
algorithm and a successor-orientpdshingalgorithm; for both,T,, S,, Ty =
O(IV| + |E]). A number of structural properties of the merge and dominance
frontier relations, established in this section, are exploited by the pulling and push-
ing algorithms. In particular, we exploit a result that permits us to topologically
sort a suitable acyclic condensate of the dominance frontier graph without actually
constructing this graph.

1.2.3 Lazy Algorithms. A potential source of inefficiency of lock-step algo-
rithms is that they perform computations at all nodes of the graph, even though
only a small subset of these nodes may be relevant for compMt{ig) for a given
S. A second source of inefficiency in lock-step algorithms arises when several sets
J(S), J(S)- - - have to be computed, since tBé¥ information is derived from
scratch for each query.
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Both issues are addressed in Section 6 with the introduction ofatige
mented dominator treea data structure similar to the augmented postdomina-
tor tree [Pingali and Bilardi 1997]. The first issue is addressed by construct-
ing the DF graph lazily as needed by the reachability computation. The idea
of lazy algorithms is quite general and involves computih@(x)) by com-
puting only that portion ofg(x) that is required to produce the output 6f
[Peterson et al. 1997]. In our context, this means that we compute only that por-
tion of the DF relation that is required to perform the reachability computation.
The second issue is addressed by precomputing and cablingets for cer-
tain carefully chosen nodes in the dominator tfe®&o-phase algorithms can be
viewed as one extreme of this approach in which the entire DF computation is
performed eagerly.

In Section 7, lazy algorithms are evaluated experimentally, both on a micro-
benchmark and on the SPEC benchmarks.

Although thesep-placement algorithms are efficient in practice, a query time
of O(|V| + |EJ) is not asymptotically optimal whe¢ sets have to be found for
several variables in the same program. In Section 8, for the special case of struc-
tured programs, we achielig = O(|S|+ |J(S)[), which is asymptotically optimal
because it takes at least this much time to read the inputSjsahd write the
output (setd(S)). We follow the two-phase approach; however, the total transitive
reductionM; of M is computed instead ®@F. This is becaus#/, for a structured
program is a forest which can be constructed, stored, and searched very efficiently.
Achieving query timeTy = O(|S| + |J(9)|) for general programs remains an
open problem.

In summary, the main contributions of this article are the following:

(1) We define thenergerelation on nodes of a CFG and use it to derive systemat-
ically all known properties of the SSA form.

(2) We place existing-placement algorithms into a simple framework (Figure 3).
(3) We present two nevd(|V| + |E|) algorithms for¢-placementpushingand
pulling, which emerged from considerations of this framework.

(4) For the special case of structured programs, we present the first approach to
answerp-placement queries in optimal tin@(|S| + | J(9)]).

2. The Merge Relation and Its Use ¢nrPlacement

In this section, we reducg-placement to the computation of a binary relatdn

on nodes called thmergerelation. We begin by establishing a link between the
merge and the dominance relations. Based on this link, we derive two algorithms
to computeM and show how these provide simple but inefficient solutions to the
¢-placement problem. We conclude the section by showing that the merge relation
is transitive but that it might prove difficult to compute its transitive reduction effi-
ciently. This motivates the search for partial reductions and leads to the introduction
of the DF relation in Section 3.

2.1. THE MERGE RELATION.
Definition 2. Mergeis a binary relatiorM € V x V defined as follows:
M = {(w, v)|v € J({START, w})}.
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[ Approach | Order | To | Sp | Tq |
M relation (Section 2):
Reachability pred. IVIIE| V|2 Y vesIMV)]
Backward dataflow succ. IVIIE|? IVI|IE| Y vesIMV)]
DF relation (Section 3):
Two phase (Section 4):
Edge scan pred. V] + |DF| V] + |DF| Zvesﬂ(s) |DF(V)|
Node scan [Cytron et al. 1991] succ. V| + |DF| V| + |DF| Zvesﬂ(s) |IDF(V)|
Lock-step (Section 5):
Pulling pred. V| + |E| V| + |E| V| + |E|
Pushing succ. V] +|E| V| + |E| VI +|E|
Lazy (Section 6):
Fully lazy [Sreedhar and Gao 1995] succ. VI +|E| V| + |E| VI +|E|
Lazy pulling [Pingali and Bilardi 1995] succ. | hg(IVI, |[Eupl) | hs(IVI, |Eupl) hs(IV1, |Eupl)

hs(IVI, IEupl) = [Eupl + (1 + 1/B)IV|
M; relation (Section 8):
Two phase for structured programs (Section 8):
[ Forest [ succ. | IVI+IEl | IVI+IEl ] 1S+ 13(S)] |

Fic. 3. Overview ofp-placement algorithmsO() estimates are reported for preprocessing fifpe
preprocessing spa, and query timd.

For any nodev, themerge sebf nodew, denoted byM (w), is the sefv|(w, v) €
M}. Similarly, we letM ~1(v) = {w|(w, v) € M}.

Intuitively, M (w) is the set of the nodes whepefunctions must be placed if the
only assignments to the variable areS&ART andw; conversely, ay-function is
needed at if the variable is assigned in any nodehdf 1(v). Trivially, M (START) =
{}. Next, we show that i§ containsSTART, thenJ(S) is the union of the merge sets
of the elements 08.

THEOREM 1. LetG=(V, E)and{START} C SCV.Then, IS = UyecsM(W).

PROOF. It is easy to see from the definitions dfand M thatUy,csM(w) C
J(S). To show thatl(S) € UyesM(w), consider a node € J(S). By Definition 1,
there are paths -5 v andb - v, witha, b € S, intersecting only a¢. By Defini-
tion 18, there is also a paBTART 5 v. There are two cases:

1) PathSTART = v intersects pathai>v only atv. Then,v € M(a), hence
V € UyesM(W).

(2) PathSTART = v intersects patlai> v at some node different from. Then,
let z be the first node on paTART Xv occurring on eithea = v orb = v.
WithouELIoss of generality, let be J9na—+> v. Then, there is clearly a path
START — z— V intersecting withb — v only atv, so thatv € M(b), hence
V € UyesM(w). O

The control flow graph in Figure 4(a) is the running example used in this paper.
RelationM defines a grapy = (V, M). The M graph for the running example
is shown in Figure 4(c). Theorem 1 can be interpreted graphically as folfows:
any subset S of the nodes in a CFGS)Jis the set of neighbors of these nodes in
the corresponding M graphor example J({b, c}) = {b, c, f, a}.
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FiG. 4. A control flow graph and its associated graphs.

There are deep connections between merge sets and the standard nddion of
inance(reviewed in the Appendix), rooted in the following result:

THEOREM 2. Foranywe V,v e M(w) iff there is a path WS v not contain-
ing idom(v).
PROOF

(=) If v e M(w), Definition 2 asserts that there are paffis= START X vand
P2 = w — v which intersect only at. Since, by Definition 20, every dominator
of v must occur orP1, no strict dominator o¥ can occur orP2. Hence P2 does
not containdom(v).

(<) Assume now the existence of a pah= w -5 v that does not contain
idom(v). By induction on the length (number of arcs) of p&hwe argue that there
exists path$?1 = START X vandP2 = w = v which intersect only at, that is,
w e M(v).

Base case Letthe length ofP be 1, thatisP consists only of edger — v. If
v =w, let P2 = P and letP1 be any simple path froi8TART to v, and the result
is obtained. Otherwise,andw are distinct. There must be a path= START v
that does not contaimwv, since otherwisew would dominatev, contradicting
Lemma 1(ii). The required result follows by settiR = P andP1=T.
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.START START
W
R1 y R1
\\ Ry
[ ]
v v,W
(i) w not on R1 (ifw=v (iii) w is on R1 and distinct from v

Fic. 5. Case analysis for Theorem 2.

Inductive step Let the length ofP be at least two so thd& = w — yi> V.
By the inductive assumption, there are pals= START > v andR2 = y—+> v
intersecting only at. LetC be the path obtained by concatenating the edge y
to the pathR2 and consider the following two cases:

—w ¢ (R1—{v}). Then, letP1 = R1 andP2 = C. Figures 5(i) and 5(ii) illustrate
the subcases # v andw = v, respectively.

—w € (R1 — {v}). Let D be the suffixw = v of R1 and observe tha and
D inter§ect only at their endpoints andv (see Figure 5(iii)). Let als@ =
START — V be a path that does not contaw(the existence of was established
earlier). Letn be the first node off that is contained in eithe€ or D (such
a node must exist since all three paths terminaté€).aConsider the following
cases:
(1) n=v.Then,weletP1 =T, andP2 = C.
(2) n € (D —C). Referring to Figure 5, |e® 1 be the concatenation of the prefix

START 5 n of T with the suffixn —> v of D, which is disjoint fromP2 = C

except forv.
(3) n € (C— D). The proof is analogous to the previous case and is omitted.

The dominator tree for the running example of Figure 4(a) is shown in Figure 4(b).
Consider the patP = e — b — d — f inFigure 4(a). This path does not contain
idom(f) = a. As required by the theorem, there are pafas= START — a —
b—d— fandP, =e— f withonly f incommon, thatisf € M(e).

The preceding result motivates the following definitionvbdfpaths.

Definition 3. Given aCFG G = (V, E), anM-pathis a pathw % v that does
not containdom(v).

Note thatM-paths are paths in the CFG, not in the graph ofitheelation. They
enjoy the following important property, illustrated in Figure 6.

LEMMA 1. IfP =w = visan M-path, then (i) idofw) strictly dominates all
nodes on P, hence (ii) ho strict dominator of v occurs on P.
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idom(v) ‘0' .
“\;‘b\idom (w)

; we M (v)

ve M(w)

FIG. 6. A pictorial representation of Lemma 1.

PROOF

(i) (By contradiction.) Letn be a node orP that is not strictly dominated by
idom(v). Then, there is a pat = START — n that does not contaidom(v);
concatenating) with the suffixn — v of P, we get a path fron$TART to v
that does not contaildom(v), a contradiction.

(i) Since dominance is tree-structured, any strict domindt@f v dominates
idom(v), hencdl is not strictly dominated bidom(v) and, by (i), can not occur
onP. O

We note that in Figure @dom(v) strictly dominatesv (Lemma 1(i)); so from
the definition ofidom it follows thatidom(v) also dominateglom(w).

2.2. GOMPUTING THEMERGERELATION. Approaches to computinigl can be
naturally classified as beirggiccessor orientedor eachw, M (w) is determined) or
predecessor orientgtbr eachv, M—1(v) is determined). Next, based on Theorem 2,
we describe a predecessor-oriented algorithm that uses graph reachability and a
successor-oriented algorithm that solves a backward dataflow problem.

2.2.1 Reachability Algorithm. Thereachability algorithmshown in Figure 7
computes the sé¥l ~(y) for any nodey in the CFG by finding the the set of nodes
reachable fronmy in the graph obtained by deletindom(y) from the CFG and
reversing all edges in the remaining graph (we call this gr&@h {dom(y))R. The
correctness of this algorithm follows immediately from Theorem 2.

PropPosITION1. The reachability algorithm for SSA has preprocessing time
To = O(IV||E|), preprocessing spacg,S= O(|V| + |[M]) < O(|V|?), and query
time Ty = O(3_,csIM(V))).

ProOF The bound on preprocessing time comes from the fact that there are
V| visits each to a subgraph @& = (V, E), hence taking timeD(|E|). The
bound on preprocessing space comes from the need to|storedes andM |
arcs to represent thid relation. The bound on query time comes from the fact that
eachM(v) for v € Sis obtained in time proportional to its own size. The bound
on T, also subsumes the time to construct the dominator tree, whi€i{(| &),

(cf. Appendix). I

2.2.2 Dataflow Algorithm. We now show that the structure of th\é-paths
leads to an expression for dt(w) in terms of the set$/1(u) for successora of
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Procedure Merge(CFG);

Assume CFG =V, E);
M ={}
for ve V do
LetG' = (G — idom(V))R;
TraverseG’ from v, appending\, v) to M for each visitedw.
od
returnM;

rocedure ¢-placement(M, S);

J={}
for eachv € S

for each ¢, w) € M appendw to J;
returnJ;

ThRONERETTTNOOOR N R

Fic. 7. Reachability algorithm.

w in the CFG. This yields a system of backward dataflow equations that can be

solved by any one of the numerous methods in the literature [Aho et al. 1986].
Here and in several subsequent discussions, it is convenient to partition the edges

of the control flow graplG = (V, E) aSE = Ejee + Eyp, Where (| = V) € Ejee

(atree edge of the dominator tree of the graph)# idom(v), and 4 — Vv) € E,

(an up-edgé otherwise. Figure 4(a,b) shows a CFG and its dominator tree. In

Figure 4(a),a — b andg — h are tree edges, while — a ande — b are

up-edges. For future reference, we introduce the following definition.

Definition 4. Given aCFG G = (V,E), (u — v) € E is an up-edge if
u # idom(v). The subgraph\(, E,,) of G containing only the up-edges is called
the «-DF graph.

Figure 4(d) shows the-DF graph for the CFG of Figure 4(a). Since an up-edge
(u — v) is a path fromu to v that does not contaiilom(v), its existence implies
v € M(u) (from Theorem 2); then, from the transitivity bf, E -, € M. In general,
the latter relation does not hold with equality (e.g., in Figura4& M(g) buta
is not reachable frong in the «-DF graph). Fortunately, the s&f(w) can be
expressed as a function e-DF(w) and the set# (u) for all CFG successorsof
w as follows. We lethildren(w) represent the set of childrenwfin the dominator
tree.

THEOREM 3. The merge sets of the nodes of a CFG satisfy the following set of
relations, for we V:

M(w) = a—DF(W) U (Uyesucqw) M (U) — children(w)). 3)
PrROOF

(a) We first prove thaM(w) € «-DF(w) U (UUESUCQW)M(U) — chlldrer(w)) If
v € M(w), Theorem 2 implies that there is a pafth = w = v that does
not containidom(v); therefore,w == idom(v). If the length of P is 1, then
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M(START) = M(a) — {a} M(START) = {}

M@ = M(b)UM(c)—{b,c, f} M@@) = {a}
M(b) = {c}UM(c)uU M(d) — {d} M) = {b,c, f,a}
M(c) = M(e) — {e} M(c) = {b,c, f,a}
M(d) = {c, f} UM(c) U M(f) M) = {b,c, f,a}
M(e) = {f}UM(b)uU M(f) M(e) = {b,c, f,a}

M(f) = M(9) — {9, h, END} M(f) = {a}

M(g) = M(h)U M(END) — {h, END} M(g) = {a}

M(h) = {a}uM(a) M(h) = {a}

M(END) = {} M(END) = {}

(a) Dataflow equations (b) Solution of dataflow equations

Fic. 8. Equations set up and solved by the dataflow algorithm, for the CFG in Figure 4(a).

VE succ(wl andw # idom(v), sov € «a-DF(w). OtherwiseP can be written
asw — u— V. Sinceidom(v) does not occur on the subpathﬁ v,V e M(u);
furthermore, sincev # idom(v), v € M(u) — children(w).

(b) We now show thaM(w) O a-DF(W) U (Uyesucqw) M (u) — children(w)). If
v € a-DF(w), the CFG edg& — Vv is anM-path fromw tov; sov € M(w)
from Theorem 2. I € (Uyesucqw) M (u) — children(w)), (i) there is a CFG edge
w — U, (i) v € M(u) and (iii) w # idom(v). From Theorem 2, there is an
M-pathP; = u X v. The path obtained by prepending edge> u to pathP,
is anM-path; thereforey € M(w). [

We observe that sinee—DF(w) andchildren(w) are disjoint, no parentheses are
needed in Eq. (3), if set union is given precedence over set difference. For the CFG
of Figure 4(a), theMl(w) sets are related as shown in Figure 8. For an acyclic CFG,
the system of equations (3) can be solvedN¥tw) in a single pass, by processing
the nodesw’s in reversal topological order of the CFG. For a CFG with cycles,
one has to resort to the more general, well-established framework of equations over
lattices [Aho et al. 1986], as outlined next.

THEOREM 4. The M relation is the least solution of the dataflow equati@)s
where the unknowndM (w) : w € V} range over the lattic& of all subsets of V,
ordered by inclusion.

PROOF. LetL be the least solution of the dataflow equations. Clearlg M,
sinceM is also a solution. To conclude thelt = L it remains to prove thdl C L.
We establish this by induction on the length of shortest (minimal lengtpaths.

Consider any paing, v) € M such that there is akl-path of length 1 fronw
tov. This means that € «-DF(w), so from Eq. (3),\, v) € L.

Inductively, assume that iu( v) € M and the minimal lengttM-path fromu
tov has lengtn, then @, v) L+. Consider a pairw, v) € M for whic+h thereis a
minimal lengthM-pathw — u— v of length 1 + 1). The subpathi — v is itself
anM-path and is of length; therefore, by inductive assumption, {/) € L. Since
w # idom(v), it follows from Eq. (3) that\y,v) e L. [

The least solution of dataflow equations (3) can be determined by any of the
techniques in the literature [Aho et al. 1986]. A straightforward iterative algo-
rithm operates in spad®(|V|?) and timeO(|V || E|?), charging timeO(|V|) for
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bit-vector operations. The above considerations, together with arguments already
developed in the proof of Proposition 1, lead to the following result:

PROPOSITION2. There is a dataflow algorithm for SSA with preprocessing time
Tp = O(V|?|E|?), preprocessing spacg S= O(|V|+|M]) < O(|V|?), and query
time T, = O3 _,csIM(V))).

In Section 5, as a result of a deeper analysis of the structure df tiedation, we
shall show that a topological ordering of the (acyclic condensate) dfttlyzaph
can be constructed in tim®(|E|), directly from the CFG. Using this ordering,
a single-pass over the dataflow equations becomes sufficient for their solution,
yielding T, = O(|V[|E]) for the computation oM.

2.3. M IS TRANSITIVE. In general, the merge relation of a CFG can be quite
large, so it is natural to explore ways to avoid computing and storing the entire
relation. As a first step in this direction, we show that the fact Mapaths are
closed under concatenation leads immediately to a prooMhisttransitive.

THEOREM 5. If P, = x—+>+y and B = yi> z are M-paths, then so is their
concatenation P= P;P, = x — z. Hence, M is transitive.

PrROOF. By Definition 3, P; does not contaidom(y) and P, does not contain
idom(z). We show thaidom(z) cannot occur inP;, so concatenating; and P,
gives a pathP from x to z that does not contaildom(z), as claimed. We note that
idom(z) is distinct fromy since it does not occur on pa#. Furthermore, from
Lemma 1(i),idom(z) must strictly dominatey. If idom(z) = idom(y), then this
node does not occur oR, and the required result is proved. Otherwis®m(z)
strictly dominatesdom(y), so we conclude from Lemma 1(ii) thatom(z) does
not occur onP;.

From Theorem 2, it follows tha® is anM-path. [J

As an illustration of the above theorem, with reference to Figure 4(a), consider
the M-pathsP; = b — d — f (which does not contaildom(f) = a) andP, =
f — g - h — a(which does not contaidom(a) = START). Their concatenation
P=PP,=b—-d—-> f—> g— h— adoes not contaidom(@) = START;
hence it is arM-path.

Combining Theorems 1 and 5, we obtain another graph-theoretic interpretation
of a join set JS) as the set of nodes reachable in the M graph by nonempty paths
originating at some node in &.follows trivially that J(SU J(S)) = J(9S), as first
shown by Weiss [1992].

2.4. TRANSITIVE REDUCTIONS OFM. We observe that iR is a relation such
that M = R, the set of nodes reachable from any node by nonempty paths is
the same in the two graplGr = (V, R) andGy = (V, M). Since|R| can be
considerably smaller thafM|, using G instead ofGy, as the data structure to
support queries could lead to considerable savings in space. The query time can
also decrease substantially. Essentially, a query requires a visit to the subgraph
Gr(S) = (SU M(9), Rs) containing all the nodes and arcs reachable f®in
Gr. Therefore, since the visit will spend constant time per node and per edge, query
time isTy = O(|S| + IM(9)| + [Rg|).

Determining a relatiorR such thatR™ = M for a given transitiveM is a well-
known problem. Usually, aR of minimum size, called th&ransitive reductiorof
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M is the goal. UnlesM is acyclic (i.e., the grapB  is a dag) R is not necessarily
unique. However, if the strongly connected component®adre collapsed into
single vertices, the resulting acyclic condensate (célldx has a unique transitive
reductionM; which can be computed in tim@(|V || Mc|) [Cormen et al. 1992] or
O(]V]?) by using anO(n”) matrix multiplication algorithnf. In summary:

ProPOSITION3. The reachability algorithm fog-placement (with transitive
reduction preprocessing) has preprocessing time=I O(|V|(|E| + min(|M]|,
IV|7~1)), preprocessing space,S= O(|V |+ | M), and query time = O(|V |+
IMF(S)D).

Clearly, preprocessing time is too high for this algorithm to be of much practical
interest. It is natural to ask whether the merge relalibhas any special structure
that could facilitate the transitive reduction computation. Unfortunately, for general
programs, the answer is negative. Given an arbitrary reldigh(V — START) x
(V — START), it can be easily shown that the CF&= (V, RU ({START} x (V —
START))) has exacthR™ as its own merge relatiod . In particular, ifR is transitive
to start with, therM = R.

Rather than pursuing thetal transitive reduction oM, we investigateartial
reductions next.

3. The Dominance Frontier Relation

We have seen that thd relation is uniquely determined by the set Mifpaths
(Theorem 2), which is closed under concatenation (Theorem 5). We can therefore
ask the question: “what is the smallest subse¥iepaths by concatenating which

one obtains alM-paths?” We characterize this subset in Section 3.1 and discover
that it is intimately related to the well-known dominance frontier relation [Cytron

et al. 1991]. Subsequent subsections explore a number of properties of dominance
frontier, as a basis for the development of SSA algorithms.

3.1. RRIME FACTORIZATION OF M-PATHS LEADS TO DOMINANCE FRONTIER
We begin by defining the key notion needed for our analysid of

Definition 5. Given a graptc = (V, E) and a setM of paths closed under
concatenation, a path € M is primewhenever there is no pair of nonempty paths
P, and P, such thatP = P, P,.

With reference to the example immediately following Theorem 5 and lettihg
denote the set dfl-paths, we can see thRtis not prime whileP; andP, are prime.
Our interest in prime paths stems from the following fact, whose straightforward
proof is omitted.

PrOPOSITION4. With the notation of DefinitioB, path P can be expressed as
the concatenation of one or more prime paths if and only # RA.

Next, we develop a characterization of the prime paths for the ddt-paths.

4 For instancey = 3 for the standard algorithm and = log, 7 ~ 2.81 for Strassen’s algorithm
[Cormen et al. 1992].
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PROPOSITIONS. LetM bethe setof M-pathsina CFG and letPw — x; —
-+ = Xp_1 — V be a CFG path. Then, P is prime if and only if

(1) w strictly dominates nodeg xxa, . .., X,—1, and
(2) w does not strictly dominate v.

PROOF AssumeP to be a prime path. Sinck is an M-path, by Lemma 1,
w does not strictly dominate. Then, letP; be the shortest, nonempty prefix Bf
terminating at a vertex; that is not strictly dominated bw. Clearly, P; satisfies
Properties (1) and (2). We claim thf = P. Otherwise, the primality oP would
be contradicted by the factorizatidh= P; P, where (i) P, is anM-path, since by
constructioridom(x;) is not dominated by, hence does not occur d#, and (ii)
P, is anM-path sinceadom(v) does not occur o® (an M-path ending at) and a
fortiori on P5.

Assume now thaP is a path satisfying Properties (1) and (2). We show that
is prime, that is, it is inM and it is not factorable.

(a) P is anM-path. In fact, ifidom(v) were to occur orP, then by Property (1),
w would dominatedom(v) and, by transitivity of dominance, it would strictly
dominatev, contradicting Property (2). Thu8 does not contaiildom(v) and
hence, by Theorem 2 it is avi-path.

(b) P can not be factored aB = P;P, where P, and P, are both nonempty
M-paths. In fact, for any proper prefiy = w = Xi, X is strictly dominated
by w. Then, by Lemma lidom(x;) occurs onPy, which therefore is not an
M-path. [J

The reader familiar with the notion of dominance frontier will quickly recognize
that Properties (1) and (2) of Proposition 5 imply thdielongs to the dominance
frontier of w. Before exploring this interesting connection, let us recall the rele-
vant definitions:

Definition 6. A CFG edgey — V) is in theedge dominance frontier EO¥#)
of nodew if

(1) w dominatesu, and
(2) w does not strictly dominate.

If (u - v) € EDF(w), thenv is said to be in thelominance frontier DEw) of
nodew and the dominance frontier relation is said to hold betweamdv, written
(w, Vv) € DF.

Itis often useful to consider tHeF graphGpr = (V, DF) associated with binary
relation DF, which is illustrated in Figure 4(e) for the running example. We are
now ready to link the merge relation to dominance frontier.

PROPOSITION6. There exists a prime M-path fromw to v if and onl§wf v)
DF.

PrROOF Assume first thaP is a primeM-path fromw to v. Then,P satisfies
Properties (1) and (2) of Proposition 5, which straightforwardly imply, according
to Definition 6, that%,_, — V) € EDF(w), hence, v) € DF.
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Assume now that, w) € DF. Then, by Definition 6, there is in the CFG an
edgeu — v such that (i)w dominateau and (ii) w does not strictly dominate.
By (i) and Lemma 8, there is a pa@h = w —> u on which each node is dominated
by w. If we let R = w = u be the smallest suffix & whose first node equais,
then each node oR except for the first one is strictly dominated Wy This fact
together with (ii) implies that the path = R(u — V) satisfies Properties (1) and
(2) of Proposition 5, hence it is a prinM-path fromw tov. [

The developments of this section lead to the sought partial reductibh of
THEOREM 6. M = DF*.

PROOF. The stated equality follows from the equivalence of the sequence of
statements listed below, where the reason for the equivalence of a statement to its
predecessor in the list is in parenthesis.

—(w, V) € M;
—there exists aM-path P from w to v, (by Theorem 2);
—forsomek > 1, P = PP, .- - P, whereP, = w; e v; are primeM-paths such

thatw; = w, vy = v, and fori = 2,...,k, w; = vij_1, (by Proposition 4 and
Theorem 5);
—forsomek > 1, fori =1,...,Kk, (wj,V;) € DF, withw; = w, vy = v, and for

i =2,...,k wj =vi_1, (by Proposition 6);
—(w, v) € DF*, (by definition of transitive closure).[]

In general DF is neither transitively closed nor transitively reduced, as can be
seen in Figure 4(e). The presenceoef f and f — a and the absence of— a
in theDF graph show that it is not transitively closed. The presence of atige<c,
¢ — f,andd — f shows that it is not transitively reduced.

Combining Theorems 1 and 6, we obtain a simple graph-theoretic interpretation
of ajoin set JS) = ¢(S, Gpe) as the set of nodes reachable in the DF graph by
nonempty paths originating at some node in S.

3.2. WO IDENTITIES FOR THEDF RELATION. Most of the algorithms described
in the rest of this article are based on the computation of all or part @fhgraph
Gpr = f(G) corresponding to the given CFG. We now discuss two identities
for the DF relation, the first one enabling efficient computatiorDéf1(v) sets (a
predecessor-oriented approach), and the second one enabling efficient computation
of DF(w) sets (a successor-oriented approach).

Definition 7. LetT =< V, F > be atree. Fok, y € V, let [x, y] denote the
set of vertices on the simple path connectingndy in T, and let , y) denote
[x, y] — {y}. In particular, k, x) is empty.

For example, in the dominator tree of Figure 4(l),d4] = {d, b, a}, [d, a) =
{d,b},and d,g] ={d, b, a, f, g}.

THEOREM 7. EDF = [, )cglU, idom(v)) x {u — v}, where
[u, idom(Vv)) x{u — v} = {(w, u — V)| W € [u, idom(V))}.
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PROOF

2: Suppose W, a—b) € Jy_yelu, idomv)) x u— v. Therefore, &,
idom(b)) is non-empty which means thah (— b) is an up-edge. Applying
Lemma 1 to this edge, we see thdbm(b) strictly dominatesa. Therefore,w
dominates but does not strictly dominatg which implies that\, v) € DF from
Definition 6.

C:If (w, v) € DF, there is an edgei(— V) such thatv dominates but does not
strictly dominatev. Thereforew € [u, START] — [idom(v), START], which implies
u # idom(v). From Lemma 1, this means thidbm(v) dominatesu. Therefore, the
expressiony, START] — [idom(v), START] can be written asy, idom(v)), and the
required result follows. O

Based on Theorem MF~(v) can be computed as the union of the sets
[u, idom(v)) for all incoming edgesy — V). Theorem 7 can be viewed as the
DF analog of the reachability algorithm of Figure 7 for the relation: to find
DF~Y(v), we overlay on the dominator tree all edgaes+ v) whose destination
is v and find all nodes reachable fromwithout going throughdom(v) in the
reverse graph.

The next result [Cytron et al. 1991] provides a recursive characterization of
the DF(w) in terms of DF sets of the children ofv in the dominator tree.
There is a striking analogy with the expression fM{w) in Theorem 3. How-
ever, the dependence of tBé expression on the dominator-tree children (rather
than on the CFG successors neededMgris a great simplification, since it en-
ables solution in a single pass, made according to any bottom-up ordering of the
dominator tree.

THEOREM 8. Let G = (V, E) be a CFG. For any node w V,
DF(W) = a-DF(W) U (Ucechigrenw) DF(C) — children(w)).

For example, consider noddsandb in Figure 4(a). By definition,a-DF(d) =
{c, f}. Since this node has no children in the dominator ti@e(d) = {c, f}.
For nodeb, «-DF(b) = {c}. Applying Theorem 8, we see thBi~(b) = {c} U
({c, f} —{d}) = {c, f}, asrequired.

PROOF

(S) We show that, ilv eDF(w), thenv is contained in the set described by the
right-hand side expression. Applying Definition 6, we see that there must be an
edge (1 — V) such thatv dominatesui but does not strictly dominate There are
two cases to consider:

(1) If w = u, thenv € «—DF(w), sov is contained in the set described by the
right-hand side expression.

(2) Otherwisew has a childc such thatc dominatesu. Moreover, sincev does
not strictly dominatey, ¢ (a descendant af) cannot strictly dominate either.
Thereforey € DF(c). Furthermorey is not a child ofw (otherwisew would
strictly dominatev). Thereforey is contained in the set described by the right-
hand side expression.
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(2) We show that ifv is contained in the set described by the right-hand side
expression, them € DF(w). There are two cases to consider.

(1) If v e a—DF(w), there is a CFG edgev(— V) such thatw does not strictly
dominatev. Applying Definition 6 withu = w, we see that € DF(w).

(2) If v e (Ucechiarenw)DF(c) — children(w)), there is a chilcc of w and an edge
(u — v) such that (ix dominatesu, (ii) c does not strictly dominate and (iii)
v is not a child ofw. From (i) and the fact that is the parent o€, it follows
thatw dominatesu.

Furthermore, ifw were to strictly dominate, then either (ay would be a

child of w, or (b)v would be a proper descendant of some chileoPossibility
(a) is ruled out by fact (iii). Fact (ii) means thatannot be a proper descendant
of c. Finally, if v were a proper descendant of some chitd w other tharc,
thenidom(v) would not dominateau, which contradicts Lemma 1. Therefore,
w cannot strictly dominate. This means that € DF(w), as required. (J

3.3. S'RONGLY CONNECTEDCOMPONENTS OF THEDF AND M GRAPHS  There
isanimmediate and important consequence of Theorem 7, which is usefulin proving
many results about theF and M relations. Thdevelof a node in the dominator
tree can be defined in the usual way: the root has a level of O; the level of any
other node is 1 more than the level of its parent. From Theorem 7, it follows that
if (w, v) € DF, then there is an edge (— v) € E such thaw e [u, idom(v));
thereforeJevel(w) > level(v). Intuitively, this means thdDF (and M) edges are
oriented in a special way with respect to the dominator treBFaor M edge
overlayed on the dominator tree is always directed “upwards” or “sideways” in
this tree, as can be seen in Figure 4. Furthermorey ji/f € DF, thenidom(v)
dominatesw (this is a special case of Lemma 1). For future reference, we state
these facts explicitly.

LEMMA 2. Givena CFG =V, E) and its dominator tree D, let levél) be the
length of the shortest path in D froBTART to v. If (w, v) € DF, then leve{w) >
level(v) and idonfv) dominates w. In particular, if level) = level(v), then w
and v are siblings in D.

This result leads to an important property of strongly connected components
(scc’s) in theDF graph. Ifx andy are two nodes in the same scc, every node
reachable fronx is reachable frony and vice-versa; furthermore fis reachable
from a node,y is reachable from that node too, and vice-versa. In terms of the
M relation, this means thadl (x) = M(y) andM ~1(x) = M~(y). The following
lemma states thatthe scc’s have a special structure with respectto the dominator tree.

LEMmA 3. Given a CFG =(V, E) and its dominator tree D, all nodes in a
strongly connected component of the DF relation (equivalently, the M relation) of
this graph are siblings in D.

ProoOF. Consider any cycle; — n, — n3 — --- — ng in the scc. From
Lemma 2, it follows thatevel(n;) > level(ny) > level(ns) > --- > level(ny);
therefore, it must be true thagvel(n;) = level(ny) = level(nz)---. From
Lemma 2, it also follows that;, n,, etc. must be siblings iD. [

In Section 5, we show how the strongly connected components @iffgraph
of a CFG ¥, E) can be identified irO(| E|) time.
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3.3.1 Self-Loopsinthe M Graph.In general, relatiotM is not reflexive. How-
ever, for some nodes, (w, w) € M and the merge grapiv( M) has a self-loop
atw. As a corollary of Theorem 2 and of Lemma 1, such nodes are exactly those
w’s contained in some cycle whose nodes are all strictly dominataddmg(w).

An interesting application of self-loops will be discussed in Section 5.1.1.

3.3.2 Irreducible Programs. There is a close connection between the existence
of nontrivial cycles in theDF (or M) graph and the standard notionio&ducible
control flow graph [Aho et al. 1986].

ProPOSITION7. A CFG G = (V, E) is irreducible if and only if its M graph
has a nontrivial cycle.

PrOOF

(=) AssumeG isirreducible. ThenG has a cycl€ on which no node dominates
all other nodes o&. Therefore, there must be two nodeandb for which neither
idom(a) nor idom(b) is contalned inC. Cycle C obviously contains two paths
P, = a—> band P, = b5 a. SinceC does not contaildom(b), neither doe$>;
which is therefore is aM-path, implying thab € M (a). Symmetricallya € M(b).
Therefore, there is a nontrivial cycle containing nodesdb in the M graph.

(<) Assume theM graph has a nontrivial cycle. Latandb be any two nodes on
this cycle. From Lemma 3dom(a) = idom(b). By Theorem 2, there are nontrivial
CFG paths Pl — a5 b which does not contaidom(b) (equivalentlyjdom(a)),
andP, = b= awhich does notcontaldon’(a) (equivalentlyjdom(b)). Therefore,
the concatenatio@ = P; P, is a CFG cycle containing andb but not containing
idom(a) oridom(b). Clearly, no node ifC dominates all other nodes, so that CFG
G isirreducible. [

It can also be easily seen that the absence fkbmof self loops (which implies
the absence of nontrivial cycles) characterizes acyclic programs.

3.4. 3ze oF DF ReLATION. How large isDF? SinceDF C V x V, clearly
IDF| < |V|2. From Theorem 7, we see that an up-edge of the CFG generates a
number ofDF edges equal to one plus the difference between the levels of its
endpoints in the dominator tree. If the dominator tree is deep and up-edges span
many levels, thefDF| can be considerably larger thi|. In fact, it is not difficult
to construct examples of sparse (i/&] = O(]V])), structured CFGs, for which
IDF| = Q(|V|?), proportional to the worst case. For example, it is easy to see that
a program with a repeat-until loop nest withoops such as the program shown in
Figure 18 has ®F relation of sizen(n + 1)/2.

It follows that an algorithm that builds the entiBF graph to dop-placement
must take2(|V |?) time, in the worst case. As we will see, it is possible to do better
than this by building only those portions of tB& graph that are required to answer
a¢-placement query.

4. Two-Phase Algorithms

Two-phase algorithmsompute the entirBF graphGpr = f(G) inapreprocessing
phase before doing reachability computatidS) = g(S, Gpg) to answer queries.
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4.1. BEbGE SCAN ALGORITHM. The edge scan algorithm (Figure 9) is essen-
tially a direct translation of the expression fDF given by Theorem 7. A little
care is required to achieve the time complexityTgf= O(|V| + |DF[) given in
Proposition 8. Letv be the destination of a number of up-edges (8ay— Vv,

U, — Vv,...). A naive algorithm would first visit all the nodes in the interval
[uy, idom(v)) addingv to the DF set of each node in this interval, then visit all
nodes in the intervald,, idom(v)) addingv to the DF sets of each node in this
interval, etc. However, these intervals in general are not disjoittisifthe least
common ancestor afy, Uy, ..., nodes in the interval [idom(v)) will in general

be visited once for each up-edge terminating,diut only the first visit would do
useful work. To make the preprocessing time proportional to the size Ditsets,

all up-edges that terminate at a giveRG nodev are considered together. TDé

sets at each node are maintained essentially as a stack in the sense that the first node
of a (orderedDF set is the one that was added most recently. The traversal of the
nodes in intervalliy, — idom(v)) checks each node to seifs already in thddF

set of that node by examining the first element of th&tset in constant time; if
that element is, the traversal is terminated.

Once theDF relation is constructed, procedufeplacements executed for each
variable Z to determine, given the s& where Z is assigned, all nodes where
¢-functions forZ are to be placed.

ProPOSITION8. The edge scan algorithm for SSA in FigQteas preprocessing
time To = O(]V| + |DFJ), preprocessing space,S= O(|V| + |DFJ), and query

PROOF.  Inthe preprocessing stage, tid¢|V |+ |E|) is spent to visit the CFG,
and additional constant time is spent for each of|Dig| entries of {/, DF), for a
total preprocessing timé&, = O(|V| + |E| 4 |DF|) as described above. The term
|E| can be dropped from the last expression sjide= | Ejeel +|Eypl < |V|+|DF|.

The preprocessing space is that needed to skr®F). Query is performed by
procedurep-placement of Figure 9. Query time is proportional to the size of the
portion of (v, DF) reachable frons. [

4.2. NODE SCAN ALGORITHM. The node scan algorithm (Figure 9) scans the
nodes according to a bottom-up walk in the dominator tree and constructs the
entire seDF(w) when visitingw, following the approach in Theorem 8. Thé
sets can be represented, for example, as linked lists of nodes; then, union and
difference operations can be done in time proportional to the size of the operand
sets, exploiting the fact that they are subset¥ ofSpecifically, we make use of
an auxiliary Boolean arrajs, indexed by the elements &f and initialized to O.

To obtain the union of two or more sets, we scan the corresponding lists. When
a nodeyv is first encounteredBg[v] = 0), it is added to the output list and then
B[v] is set to 1. Further occurrenceswére then detected(v] = 1) and are not
appended to the output. Finally, for eaclm the output list,B[v] is reset to 0, to
leave B properly initialized for further operations. Set difference can be handled
by similar techniques.

PrOPOSITION9. The node scan algorithm for SSA in Fig@ieas preprocessing
t!me To = O(]V| + |DF|), preprocessing space,S= O(|V| + |DF|), and query
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Procedure EdgeScanDF(CFG, DominatorTree D):returns DF;

{

1. Assume CFG =V, E);

2: DF = {};

3: for each node

4: for each edge = (u — v) € E do
5: if u % idom(v) then

6: w =u;

7: while (w # idom(v))&(v ¢ DF(w)) do
8: DF(w) = DF(w) U {v};

9: w = idom(w)

10: od

11: endif

12: od

13: od

14: returnDF;

rocedure NodeScanDF(CFG,DominatorTree D):returns DF;

Assume CFG =V, E);
Initialize DF(w) = {} for all nodesw;
for each CFG edgeu(— v) do
if (u # idom(v)) DF(u) = DF(u) U {v}
od
for each nodev € D in bottom-up ordedo
DF(w) = DF(W) U (Ucechildrerw) DF(C) — children(w));
od
return DF;

rocedure ¢-placement(DF,S):returns set of nodes wherg-functions are needed;

In DF, mark all nodes in se$;
M(S) = {}
Enter all nodes irs onto work-listM;
while work-list M is not emptydo
Remove nodev from M;
for each node in DF(w) do
M(S) = M(S U {v};
if v is not markedhen

CRIXNOIDARXNET T OXNOO AN R T

Mark v;
10: Enterv into work-list M;
11: endif
12: od
13:  od

14:  returnM(S);

FiG. 9. Edge scan and node scan algorithms.
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ProOOF  Time O(|V| + |E|) is required to walk over CFG edges and compute
the «-DF sets for all nodes. In the bottom-up walk, the work performed at node
w is bounded as follows:

work(w) oc [a(w)| + > |DF(c)| + [children(w)|.

cechildren(w)

Therefore, the total work for preprocessing is boundeddgiV | + |E| + |DF|)
which, as before, i©(]V| + |DF|). The preprocessing space is the space needed
to store ¥/, DF). Query time is proportional to the size of the subgrapnafiF)

that is reachable frors. [

4.3. DscussioN Node scan is similar to the algorithm given by Cytron et al.
[1991]. As we can see from Propositions 8 and 9, the performance of two-phase
algorithms is very sensitive to the size of IDE relation. We have seen in Section 3
that the size of th®F graph can be much larger than that of the CFG. However, real
programs often have shallow dominator trees; hence, Bfegraph is comparable
in size to the CFG; thus, two-phase algorithms may be quite efficient.

5. Lock-Step Algorithms

In this section, we describe twock-stepalgorithms that visiall the nodes of the
CFG but compute only asubgra@. = f'(G, S) of theDF graph thatis sufficient

to determinel (S) = g'(S, Gp). Specifically, the set reachable by nonempty paths
that start at a node iBin G, is the same as iGpe. The f andg’ computations are
interleaved: when a nodeis reached through the portion of tbé graph already
built, there is no further need to examine otBd#f edges pointing te.

The setDF*(S) of nodes reachable from an input Stia nonempty paths can
be computed efficiently in an acyclizF graph, by processing nodes in topological
order. At each step, pulling algorithm would add the current node Bd-+(9) if
any of its predecessors in tié# graph belongs t& or has already been reached,
that is, already inserted IDF*(S). A pushingalgorithm would add the successors
of current node t®F*(S) if it belongs toS or has already been reached.

The class of programs with an acycliF graph is quite extensive since it is
identical to the class of reducible programs (Proposition 7). However, irreducible
programs hav®F graphs with nontrivial cycles, such as the one between nodes
b andc in Figure 4(e). A graph with cycles can be conveniently preprocessed by
collapsing into a “supernode” all nodes in the same strongly connected component,
as they are equivalent as far as reachability is concerned [Cormen et al. 1992]. We
show in Section 5.1 that it is possible to exploit Lemma 3 to compute a topological
ordering of (the acyclic condensate of) B graph inO(| E|) time, directly from
the CFG,without actually constructing the DF grapfThis ordering is exploited
by the pulling and the pushing algorithms presented in subsequent subsections.

5.1. TOPOLOGICAL SORTING OF THEDF AND M GRAPHS It is convenient to
introduce theM-reduced CFG, obtained from a CR&by collapsing nodes that
are part of the same scc in tegraph ofG. Figure 10 shows th¥l-reduced CFG
corresponding to the CFG of Figure 4(a). The only nontrivial scc inMhgraph
(equivalently, in theDF graph) of the CFG in Figure 4(a) contains nodes b and c,
and these are collapsed into a single node named bc iMtheduced graph. The
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(a) M-reduced CFG (b) Dominator Tree
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Fic. 10. M-reduced CFG corresponding to CFG of Figure 4(a).

dominator tree for thiM-reduced graph can be obtained by collapsing these nodes
in the dominator tree of the original CFG.

Definition 8. Given aCFG G = (V, E), the correspondin/l-reduced CFG
is the graphG = (V E) whereV is the set of strongly connected components of
M, and & — b) € E if and only if there is an edgei(— v) € E such thau € a
andv eb.

Without loss of generality, thg-placement problem can be solved on the reduced
CFG. In fact, if M denotes the merge relation {8, andw < V denotes the
component to whiclw belongs, therM(w) = Us )X is the union of all the
scc’'sX reachable viavi-paths from the scw tontainingw. The key observation
permitting the efficient computation of scc’s in tbé graph is Lemma 3, which
states that all the nodes in a single scc ofidfregraph are siblings in the dominator
tree. Therefore, to determine scc’s, it is sufficient to consider the subset DFthe
graph, called the-DF graph that is defined next.

Definition 9. Thew-DF relation of a CFG is the subrelation of ¥ relation
that contains only those pains (V) for whichw andv are siblings in the dominator
tree of that CFG.

Figure 4(f) shows the-DF graph for the running example. Figure 11 shows an
algorithm for computing this graph.
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Procedure w-DF(CFG, DominatorTree);

{

1: Assume CFG =V, E);

2: DF, = {};

3: Stack ={};

4:  Visit(Root of DominatorTree);

5: returnG, = (V, DF,);

6:  Procedure Visit(u);

7: Pushu on Stack;

8 for each edge = (u — v) € E do
9: if u # idom(v) then

10: let ¢ = node pushed aft@tom(v) on Stack;
11: Append edge — v to DF,,;
12: endif

13: od

14: for each childd of u do

15: Visit(d); od

16: Popu from Stack;

FiG. 11. Building thew-DF graph.

LEMMA 4. Thew-DF graphfor CFG G= (V, E)is constructedin QE|) time
by the algorithm in Figurel 1.

Proor From Theorem 7, we see that each CFG up-edge generates one edge
in the w-DF graph. Therefore, for each CFG up-edge> v, we must identify
the childc of idom(v) that is an ancestor af, and introduce the edge V) in
the »-DF graph. To do this in constant time per edge, we build@kBF graph
while performing a depth-first walk of the dominator tree, as shown in Figure 11.
This walk maintains a stack of nodes; a node is pushed on the stack when it is first
encountered by the walk, and is popped from the stack when it is exited by the
walk for the last time. When the walk reaches a nade/e examine all up-edges
u — v; the child ofidom(v) that is an ancestor afis simply the node pushed after
idom(v) on the node stack.[]

_PropPosITION10. Given the CFG G= (V, E), its M-reduced versios =
(V, E) can be constructed in time (Q/| + |E|).

PROOF The steps involved are the following, each taking linear time:

(1) Construct the dominator tree [Buchsbaum et al. 1998].
(2) Construct thev-DF graph §/, DF,) as shown in Figure 11.
(3) Compute strongly connected components\afliF,) [Cormen et al. 1992].
(4) Collapse each scc into one vertex and eliminate duplicate edges.
Itis easy to see that the dominator tree ofshe@educed CFG can be obtained by

collapsing the scc’s of the-DF graph in the dominator tree of the original CFG.
For the CFG in Figure 4(a), the only nontrivial scc in théDF graph is{b, c}, as
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is seen in Figure 4(f). By collapsing this scc, we get eeduced CFG and its
dominator tree shown in Figures 10(a) and 10(b).

It remains to compute a topological sort of tbé graph of theM-reduced
CFG (without building theDF graph explicitly). Intuitively, this is accomplished
by topologically sorting the children of each node according ta#i2F graph of
the M-reduced CFG and concatenating these sets in some bottom-up order such as
post-order in the dominator tree. We can describe this more formally as follows:

Definition 10. Given aM-reduced CFG5 = (V, E), let the children of each
node in the dominator tree be ordered left to right according to a topological sorting
of the w-DF graph. A postorder visit of the dominator tree is said to yield an
w-orderingof G.

The w-DF graph of theM-reduced CFG of the running example is shown in
Figure 10(d). Note that the children of each node in the dominator tree are ordered
sothatthe left-to-right ordering of the children of each node is consistent with a topo-
logical sorting of these nodes in taeDF graph. In particular, nodec is ordered
before its siblingf . The postorder visit yields the sequence, e, bc, h, g, f,a >,
which is a topological sort of the acyclic condensate ofdRegraph of the original
CFG in Figure 4(a).

THEOREM 9. An w-ordering of an M-reduced CFG & (V, E) is a topolog-
ical sorting of the corresponding dominance frontier grapyh DF) and merge
graph(V, M) and it can be computed in time({E|).

ProOOF Consider an edgeM — Vv) € DF. We want to show that, in the
w-ordering,w precedes.

From Theorem 7, it follows that there is a siblisgf v such that (i)s is an
ancestor ofv and (ii) there is an edge (~ v) in theDF (andw-DF) graph. Since
thew-ordering is generated by a postorder walk of the dominatorweeecedes
s in this order; furthermores precedey because am-ordering is a topological
sorting of thew-DF graph. Sincel = DF*, anw-ordering is a topological sorting
of the merge graphs as well. The time bound follows from Lemma 4, Proposition 10,
Definition 10, and the fact that a postorder visit of a tree takes linear time.

From Proposition 7, it follows that for reducible CFGs, there is no need to
determine the scc’s of the-DF graph in order to compute-orderings.

5.1.1 An Application to Weak Control Dependencén this section, we take a
short detour to illustrate the power of the techniques just developed by applying
these techniques to the computationwdak control dependenc&his relation,
introduced in [Podgurski and Clarke 1990], extends standard control dependence
to include nonterminating program executions. We have shown in [Bilardi and
Pingali 1996] that, in this context, the standard notion of postdominance must be
replaced with the notion of loop postdominance. Furthermore, loop postdominance
is transitive and its transitive reduction is a forest that can be obtained from the
postdominator tree by disconnecting each node in a suitabR e its parent.
Asitturns out,B = J(K U{START}), whereK is the set of self-loops of the merge
relation of thereverse CFGwhich are called therowns The following proposition
is concerned with the efficient computation of the self-loopMof
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Procedure Pulling(D,S);//D is dominator tree,S is set of assignment nodes

1: Initialize DF*(S) to {};

2: Initialize all nodes in dominator tree as off;
3 for each node in w-orderingdo

4 if v.e Sthen TurnOn(Dy) endif ;

5: for each up-edge — v do

6: if uis onthen

7: Addv to DF(S);

8 if v is off then TurnOn(Dy) endif ;
9: break //exit inner loop

10: endif

11: od

rocedureTurnOn(D, X);

for eachc € children(x) in D do

}
P
{
1: Switchx on;
2
3 if cis off then TurnOn(D¢)
}

Fig. 12. Pulling algorithm.

ProPOSITION11. The self-loops of the M-graph for CFG & (V, E) can be
found in Q(|V| + |E)).

PROOFE Itis easy to see that there is a self-loop Mrat a nodew € V if
and only if there is a self-loop &t (the scc containing) in the M-reduced graph
= (V, E). By Proposition 10$ can be constructed in tim®(|V| + |E|) and
|ts self-loops can be easily identified in the same amount of time.

When applied to the reverse CFG, Proposition 11 yields the set of criwns
Then, J(K U {START}) can be obtained fronK U {START} by using any of the
¢-placement algorithms presented in this article, several of which also run in time
O(IV| + |EJ). In conclusion, the loop postdominance forest can be obtained from
the postdominator tree in time proportional to the size of the CFG. As shown in
[Bilardi and Pingali 1996], once the loop postdominance forest is available, weak
control dependence sets can be computed optimally by the algorithms of [Pingali
and Bilardi 1997].

In the reminder of this section, we assume that the CH@-ieduced.

5.2. RILLING ALGORITHM. The pulling algorithm (Figure 12) is a variation of
the edge scan algorithm of Section 4.1. A bit-map representation is kept for the
input setS and for the output sel(S) = DF'(S), which is built incrementally.

We process nodes in-ordering and maintain, for each nodean off/on binary
tag, initially off and turned on when processing the first dominatar wefich is
SUDFT(9), denotedv,,. Specifically, when a nodeis processed, either ifit belongs
to Sor ifitis found to belong tdF*(S), a top-down walk of the dominator subtree
rooted atv is performed turning on all visited nodes. If we visit a nodalready
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Procedure Pushing(S)S is set of assignment nodes
{

1: Initialize DF*(S) set to{};

2: Initialize «-DF andPDF sets of all nodes t§};

for each CFG edgeau(— v) do

if (u # idom(v)) a-DF(u) = «-DF(u) U {v}
od
for each nodev in w-orderingdo

PDF(S,w) = a-DF(w) U (U

if w e SUDF*(S) then

for each node in PDF(w) do
if v >, wandv ¢ DF*(S) then Add v to DF*(S) endif
endif ;
od

ce(childrertw)—s-DF*(9) PPFO));

R
N kRO

—_

FiG. 13. Pushing algorithm.

turned on, clearly the subtree rootedxamnust already be entirely on, making it
unnecessary to visit that subtree again. Therefore, the overall overhead to maintain
the off/on tags iO(|V|).

To determine whether to add a nod DF*(S), each up-edge — v incoming
into v is examined: ifu is turned on, thew is added and its processing can stop.
Let TurnOn (D,w,) be the call that has switchad on. Clearly,w, belongs to
the set {1, idom(v)) of the ancestors ai that precede in w-ordering which, by
Theorem 7, is a subset 8fF~1(v). Hencey is correctly added t®F*(S) if and
only if one of itsDF predecessorsy,) is in SU DF*(S). Such predecessor could
bev itself, if v € Sand there is a self-loop at for this reason, when € S, the
call TurnOn (D,v) (Line 4) is made before processing the incoming edges. Clearly,
the overall work to examine and process the up-edgé€3(j&,,|) = O(|E]). In
summary, we have:

ProPOsSITION12. The pulling algorithm for SSA of Figuehas preprocessing
time T, = O(|V| + |EJ), preprocessing spacg,S= O(|V| + |EJ), and query time
Tq = O(IVI] + |E).

Which subgraplG,. = (G, S) of the DF graph gets (implicitly) built by the
pulling algorithm? The answer is that, for eachke DFT(S), G} contains edge
(wy — V), whereu is the first predecessor in the CFG adjacency list of notiet
has been turned on whenis processed, amnd, is the ancestor that turned it on.
As a corollary,Gp: contains exactlyDF*(S)| edges.

5.3. RUSHING ALGORITHM. The pushing algorithm (Figure 13) is a variation
of the node scan algorithm in Section 4.2. It processes nodesoirdering and
buildsDF*(S) incrementally; when a node € SUDF*(S) is processed, nodes in
DF(w) that are not already in s (S) are added to it. A se®DF(S, w), called
the pseudo-dominance frontieis constructed with the property that any node in
DF(w) — PDF(w) has already been addedl&(S) by the timew is processed.
Hence, it is sufficient to add tOF+(w) the nodes ilPDF(S, w) N DF(w), which
are characterized by being afterin the w-ordering. SpecificallyPDF(S, w) is
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defined (and computed) as the unioneDF(w) with the PDFs of those children
of w that are not irSU DF*(S).

It is efficient to represent eadPDF set as a singly linked list with a header
that has a pointer to the start and one at the end of the list, enabling constant time
concatenations. The union at Line 7 of procedaushingis implemented as list
concatenation, hence in constanttime per child for a glGtgaY |) contribution. The
resulting list may have several entries for a given node, but each entry corresponds
to a unique up-edge pointing at that nodevlE SUDF*(S), then each nodein
the list is examined and possibly addedX®(S). Examination of each list entry
takes constant time. Once examined, a list no longer contributes RIXReset of
any ancestor; hence, the global work to examine lis@(i€|). In conclusion, the
complexity bounds are as follows:

PrOPOSITION 13. The pushing algorithm fop-placement of Figurd 3is cor-
rect and has preprocessing timg = O(|V| + |E|[), preprocessing space,S=
O(IV| + |E|), and query time = O(|V| + |EJ).

PrROOF Theorem 8 implies that a node the BEIF(S, w) computed in Line 7
either belongs t®F(w) or is dominated bwv. Therefore, every node that is added
to DF*(S) by Line 10, belongs to it (since <,, w implies thatv is not dominated
by w). We must also show that every nodebR™(S) gets added by this procedure.
We proceed by induction on the length of theordering. The first node in such an
ordering must be aleaf and, for a leafPDF(S, w) = DF(w). Assume inductively
that for all nodes beforew in the w-ordering, those ilDF(n) — PDF(S, n) are
added. Since all the children of precede it in they-ordering, it is easy to see that
all nodes irDF(w) — PDF(S, w) are added aftew has been visited, satisfying the
inductive hypothesis. ]

The DF subgraphG,: = (G, S) implicitly built by the pushing algorithm
contains, for eacl € DF*(S), theDF edge (v — V) wherew is the first node
of DF~1(v) N (SU DF*(S)) occurring inw-ordering. In general, this is a differ-
ent subgraph from the one built by the pulling algorithm, except when the latter
works on a CFG representation where the predecessors of each node are listed in
w-ordering.

5.4. DscussioN Thew-DF graphwas introduced in [Bilardi and Pingali 1996]
under the name o$ibling connectivity grapto solve the problem of optimal
computation ofveak control dependengodgurski and Clarke 1990].

The pulling algorithm can be viewed as an efficient version of the reachability
algorithm of Figure 7. At any node the reachability algorithm visits all nodes that
are reachable from in the reverse CFG alongpthsthat do not contaimdom(v),
while the pulling algorithm visits all nodes that are reachable framthe reverse
CFG along @single edgehat does not contain (i.e., originate frordpm(v). The
pulling algorithm achieves efficiency by processing nodesarder, which ensures
that information relevant tg can be found by traversing single edges rather than
entire paths. Itis the simplegtplacement algorithm that achieves linear worst-case
bounds for all three measurég, S, andT.

For the pushing algorithm, the computation of thereduced graph can be
eliminated and nodes can simply be considered in bottom-up order in the dominator
tree, at the cost of having to revisit a node if it gets marked after it has been visited
for computing itsPDF set.
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Reif and Tarjan [1981] proposed a lock-step algorithm that combifted
placement with the computation of the dominator tree. Their algorithm is a modi-
fication of the Lengauer and Tarjan algorithm which computes the dominator tree
in a bottom-up fashion [Lengauer and Tarjan 1979]. Since the pushing algorithm
traverses the dominator tree in bottom-up order, it is possible to combine the com-
putation of the dominator tree with pushing to obtaiplacement irO(|E|« (| E|))
time per variable. Cytron and Ferrante [1993] have described a lock-step algorithm
which they calbn-the-flicomputation of merge sets, wi®(| E|« (] E|)) query time.

Their algorithm is considerably more complicated than the pushing and pulling
algorithms described here, in part because it does nabimeering.

6. Lazy Algorithms

A drawback of lock-step algorithms is that they visit all the nodes in the CFG,
including those that are not iM(S). In this section, we discuss algorithms that
compute set&DF(w) lazily, that is, only ifw belongs toM(S), potentially saving
the effort to process irrelevant parts of tB& graph. Lazy algorithms have the
same the asymptotic complexity as lock-step algorithms, but outperform them in
practice (Section 7).

We first discuss a lazy algorithm that is optimal for computif- sets, based on
the approach of [Pingali and Bilardi 1995, 1997] to compute the control dependence
relation of a CFG. Then, we apply these resuligfolacement. The lazy algorithm
works for arbitrary CFGs (i.eM-reduction is not necessary).

6.1. ADT: THE AUGMENTED DOMINATOR TREE. One way to compute
EDF(w) isto appeal directly to Definition 6: traverse the dominator subtree rooted at
w and for each visited nodeand edgey — V), output edgey — V) if w does not
strictly dominatev. Pseudocode for this query procedure, callegDownEDF, is
shown in Figure 14. Here, each nagles assumed to have a node listontaining
all the targets of up-edges whose source (se., a-DF(u)). TheVisit procedure
calls itself recursively, and the recursion terminates when it encouniensredary
node For now, boundary nodes coincide with the leaves of tree. However, we shall
soon generalize the notion of boundary node in a critical way. For the running
example of Figure 4, the calilDF(a) would visit nodeda, b, d, c, e, f, g, h, END}
and output edgeh(— a) to answer th&DF query.

This approach idazy because th&DF computation is done only when it is
required to answer the query. THepDownEDF procedure takes tim®(|E|)
since, in the worst case, the entire dominator tree has to be visited and all the
edges in the CFG have to be examined. To decrease query time, one can take an
eagerapproach by precomputing the entE®F graph, storing eackEDF(w) in
list L(w), and lettingeverynode be a boundary node. We still ussgpDownEDF
to answer a query. The query would visit only the queried nedend complete
in time O(|EDF(w)|). This is essentially the two-phase approach of Section 4—
the query time is excellent but the preprocessing time and space requirements are
O(|V| + |EDF)).

As a trade-off between fully eager and fully lazy evaluation, we can arbitrarily
partitionV into boundary and interior nodeSppDownEDF will work correctly
if L(w) is initialized as follows:
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Procedure TopDownEDFQueryNodg

EDF = {};
Visit (QueryNodeQueryNodg
return EDF;

rocedure Visit(QueryNodeVisitNodg;

for each edgey — v) € L[VisitNodé do
if idom(v) is a proper ancestor @ueryNode
then EDF = EDF U {(u — v)}; endif
od;
if VisitNodeis not a boundary node
then
for each child C oMisitNode
do
Visit(QueryNodeC)
od;

©CONOTR®NET T WOWN R

H
e

11: endif ;
}

Fic. 14. Top-down query procedure fRDF.

Definition 11. L[w] = EDF(w)if wisaboundarynode and.[w] = a-EDF(w)
if w is aninterior node.

In general, we assume that leaves are boundary nodes, to ensure proper termi-
nation of recursion (this choice has no consequencé.[ov] since, for a leaf,
EDF(w) = «-DF(w).) The correctness diopDownEDF is argued next. It is easy
to see that if edgeu(— v) is added t&=DF by Line 3 ofVisit, then it does belong
to EDF(w). Conversely, letf — v) € EDF(w). Consider the dominator tree path
fromw tou. Ifthere is no boundary node on this path, then procetiop®ownEDF
outputs 1 — v) when it visitsu. Else, letb be the first boundary node on this path:
then (4 — v) € EDF(b) and it will be output when the procedure vidits

So far, no specific order has been assumed for the edges>( v1), (U —

Vo), ... inlist L[w]. We note from Lemma 2 thadom(v;), idom(v,), ... dominate

w and are therefore totally ordered by dominance. To improve efficiency, the edges
in L[w] are ordered so that, in the sequeitmn(v,), idom(v,), ..., anode appears
afterits ancestors. Then, the examination loop of Line 1 in procéiayr®ownEDF

can terminate as soon as a nadis encountered whelidom(v) does not strictly
dominate the query node.

Different choices of boundary nodes (solid dots) and interior nodes (hollow dots)
are illustrated in Figure 15. Figure 15(a) shows one extreme in whichSayT
and the leaves are boundary nodes. SIBDE-(START) = ) andEDF(w) = «-
DF(w) for any leafw, by Definition 11, only «-EDF edges are stored explicitly,
in this case. Figure 15(b) shows the other extreme in which all nodes are boundary
nodes, hence aliDF edges are stored explicitly. Figure 15(c) shows an intermediate
point where the boundary nodes &®ART, END, a, d, e, f, andh.

If the edges from a boundary node to any of its children, which are never
traversed by procedurBopDownEDF, are deleted, the dominator tree becomes
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FIG. 15. Zone structure for different values @f

partitioned into smaller trees callednes For example, in Figure 15(c), there are
seven zones, with node set$START}, {END}, {a}, {b,d}, {c, €}, {f}, {g,h}. A
gueryTopDownEDF(q) visits the portion of a zone below nodewhich we call
the subzonessociated witly. Formally:

Definition 12. A nodew is said to be in theubzone £ associated with a node
qif (i) wis adescendant of, and (ii) the path [gq,w) does not contain any boundary
nodes. Azoneis a maximal subzone; that is, a subzone that is not strictly contained
in any other subzone.

In the implementation, we assume that for each node there is a Boolean variable
Bndry?set to true for boundary nodes and set to false for interior nodes. In Line 2
of ProcedureVisit, testing whetherdom(v) is a proper ancestor d@ueryNode
can be done in constant time by comparing thég (depth-first search) number
or theirlevelnumber. (Both numbers are easily obtained by preprocessing; the dfs
number is usually already available as a byproduct of dominator tree construction.)
It follows immediately that the query tim@y is proportional to the sum of the
number of visited nodes and the number of reported edges:

Qq = O(IZ4] + [EDF(q)I). (4)

To limit query time, we shall define zones so that, in terms of a design parameter
B (a positive real number), for every nodeve have:

|Zq] < BIEDF(q)| + 1. )

Intuitively, the number of nodes visited whqris queried is at most one more than
some constant proportion of the answer size. We observe that, BRE(D) is
empty (e.g., whely = START or whenq = END), Condition (5) forceZ, = {q},
for anyg.
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By combining Egs. (4) and (5), we obtain

Qq = O((8 + 1)IEDK(q))). (6)

Thus, for constang, query time is linear in the output size, hence asymptotically
optimal. Next, we consider space requirements.

6.1.1 Defining Zones. Can we define zones so as to satisfy Inequality (5) and
simultaneously limit the extra space needed to store an up-edge ¥) at each
boundary nodev dominatingu and properly dominated by? A positive answer
is provided by a simple bottom-up, greedy algorithm that makes zones as large
as possible subject to Inequality (5) and to the condition that the children of a
given node are either all in separate zones or all in the same zone as theiparent.
More formally:

Definition 13.  If nodev is aleaf or (13 higrery) 1 Zul) > (BIEDF(V)| + 1),
thenv is a boundarynode andz, is {v}. Else,v is aninterior node andZ, is
{V} Uuechitdrenv) Zu-

The term (1+ 3, higrery) | Zul) is the number of nodes that would be visited
by a query at node if v were made an interior node. If this quantity is larger than
(BIEDF(V)| + 1), Inequality (5) fails, so we makea boundary node.

To analyze the resulting storage requirementsXleienote the set of boundary
nodes that are not leaveswfe (V — X), then only«-DF edges out o are listed
in L[w]. Each up-edge irkE,, appears in the list of its bottom node and, possibly,
in the list of some other node K. For a boundary node, |[L[w]| = |[EDF(w)|.
Hence, we have:

SOILwl = Y (LWl + Y IL[W]| < [Eyl+ Y [EDFW)].  (7)

weV we(V—X) weX weX

From Definition 13, ifw € X, then

EoFw) < Y & (®)

uechildren(w) ﬁ

Whenwe sum over € X both sides of Inequality (8), we see that the right-hand
side evaluates at most {¥'|/8, since all subzonez,’s involved in the resulting
double summation are disjoint. Henge,, .« IEDF(w)| < |V|/B, which, used in
Relation (7) yields:

V|
ILIW]| = IEupl+?. 9)
Therefore, to store this data structure, we n€4¢V |) space for the dominator
tree,O(|V|) further space for thB8ndry? bit and for list headers, and finally, from
Inequality (9),0(|E.,| + [V I/B) for the list elements. All together, we hatg =
O(IEwpl + (1 +1/8)IVI).

5 The removal of this simplifying condition might lead to further storage reductions.



408 G. BILARDI AND K . PINGALI

We summarize th&ugmented Dominator TreéD T for answerindEDF queries:

(1) T: dominator tree that permits top-down and bottom-up traversals.
(2) dfgv]: dfsnumber of noder.

(3) Bndryqv]: Boolean. Set to true ¥ is a boundary node, and set to false other-
wise.

(4) L[v]: list of CFG edges. If is a boundary nodd,[v] is EDF(v); otherwise, it
is a-DF(v).

6.1.2 ADT Construction. The preprocessing algorithm that constructs the
search structurgl DT takes three inputs:

—The dominator tred@ , for which we assume that the relative order of two nodes
one of which is an ancestor of the other can be determined in constant time.

—The setE,, of up-edgesy{ — v) ordered byidom(v).
—Real paramete$ > 0, which controls the space/query-time trade-off.

The stages of the algorithm are explained below and translated into pseudocode in
Figure 16.

(1) For each node x, compute the numbégk]b(respectively, [tx]) of up-edges
(u — v)withu = x (respectively, idoifv) = x). Set up two counters initialized
to zero and, for eachu(— v) € E,,, increment the appropriate counters of
its endpoints. This stage takes tir@¢|V | + |E,|), for the initialization of the
2|V| counters and for the|E,,| increments of such counters.

(2) For each node x, comput&DF(x)|. It is easy to see thaEDF(x)| = b[x] —
tX] + Xy cceniarery IEDF(Y)]. Based on this relation, tH&DF(x)| values can
be computed in bottom-up order, using the valueb[al andt[x] computed
in Step (1), in timeO(|V]).

(3) Determine boundary nodedy appropriate setting of a Boolean variable
Bndryqx] for each node. Letting z[x] = |Z|, Definition 13 becomes:

If x is a leaf or (1+ >\ conigrenpo ZYD) > (BIEDF(X)| + 1), thenx is a
boundary node, and[x] is set to 1. Otherwisex is an interior node, and
Z[X] = (1 + Zyechildrer(x) Z[ ])

Again, z[x] and Bndryqx] are easily computed in bottom-up order, taking
time O(|V]).

(4) Determine, for each node x, the next boundary node NxtBrny the path
from x to the rootlf the parent ofx is a boundary node, then it is the next
boundary forx. Otherwise x has the same next boundary as its parent. Thus,
NxtBndryx] is easily computed in top-down order, taki@y|V|) time. The
next boundary for root of set to a conventional valueoco, considered as a
proper ancestor of any node in the tree.

(5) Construct list Lfx] for each node xBy Definition 11, given an up-edge
(u — v), v appears in list_[x] for x € W {wo = u, ws, ..., wg}, where
W,, containsu as well as all boundary nodes contained in the dominator-tree
path [u, idom(v)) from u (included) toidom(v) (excluded).
Specificallyw; = NxtBndryw; _4], fori =1, 2, ..., k andwy is the proper
descendant allom(v) such thaidom(v) is a descendant dxtBndrjwy].
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Procedure BuildADT(T: dominator tree, E yp: array of up-edges,g: real);

: /' b[x]/t[x]: number of up-edges &> v with u/idonfv) equal x
: for each nodexin T do
b[x] := t[x] := 0; od
. for each up-edga — v in Eyp do
Incremento[u];
Increment [idom(v)];
od;
. //Determine boundary nodes.
: for each node in T in bottom-up ordedo
10:  //ICompute output size when x is queried.
110 a[x] = b[x] - t[X] + Zycchildreny@l Y1;
12: Z[x] =1+ Zycchildrenx 2L Y]; //Tentative zone size.
13:  if(xisaleaf)or g[x] > B xa[x] + 1)

14: then// Begin a new zone

15: Bndryqx] := true;

16: Z[x] =1,

17: else//Put x into same zone as its children
18: Bndryqx] := false;

19:  endif

20: od;

21: // Chain each node to the first boundary node that is an ancestor.
22: for each node in T in top-down ordedo

23: if X is root of dominator tree

24: then NxtBndn[Xx] := - oo;

25: else ifBndryqidom(x)]

26: then NxtBndryfx] := idom(x);

27: elseNxtBndryx] := NxtBndryidom(x)];
28: endif

29:  endif

30: od

31: // Build the lists L{x]
32: for each up-edgeu(— v) do

33: W :=u;

34:  whileidom(v) properly dominates do
35: appendv to end of listL[w];

36: w = NxtBndryjw];

37: od

}

Fic. 16. Constructing thelDT structure.

Lists L[x]'s are formed by scanning the edges+{ v) in E,, in decreasing
order ofidom(v). Each node is appended at the end of (the constructed portion
of) L[x] for eachx in W,,. This procedure ensures that, in eachllipt], nodes
appear in decreasing orderidbm(v).

. This stage takes time proportional to the number of append operations, which
is Y xev ILIX]I = O(IEul + IVI/B).
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In conclusion, the preprocessing timeTis= O(|E,p| + (1 + 1/B8)|V]). The
developments of the present subsection are summarized in the following theorem.

THEOREM 10. Given a CFG, the corresponding augmented dominator tree
can be constructed in time,T= O(|E,,| + (1 + 1/8)|V|) and stored in space
Sy = O(IEyl + (1 + 1/B)IV]). A query to the edge dominance frontier of a node
g can be answered in timeQ= O((8 + 1)|[EDF(q)|).

6.1.3 The Role of8. Parametep essentially controls the degree of caching
of EDF information. For a given CFG, g% increases, the degree of caching and
space requirements decrease while query time increases. However, for A,fixed
the degree of caching adapts to the CFG being processed in a way that guarantees
linear performance bounds. To take a closer look at the rops dfis convenient
to consider two distinguished values associated with each GFG

Definition 14. Given a CFG5 = (V, E), letY be the set of nodeg such that
(i) q is not a leaf of the dominator tree, and @PF(q) # ¥. Let Dy be the set of
nodes dominated hy.

We define two quantitie81(G) andB,(G) as follows®

B1(G) = l/ngXIEDF(q)I (10)
and
B2(G) = rgg(l Dql — 1)/|EDF(q)|. (11)

Since, forg € Y, 1 < [EDF(q)| < |E| and 2< Dq < |V|, itis straightforward to
show that

1

< hE) <1 (12)

% < B(G) < VI, (13)
B1(G) < B2(G). (14)

With a little more effort, it can also be shown that each of the above bound is
achieved, to within constant factors, by some family of CFGs.

Next, we argue that the valu@gs(G) and 8,(G) for parametes correspond to
extreme behaviors for thd DT. We begin by observing that, by Definition 13, if
g ¢ Y, thenq is a boundary node of thd DT, for any value ofg. Furthermore,
EDF(q) = «-EDF(q).

Wheng < B1(G), the ADT stores the fulEDF relation. In fact, in this case,
the right-hand-side of Condition (5) is strictly less than 2 forggdl Hence, each
node is a boundary node.

Wheng > B8,(G), the ADT stores thex-EDF relation. In fact, in this case, each
g € Y is an interior node, since the right-hand side of Condition (5) is no smaller
than| Dy, thus permittingZ, to contain all descendants gf

6 Technically, we assumé is not empty, a trivial case that, under Definition 18, arises only when the
CFG consists of a single path froBMART to END.
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Finally, in the rangg8:(G) < B < B2(G), one can expect intermediate behaviors
where the4DT stores something in betweenrEDF andEDF.

To obtain linear space and query tinfemust be chosen to be a constant, inde-
pendent ofG. A reasonable choice can Ige= 1, illustrated in Figure 15(c) for
the running example. Depending on the valueg§€) andg,(G), this choice can
yield anywhere from no caching to full caching. For many CFG'’s arising in prac-
tice, B1(G) < 1 < B2(G); for such CFG's8 = 1 corresponds to an intermediate
degree of caching.

6.2. LAzY PUSHING ALGORITHM. We now develop a lazy version of the the
pushing algorithm. Preprocessing consists in constructingliD& data structure.
The query to findJ(S) = DF*(S) proceeds along the following lines:

—The successof3F(w) are determined only for nodes e SU J(S).

—SetDF(w) is obtained by a querfEDF(w) to the AD7, modified to avoid
reporting of some nodes already found to bd (i%).

—The elements ofl(S) are processed according to a bottom-up ordering of the
dominator tree.

To develop an implementation of the above guidelines, consider first the simpler
problem where a sét C V is given, with its nodes listed in order of nonincreasing
level, and the set,,c; EDF(w) must be computed. For each elemenit wfthe given
order, arEDF query is made to thelDT. To avoid visiting tree nodes repeatedly
during differentEDF queries, a node is marked when it is queried and the query
procedure of Figure 14 is modified so that it never visits nodes below a marked
node. The timd/(l) to answer this simple form of query is proportional to the size
of the setV;s C q\/ of nodes visited and the total number of up-edges inLthg
lists of these nodes. Considering Bound 9 on the latter quantity, we obtain

Ta(1) = O(IVuisl + |Eupl + IVI/B) = O(EI + (1 + 1/B)IV]).  (15)

For constangs, the above time bound is proportional to program size.

In our context, set = 1 (S) = SUDF'(S) is not given directly; rather, it must be
incrementally constructed and sorted, from inBufhis can be accomplished by
keeping those nodes already discovered to delint not yet queried fOEDF in a
priority queue [Cormen et al. 1992], organized by level number in the tree. Initially,
the queue contains only the nodes3nAt each step, a node of highest level is
extracted from the priority queue and BDF (w) query is made in thelDT; ifa
reported node is not already in the output set, it is added to it as well as inserted
into the queue. From Lemmal2yel(v) < level(w), hence the level number is non-
increasing throughout the entire sequence of extractions from the priority queue.
The algorithm is described in Figure 17. Its running time can be expressed as

Ta(§) = T4(1(9) + Teo(1 () (16)

The first term accounts for thdD7 processing and satisfies Eq. (15). The second
term accounts for priority queue operations. The range for the keys has size
K, equal to the number of levels of the dominator tree. If the priority queue is
implemented using a heap, the time per operatio®{ggK) [Cormen et al.
1992], whencdpg(l (S)) = O(|1(S)|log K). A more sophisticated data structure,
exploiting the integer nature of the keys, achie@g logK) time per operation

[Van Emde Boas et al. 1977]; hendo(l (S)) = O(|1 ()| log logK).
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A simpler implementation, which exploits the constraint on insertions, consists
of an arrayA of K lists, one for each possible key in decreasing order. An element
with keyr is inserted, in timeD(1), by appending it to lisA[r]. Extraction of an
element with maximum key entails scanning the array from the component where
the last extraction has occurred to the first component whose list is not empty.
Clearly, Teg(1 (S)) = O(I1(S)] + K) = O(|V]). Using this result together with
Eqg. (15) in Eq. (16), the SSA query time can be bounded as

To(S) = O(E| + (1 + %»vn. 17)

TheDF subgraplGye. = f/(G, S) implicitly built by the lazy pushing algorithm
contains, for eack € DF*(S), theDF edge v — V) wherew is the first node
of DF~Y(v) N (SU DF*(S)) occurring in the processing ordering. This ordering is
sensitive to the specific way the priority queue is implemented and ties between
nodes of the same level are broken.

7. Experimental Results

In this section, we evaluate the lazy pushing algorithm of Figure 17 experimentally,
focusing on the impact that the choice of paramgtéias on performance. These
experiments shed light on the two-phase and fully lazy approaches because the
lazy algorithm reduces to these approaches for extreme valgessfxplained in
Section 6.1.3. Intermediate valuesfn the lazy algorithm let us explore trade-

offs between preprocessing time (a decreasing functigs) @ind query time (an
increasing function op).

The programs used in these experiments include a standard model problem
and the SPEC92 benchmarks. The SPEC programs tend to have sparse domi-
nance frontier relations, so we can expect a two-phase approach to benefit from
small query time without paying much penalty in preprocessing time and space;
in contrast, the fully lazy approach might be expected to suffer from excessive
recomputation of dominance frontier information. The standard model problem
on the other hand exhibits a dominance frontier relation that grows quadratically
with program size, so we can expect a two-phase approach to suffer consider-
able overhead, while a fully lazy algorithm can get by with little preprocess-
ing effort. The experiments support these intuitive expectations and at the same
time show that intermediate values pf(say, 8 = 1) are quite effective for all
programs.

Next, we describe the experiments in more detail.

A model problem for SSA computation is a nest aépeat-until loops, whose
CFG we denotés, illustrated in Figure 18. Even thoud® is structured, itOF
relation grows quadratically with program size, making it a worst-case scenario for
two-phase algorithms. The experiments reported here are basgg@rlthough
a 200-deep loop nest is unlikely to arise in practice, it is large enough to exhibit
the differences between the algorithms discussed in this article. We used the lazy
pushing algorithm to computeF*(n) for different nodesh in the program, and
measured the corresponding running time as a functigharfa SUN-4. In the 3D
plot in Figure 19, the axis is the value offogy(8), the y-axis is the node number
n, and thez-axis is the time for computinBF*(n).
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Procedure ¢-placement (S: set of nodes)

Il ADT data structure, is global

Initialize a Priority Queue PQ;

DF*(S) = {}; Set of output nodes (global variable)
Insert nodes in se$into P Q; //key is level in tree
IntreeT, mark all nodes in se%;

while P Q is not emptydo
w = ExtractMaxP Q); //w is deepest in tree
Querylncr (w);

10: od;

11: Delete marks from nodes iR;

12:  OutputDF*(9);

1

Procedure Querylncr(QueryNode);

{

1 Visitincr (QueryNode, QueryNode);

}

Procedure Visitincr(QueryNode, VisitNode);

{

©ONOORWNRT

1 for each node in L[VisitNodé

2 in list orderdo

3 if idom(v) is strict ancestor oQueryNode
4: then

5: DF*(S) =DF*(S) U {v};

6: if v is not marked

7 then

8 Mark v;

9: Insertv into P Q;

10: endif ;

11: else break; // exit from the loop

12: od;

13:  if VisitNode is not a boundary node

14: then

15: for each child C olisitNode

16: do

17: if C is not marked

18: then Visitincr (QueryNode,C);
19: od;

20: endif ;

}
Fic. 17. Lazy pushing algorithm, based @D 7T .

The 2D plot in Figure 18 shows slices parallel to replane of the 3D plot for
three different values g8—a very large value (Sreedhar-Gao), a very small value
(Cytron et al.), and 1.

From these plots, it is clear that for small valuedffull caching/two-phase),
the time to comput®F* grows quadratically as we go from outer loop nodes to
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Fic. 19. Time forg-placement in model proble@,qo by lazy pushing with parameter.

inner loop nodes. In contrast, for large valueggho caching/fully lazy), this time
is essentially constant. These results can be explained analytically as follows.

The time to comput®F* sets depends on the number of nodes and the number
of DF graph edges that are visited during the computation. It is easy to show that,
forl<n<I,wehaveDF(n)=DF2 —n+1)=1{1,2,...,n}

For very small values g8, the dominance frontier information of every node is
stored at that node (full caching). Foxln < |, computingDF* (n) requires a visit
toallnodesinthe sél, 2, ..., n}. The number oDF edges examined during these
visitsis 1+ 2+ - - - +n = n(n+ 1)/2; each of these edge traversals involves a visit
to the target node of theF edge. The reader can verify that a symmetric formula
holds for nodes numbered betweleand 2. These results explain the quadratic
growth of the time foDF* set computation when full caching is used.

For large values oB, we have no caching of dominance frontier information.
Assume that 1< n < |. To computeDF(n), we visit all nodes in the dominator
tree subtree below, and traverskedges to determine thBf-(n) = {1, 2, ..., n}.
Subsequently, we visit nodes £ 1), (n — 2) etc., and at each node, we visit only
that node and the node immediately below it (which is already marked); since no
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SSA Computation for SPEC Benchmarks
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Fic. 20. Time forg-placement in SPEC92 benchmarks by lazy pushing with parameter

DF edges are stored at these nodes, we traverddFnedges during these visits.
Therefore, we visit (B4 n) nodes, and traversedges. Sinca is small compared
to 3, we see that the time to compud&*(n) is almost independent of which is
borne out by the experimental results.

Comparing the two extremes, we see that for small valuas, &dll caching
performs better than no caching. Intuitively, this is because we suffer the overhead
of visiting all nodes belowm to computeDF(n) when there is no caching; with full
caching, théF set is available immediately at the node. However, for large values
of n, full caching runs into the problem of repeatedly discovering that certain nodes
are in the output set—for example, in computiDg*(n), we find that node 1 is
in the output set when we examibd-(m) for everym betweem and 1. It is easy
to see that with no caching, this discovery is made exactly once (when hagle 2
visited during the computation @F*(n)). The cross-over value of at which no
caching performs better than full caching is difficult to estimate analytically but
from Figure 19, we see that a valuefpt= 1 outperforms both extremes for almost
all problem sizes.

Since deeply nested control structures are rare in real programs, we would expect
the time required fap-function placementin practice tolook like a slice of Figure 19
parallel to thexzplane for a small value of. That is, we would expect full caching
to outperform no caching, and we would expect the ugeefl to outperform full
caching by a small amount. Figure 20 shows the total time requiredgefdoction
placement for all unaliased scalar variables in all of the programs in the SPEC92
benchmarks. It can be seen that full caching (smalbutperforms no caching
(large B) by a factor between 3 and 4. In Sreedhar and Gao [1995], reported that
their algorithm, essentially lazy pushing with no caching, outperformed the Cytron
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et al. algorithm by factors of 5 to 10 on these benchmarks. These measurements
were apparently erroneous, and new measurements taken by them are in line with
our numbers (Vugranam C. Sreedhar and Guang R. Gao, personal communication).
Using B = 1 gives the best performance, although the advantage over full caching
is small in practice.

Other experiments we performed showed that lock-step algorithms were not
competitive with two phase and lazy algorithms because of the overhead of
preprocessing that requires finding strongly connected components and perform-
ing topological sorting. The pulling algorithm is a remarkably simfplelacement
algorithm that achieves linear space and time bounds for preprocessing and query,
but for these benchmarks, for example, the time it toolgfpiacement was almost
10 seconds, an order of magnitude slower than the best lazy pushing algorithm.

Therefore, for practical intra-procedural SSA computation, we recommend the
lazy pushing algorithm based on tWeD7 with a value ofg = 1 since its imple-
mentation is not much more complicated than that of two-phase algorithms.

8. ¢-Placement for Multiple Variables in Structured Programs

The ¢-placement algorithms presented in the previous sections are quite efficient,
and indeed asymptotically optimal when only one variable is processed for a given
program. However, when several variables must be processed, the quefltime
for each variable could be improved by suitable preprocessing of the CFG. Clearly,
guery time satisfies the lower bound

Tq = QS|+ 13(9)),

where J(S) = UxesJd(X), becauséS| and|J(S)| are the input size and the output
size of the query, respectively. The quant®y+|J(S)| can be considerably smaller
than|E|.

Achieving optimal, that isO(|S| + |J(S)|), query time for arbitrary programs is
not a trivial task, even if we are willing to tolerate high preprocessing costs in time
and space. For instance, Rt = M. Then, a search in the grap#,(R) starting at
the nodes irS will visit a subgraph U J(S), Es) intime Ty = O(|S| + [ J(9)| +
|Esgl|). Since|Eg| can easily be the dominating term in the latter siijunay well
be considerably larger than the target lower bound. Nevertheless, optimal query
time can be achieved in an important special case described next.

Definition 15. We say that théM relation for a CFGG = (V, E) is forest
structuredif its transitive reductioril; is a forest, with edges directed from child
to parent and with additional self-loops at some nodes.

PropPosITION14. If M is forest structured, then, for any S V, the set {S)
can be obtained in query timg, & O(|S| + [J(9)I).

PrROOF. To compute the sel(S) of all nodes that are reachable frognby
nontrivial M-paths, for eachiv € S, we mark and output if it has a self-loop;
then we mark and output the interior nodes on the pat¥i;ifirom w to its highest
ancestor that is not already marked.

In the visited subforest, each edge is traversed only once. The number of visited
nodes is no smaller than the number of visited edges. A nodevisited if and
only if it is a leaf of the subforestv( e S), or an internal node of the subforest
(v € J(9). Hence, Ty = O(|S| + | I(9)]), as stated. []
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For the interesting class atructured programgdefined in Section 8.1), we
show (in Section 8.2) that the merge relation is indeed forest structured. Hence, by
Proposition 14,J(S) can be computed in optimal query time. In Section 8.3, we
also show thaM, can be constructed optimally in preprocessing to{gv |+ | E|).

8.1. SRUCTURED PROGRAMS We begin with the following inductive defini-
tion of structured programs.

Definition 16. TheCFG Gy = (START = END, ¢) is structured If G; =
(V1, E1) and G, = (V,, Ep) are structuredCFGs, with V3 NV, = @, then the
following CFGs are alsstructured

—Theseries GG, = (V1 U V,, E; U E;> U {END; — START,}), with START =
START; andEND = END,. We say thatG,G; is aseriesregion.

—Theparallel or if-then-else G ® G, = (V1 U V, U {START, END}, E; U E, U
{START — STARTi, START — START,, END; — END, END, — END}). We say
thatG; ® G is aconditionalregion.

—Therepeat-until G = (V; U {START, END}, E; U {START — STARTy, END; —
END, END — START}). We say thaG] is aloopregion.

If W C Vis (the vertex set of) a series, loop, or a conditional region in a structured
CFG G = (V, E), we use the notatioBTART(W) andEND(W) for the entry and
the exit points ofW, respectively, we leboundaryW) = {START(W), END(W)},
interior(W) = W — boundaryW), and writeW =< START(W), END(W) >.

Abusing notation, we will us®/ =< START(W), END(W) > to denote also the
subgraph ofs induced by the vertex s&V.

The following lemma lists a number of useful properties of dominance in a
structured program. The proofs are simple exercises and hence are omitted.

LEMMA 5. Let W =< s,e > be a series, loop, or conditional region in a
structured CFG. Then:

(1) Node s dominates any w W .

(2) Node e does not properly dominate any=wV .

(3) If w is dominated by s and not properly dominated by e, then W

(4) A node we W dominates e if and only if w does not belong to the interior of
any conditional region G= W.

(5) Any loop or conditional region U is either (i) disjoint from, (ii) equal to, (jii)
subset of, or (iv) superset of W.

8.2. THE M RELATION IS FORESFSTRUCTURED. It is easy to see that, in a
structured program, an up-edge is either a back-edge of a loop or an edgeEND the
of a conditional. The nodes whoE®F set contains a given up-edge are characte-
rized next.

LEMMA 6. LetW =< s, e > bearegion in a structured CFG & (V, E).

(1) If W is aloop, ther{e — s) € EDF(w) iff (i) w € W and (ii) w dominates e.

(2 fW =<s,61 > ® < §, & > isaconditional, then,for= 1,2, (g — €) e
EDF(w) iffw e< 5, e > and w dominates;je
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PrRoOOF We give the proof only for (1) and omit the proof for (2), which is
similar.

(=) By the assumptiong( — s) € EDF(w) and Definition 6, we have that
(i) w dominates and (iii) w does not strictly dominate Thus, (ii) is immediately
established. To establish (i), we show that é\joes not strictly dominater, that
(v) sdominatesw, and then invoke part (3) of Lemma 5.

Indeed, (iv) follows from (ii) and the asymmetry of dominance.

Observe next that bothandw are dominators o (from part (1) of Lemma 5
and (i), respectively); hence, one of them must dominate the other. In view of (iii),
the only possibility remains (v).

(<) By assumption, (iiv dominatese. Also by assumptionw € W so that,
by part (3) of Lemma 5, (v} dominatesv. By (v) and asymmetry of dominance,
we have that (iiiw does not strictly dominate By (ii), (iii), and Definition 6, it
follows that € — s) € EDF(w). O

Lemma 6 indicates th&tF(w) can be determined by examining the loop and con-
ditional region<C that contairw and checking whethev dominates an appropriate
node. By part (4) of Lemma 5, this check amounts to determining whethetongs
to the interior of some conditional regi@ € W. Since the regions containing
are not disjoint, by part (5) of Lemma 5, they form a sequence ordered by inclu-
sion. Thus, each region in a suitable prefix of this sequence contributes one node
to DF(w). To help formalizing these considerations, we introduce some notation.

Definition 17. Given a nodev in a structured CFG, let;(w) C Ha(w) C
-++ C Hgw)(w) be the sequence of loop regions containm@nd of conditional
regions containingv as an interior node. We also &) be the largest indekfor
which Hy(w), ..., Hew)(w) are all loop regions.

Figure 21(a) illustrates a structured CFG. The sequence of regions forknode
is Hi(k) =< J,1 >, Ha(k) =< i,m >, H3(k) =< h,n >, Hy(k) =< g9,q >,
Hs(k) =< a,r >, withd(w) = 5, and¢{(w) = 1, sinceH,(w) is the first conditional
region in the sequence. With the help of the dominator tree shown in Figure 21(b),
one also sees thatF(k) = {j, m} = {START(H1(Kk)), END(H(k))}. For nodec, we
haveH;(c) =< b, e >, Hy(c) =< a,r >,d(c) = 2,¢(c) = 0, andDF(c) = {r} =
{END(Hy(c))}.

PrROPOSITION15. Forw € V, if £(w) < d(w), then we have:
DF(w) = {START(H1(W)), ..., START(Hu)(W)), END(Hew)+1(W))},

else(¢(w) = d(w), that is, no conditional region contains w in its interjowe
have:

DF(w) = {START(H1(W)), . .., START(Hw)(W))}.

PROOF ... C DF(w). Consider a nodS8TART(H;(w)) wherei < £(w). By
definition,w € H;(w) and there is no conditional regi@ c H;(w) that containsv
as aninternal node; by part (4) of Lemmagdominate€ND(H; (w)). By Lemma6,
START(H;(w)) € DF(w). A similar argument establishes trEND(Hw)+1(W)) €
DF(w).

DF(w) € ---. Let (u — v) € EDF(w). If (u — V) is the back-edge of a loop
regionW =< v, u >, Lemma 6 asserts that dominatesu and is contained in
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(a) A Structured CFG

(c) Merge Relation
Fic. 21. A structured CFG and itd, forest.

W. Sincew dominatesu, no conditional regiofC € W containsw as an internal
node. Thereforay e {START(H1(W)), ..., START(Hw)(W))}. A similar argument
if v is theEND node of a conditional region.[]

We can now establish that thid relation for structured programs is forest
structured.

THEOREM 11. The transitive reduction Mof the M relation for a structured
CFG G = (V, E) is a forest, with an edge directed from child w to its parent,
denoted iMw). Specifically, w is a root of the forest whenever(@f— {w} = ¢
and iM(w) = min(DF(w) — {w}) otherwise. In addition, there is a self-loop at w
if and only if w is the start node of a loop region.

PROOF
Forest Structure. From Proposition 15, the general case is
DF(w) = {START(H1(W)), ..., START(Hw)(W)), END(Hw)+1(W))}.

Let x andy be distinct nodes iDF(w). If x = START(H;(w)) andy = START
(Hj(w)), withi < j < £, thenH;(w) C H;(w) (see Definition 17). Furthermore,
there is no conditional regio@ such thatH;(w) ¢ C C Hj(w), otherwise, we
would havel/(w) + 1 < j against the assumption. From Proposition 15, it follows
thaty € DF(x).

The required result can be argued similarlx i&= START(H;(w)) andy = END
(Hew)y+1(w)).

Self-Loop Property. If w € DF(w), there is a priméM-pathw —> u — w on
which every node other tham is strictly dominated byv. Therefore, the last edge
u — w is an up-edge. With reference to Lemma 6 and its preamble, the fact that
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Procedure BuildMForest(CFG G, DominatorTree D):returns M;;

{

1: Assume CFG =V, E);

2. forweVdo

3: MSelfLoopjw] = FALSE;

4: iM[w] = NIL;

5. od

6: Stack ={};

7:  for eachw € V in w-orderdo

8: for eachv s.t. W — v) € Eypin reversew-orderdo
9: PushOnStack() od

10: if NonEmptyStackhen

11: if TopOfStack =w then
12: MSelfLoopjw] = TRUE;
13: DeleteTopOfStack;

14: endif

15: if NonEmptyStackhen

16: iM[w] = TopOfStack;

17: if (idom(TopOfStack)#dom(w))
18: DeleteTopOfStack;

19: endif

20: od

21:  returnM; = (iM, MSelfLoop);

—

FiGc. 22. Computing foresM, for a structured program.

w dominatesy rules out case 24 is theEND of a conditional). Thereforej — w
is the back-edge of a loop, of whiehis theSTART node.

Conversely, suppose thatis theSTART node of a loop< w, e >. Consider the
pathP = w = w obtained by appending back-edge—-> w to any pathwi> e
on which every node is contained in the loop. Simcstrictly dominates all other
nodes orP, P is a primeM-path, whencev € DF(w). [

8.3. MMPUTING M. The characterization developed in the previous section
can be the basis of an efficient procedure for computingpthforest of a structured
program. Such a procedure would be rather straightforward if the program were
represented by its abstract syntax tree. However, for consistency with the frame-
work of this article, we present here a procedure BuildMForest based on the CFG
representation and the associated dominator tree. This procedure exploits a property
of dominator trees of structured programs stated next, omitting the simple proof.

LEMMA 7. LetD be the dominator tree of a structured CFG where the children
of each node in D are ordered left to right éstorder. If node s has more than one
child, then

(1) s is theSTART of a conditional region< s,e >=< s, €1 > ® < S, & >;
(2) the children of s are;s s, and e, with e being the rightmost one;
(3) e, and e are leaves.

The algorithm in Figure 22 visits nodesdrorder and maintains a stack. When
visiting w, first the nodes ink-DF(w) are pushed on the stack in revets®rder.
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Node c|d|f|le|b | k j pl| q n m i h g |[r|a
Stack elefr|r|r j J j m ; ; ; : g
at Line 10 m m m r ? ? ? ? r

FiG. 23. Algorithm of Figure 22 operating on program of Figure 21.

Second, if the top of the stackusitself, then it is removed from the stack. Third,

if the top of the stack is now a sibling ®f, it also gets removed. We show that, at
Line 10 of the algorithm, the stack contains the nodd3fefw) in w-order from top

to bottom. Therefore, examination of the top of the stack is sufficient to determine
whether there is a self-loop at in the M-graph and to find the parent of in

the forestM;, if it exists. Figure 23 shows the contents of the stack at Line 10 of
Figure 22 when it is processing the nodes of the program of Figure 24oirer.

ProOPOSITION16. LetG = (V, E)beastructured CFG. Then, the parent(iv)
of each node we V in forest M and the presence of a self-loop at w can be
computed in time QE| + |V]) by the algorithm of Figur@2.

PROOF. Letwy, Wo, ..., Wy, be thew-ordered sequence in which nodes are
visited by the loop beginning at Line 7. We establish the loop invatigrdt Line
10 of the nth loop iteration, the stack holds the nodes in\Bj, in w-order from
top to bottom This ensures that self-loops amdl(w) are computed correctly. The
proof is by induction om.

Base case The stack is initially empty and Lines 8 and 9 will push the nodes
of «-DF(wj), in reversew-order. Sincew; is a leaf of the dominator tree, by
Theorem 8DF(w,) = a-DF(wq), andl; is established.

Inductive step We assumé, and provd ;. From the properties of post-order
walks of trees, three cases are easily seen to exhaust all possible mutual positions
of w, andwp ;.

(1) wno1 is the leftmost leaf of the subtree rooted at the first sibling r gf w
tothe right of w,. From Lemma 7 applied tparen{wy,), there is a region
< paren{wp),e >=< Wp, e > ® < $,& >. From Proposition 15,
DF(wp) < {wp, €}. Nodesw,, ande will be popped off the stack by the time
control reaches the bottom of the loop at tith iteration, leaving an empty
stack at Line 7 of then(+ 1)st iteration. Then the nodes i@-DF(wp1) will
be pushed on the stack in reveiserder. Sincev, ., is a leaf,DF(w,11) =
a-DF(wn,1) andly, 4 holds.

(2) wy, is the rightmost child of w;1, with w,,1 having other children From
Lemma 7,< wn,1, W, > iS a conditional region. Since every loop and con-
ditional region that containa,, also containsv,.; and vice-versa, it follows
from Proposition 15 thaDF(w,.1) = DF(w;,). Furthermore, the children of
Wn1 cannot be irDF(wy, 1), so they cannot be iBF(w,) either. By assump-
tion, at Line 10 of thenth iteration, the stack containdF(w,). We see that
nothing is removed from the stack in Lines 10-19 duringritieiteration be-
cause neithew, nor the siblings ofw, are inDF(wpy). Also, «-DF(wn;1)
is empty, as no up-edges emanate from the end of a conditional, so nothing is
pushed on the stack at Line 9 of thref{ 1)-st iteration, which then still contains
DF(wp) = DF(Wn1). Thus,l,,1 holds.
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(3) wy, is the only child of w.;. By Theorem 8 DF(Wn, 1) = a-DF(wny1) U
(DF(wp) — {wp}). At thenth iteration, the stack contaifid~(w,), from which
Lines 10-14 will removew, from the stack, if it is there, and Lines 15—
19 will not pop anything, sincev, has no siblings. At then(+ 1)st itera-
tion, Lines 8-9 will push the nodes in-DF(wn. 1) on the stack, which will
then contairDF(wp1). It remains to show that the nodes on the stack are in
w-order.

If «-DF(wp1) is emptyw-ordering is a corollary of,. Otherwise, there are
up-edges emanating from,, ;. Sincew,,; is not a leaf, part (3) of Lemma 7
rules out case (2) of Lemma 6. Therefong,.; must be the end node of a loop
< S, Wpy1 > and a-DF(wp 1) = {s}.

From Lemma 5, any other regiof =< s’, e > that containgv,,; in the
interior will properly include< s, w,11 >, so thats' strictly dominates (from
Lemma 5, part (1).) I is a loop region, thes € DF(w,,) occurs before' in
w-order. IfW is a conditional region, then sineec DF(wy) is the rightmost
child of s, s must occur before in w-order. In either cases, will correctly be
aboves’ or e in the stack.

The complexity bound oD (| E|+ | V) for the algorithm follows from the obser-
vation that each iteration of the loop in Lines 7—20 pushes the nodesDifr(w)
(which is charged t®(|E|)) and performs a constant amount of additional work
(which is charged t®©(|V])). O

The class of programs with forest-structurlt contains the class of struc-
tured programs (by Theorem 11) and is contained in the class of reducible pro-
grams (by Proposition 7). Both containments turn out to be strict. For exam-
ple, it can be shown that for any CFG whose dominator tree is a diairs
a forest even though such a program may not be structured, due to the pres-
ence of non-well-nested loops. One can also check that the CFG with edges
(s,a), (s, b,),(s,0),(s d),(a b),(b,d),(a,c),(ad) is reducible but itsM; re-
lation is not a forest.

If the M, relation for a CFGG is a forest, then it can be shown easily that
iM(w) = minDF(w), where the min is taken with respect toarordering of the
nodes. Theny; can be constructed efficiently by a simple modification of the node-
scan algorithm, where tHeF sets are represented as balanced trees, thus enabling
dictionary and merging operations in logarithmic time. The entire preprocessing
then takes tim@, = O(|E|log|V|[). Once the forest is available, queries can be
handled optimally as in Proposition 14.

8.4. APPLICATIONS TOCONTROL DEPENDENCE  In this section, we briefly and
informally discuss how th#, forest enables the efficient computation ofBE(w)
for a givenw. This is equivalent to the well-known problem of answerimage
control dependencqueries [Pingali and Bilardi 1997]. In fact, the node control
dependence relation in a CR&is the same as the dominance frontier relation in
the reverse CFGR, obtained by reversing the direction of all arc&SnMoreover,
it is easy to see thad is structured if and only iGR is structured.

By considering the characterization BF(w) provided by Proposition 15, it is
not difficult to show thaDF(w) containsw if and only if M; has a self-loop atv
and, in addition, it contains all the proper anceston& @i M, up to and including
the first one that happens to be the end node of a conditional region. Thus, a simple
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modification of the procedure in the proof of Proposition 14 will outp&(w) in
time O(|DF(w)]).

One can also extend the method to computd=gdE(w) or, equivalently (edge)
control dependencsets, often calledd sets. The key observation is that each edge
in M, is “generated” by an up-edge in the CFG, which could be added to the data
structure forM, and output when traversing the relevant portion of the forest path
starting aw.

Finally, observe thaDF(u) = DF(w) if and only if, in M;, (i) u andw are
siblings or are both roots and (i) andv have no self-loops. On this basis, one
can obtairDF-equivalence classes which, in the reverse CFG, correspond to the so
calledcdequivclasses.

In summary, for control dependence computations on structured programs, an
approach based on augmentations ofthalata structure offers a viable alternative
to the more general, but more complex approach using augmented postdominator
trees, proposed in Pingali and Bilardi [1997].

9. Conclusions

This article is a contribution to the state of the ariyeplacement algorithms for
converting programs to SSA form. Our presentation is based on a new relation on
CFG nodes called thmergerelation that we use to derive all known properties of
the SSA form in a systematic way. Consideration of this framework led us to invent
new algorithms fot-placement that exploit these properties to achieve asymptotic
running times that match those of the best algorithms in the literature. We presented
both known and new algorithms fgrplacement in the context of this framework,
and evaluated performance on the SPEC benchmarks.

Although these algorithms are fast in practice, they are not optimal when

¢-placement has to be done for multiple variables. In the multiple variable problem,
a more ambitious goal can be pursued. Specifically, after suitable preprocessing of
the CFG, one cantry to determipigplacement for a variable in tin@(| S|+ J(S)|)
(i.e., proportional to the number of nodes where that variable generates a defini-
tion in the SSA form). We showed how this could be done for the special case of
structured programs by discovering and exploiting the forest structure of the merge
relation. The extension of this result to arbitrary programs remains a challenging
open problem.

Appendix A.

Definition 18. A control flow graph (CFG) G= (V, E) is a directed graph in
which a node represents a statement and an edgev represents possible flow
of control fromu to v. SetV contains two distinguished NnodeXTART, with no
predecessors and from which every node is reachable&Nnavith no successors
and reachable from every node.

Definition 19. A pathfrom Xg to X, in graphG is a sequence of edges Gf
of the formxg — X3, X1 = Xo, ..., Xn_1 — Xn. Such a path is said to tsmple
if nodesxg, X1, ..., X,_1 are all distinct; ifx, = Xo the path is also said to be a
simple cycleThe length of a path is the numbreof its edges. A path with no edges
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(n = 0) is said to bempty A path fromx to y is denoted ax = yin general and
+ e el

asx — Y if it is not empty. Two paths of the for®;, = xg — X1, ..., Xn_1 — Xn

andP, = Xn = Xni1, ..., Xnem—1 — Xnim (last vertex onP; equals first vertex

on P,) are said to beoncatenableand the pathP = PP, = xp — X1, X1 —

X2, ..., Xnim—1 —> Xnim IS referred to as theroncatenation

Definition 20. A nodew dominatesa nodev, denoted \, v) € D, if every
path fromSTART to v containsw. If, in addition,w = v, thenw is said tostrictly
dominate v

It can be shown that dominance is a transitive relation with a tree-structured
transitive reduction called th@gominator tree T = (V, D;). The root of this tree
is START. The parent of a node (distinct fromSTART) is called theimmediate
dominatorof v and is denoted bigom(v). We letchildren(w) = {v : idom(v) = w}
denote the set of children of nodein the dominator tree. The dominator tree can
be constructed i©O(|E|x(|E|)) time by an algorithm due to Lengauer and Tarjan
[1979], orinO(| E|) time by a more complicated algorithm due to Buchsbaum et al.
[1998]. The following lemma is useful in proving properties that rely on dominance.

LEMMA 8. Let G = (V, E) be a CFG. If w dominates u, then there is a path
from w to u on which every node is dominated by w.

PrOOF  Consider any agyclic path = START — u. Sincew dominatesi, P
must contairw. Let P, = w — u be the suffix of pathP that originates at node.

Suppose there is a nodeon pathP; that is not dominated by. We can write
pathP; asw Ans u; let P, be the suffixn £ uofthis path. Nodev cannot occur
on P, becauseP is acyclic.

Sincen is not dominated byv, there is a pattQ = START —> n that does not
containw. The concatenation @ with P, is a path fron8TART to u not containing
w, which contradicts the fact that dominatess. [

A key data structure in optimizing compilers is tdef-use chairfAho et al.
1986]. Briefly, a statement in a program is saidéfinea variableZ if it may write
to Z, and it is said tause Zif it may read the value oZ before possibly writing
to Z. By convention, the&TART node is assumed to be a definition of all variables.
Thedef-use graplof a program is defined as follows:

Definition 21. Thedef-use graptof a control flow graphG = (V, E) for
variable Z is a graphDU = (V, F) with the same vertices & and an edge
(n1, np) whenevem; is a definition of aZ, n, is a use ofZ, and there is a path
in G from n; to n, that does not contain a definition d@f other thamy or n,. If
(n1, n2) € F, then definitiom; is said toreachthe use ofZ atn,.

In general, there may be several definitions of a variable that reach a use of that
variable. Figure 1(a) shows the CFG of a program in which n8@aRT, A and C
are definitions oZ. The use oZ in node F is reached by the definitions in nodes
A and C.
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