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Dominators, 
control-dependence 

and SSA formand SSA form

Organization

• Dominator relation of CFGs
– postdominator relation

• Dominator tree
• Computing dominator relation and tree

– Dataflow algorithm
– Lengauer and Tarjan algorithm

• Control-dependence relation
• SSA form

Control-flow graphs
• CFG is a DAG
• Unique node START from which 

all nodes in CFG are reachable
• Unique node END reachable from 

all nodes
• Dummy edge to simplify 

discussion   START END
P th i CFG f d

START

a

b

c

• Path in CFG: sequence of nodes, 
possibly empty, such that 
successive nodes in sequence are 
connected in CFG by edge

– If x is first node in sequence and y 
is last node, we will write the path 
as x * y 

– If path is non-empty (has at least 
one edge) we will write x + y

d e

f

g

END

Dominators

• In a CFG G, node a is 
said to dominate node 
b if every path from 
START to b contains 

a

b

c

START

a.
• Dominance relation: 

relation on nodes
– We will write a dom b 

if a dominates b

d e

f

g

END
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Example
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Computing dominance relation

• Dataflow problem:

N Dom out(N) = {N} U Dom in(N) 

Domain: powerset of nodes in CFG

N Dom_out(N)  {N} U Dom_in(N) 
Confluence operation: set intersection

Find greatest solution

Work through example on previous slide to check this.
Question: what do you get if you compute least solution?

Properties of dominance

• Dominance is
– reflexive: a dom a
– anti-symmetric: a dom b and b dom a a = b

transitive: a dom b and b dom c a dom c– transitive: a dom b and b dom c a dom c
– tree-structured: 

• a dom c and b dom c a dom b or b dom a
• intuitively, this means dominators of a node are 

themselves ordered by dominance 

Example of proof

• Let us prove that dominance is transitive.
– Given: a dom b and b dom c
– Consider any path P: START + c

Since b dom c P must contain b– Since b dom c, P must contain b.
– Consider prefix of P = Q: START + b
– Q must contain a because a dom b.
– Therefore P contains a.
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Dominator tree example

START

a

b

START

ENDa

c

d e

f

g

END

b c

d e f

g

Check: verify that from dominator tree, you can generate full relation

Computing dominator tree

• Inefficient way:
– Solve dataflow equations to compute full 

dominance relation
– Build tree top-downBuild tree top-down

• Root is START
• For every other node

– Remove START from its dominator set
– If node is then dominated only by itself, add node as child 

of START in dominator tree

• Keep repeating this process in the obvious way

Building dominator tree directly

• Algorithm of Lengauer and Tarjan 
– Based on depth-first search of graph
– O(E*α(E)) where E is number of edges in 

CFGCFG
– Essentially linear time

• Linear time algorithm due to Buchsbaum 
et al
– Much more complex and probably not efficient 

to implement except for very large graphs

Immediate dominators

• Parent of node b in tree, if it exists, is 
called the immediate dominator of b 
– written as idom(b)

idom not defined for START– idom not defined for START
• Intuitively, all dominators of b other than b 

itself dominate idom(b)
– In our example, idom(c) = a
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Useful lemma
• Lemma: Given CFG G 

and edge a b, idom(b) 
dominates a

• Proof: Otherwise, there is 
a path P: START + a 
th t d t t i

START

ENDa

that does not contain 
idom(b). Concatenating 
edge a b to path P, we 
get a path from START to 
b that does not contain 
idom(b) which is a 
contradiction.

b
c

d e f

g

f b is edge in CFG
Idom(b) = a which dominates f 

Postdominators

• Given a CFG G, node b is said to postdominate
node a if every path from a to END contains b.
– we write b pdom a to say that b postdominates a

• Postdominance is dominance in reverse CFG 
obtained by reversing direction of all edges and 
interchanging roles of START and END.

• Caveat: a dom b does not necessarily imply b 
pdom a. 
– See example: a dom b but b does not pdom a

Obvious properties

• Postdominance is a tree-structured relation
• Postdominator relation can be built using a 

backward dataflow analysis.
• Postdominator tree can be built using LengauerPostdominator tree can be built using Lengauer 

and Tarjan algorithm on reverse CFG
• Immediate postdominator: ipdom
• Lemma: if a b is an edge in CFG G, then 

ipdom(a) postdominates b. 

Control dependence

• Intuitive idea: 
– node w is control-dependent on a node u if 

node u determines whether w is executed
• Example:• Example:

e

S1 S2

m

START

END

START
…..
if e then S1 else S2
….
END

We would say S1 and S2 are control-dependent on e
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Examples (contd.)

e

S1

START

START
…..
while e do S1;

END

….
END

We would say node S1 is control-dependent on e.
It is also intuitive to say node e is control-dependent on itself:

- execution of node e determines whether or not e is executed again.

Example (contd.)
• S1 and S3 are control-

dependent on f
• Are they control-dependent on 

e?
• Decision at e does not fully 

determine if S1 (or S3 is 
executed) since there is a later 

e

S2

START

f )
test that determines this

• So we will NOT say that S1 
and S3 are control-dependent 
on e
– Intuition: control-dependence 

is about “last” decision point
• However, f is control-

dependent on e, and S1 and 
S3 are transitively (iteratively) 
control-dependent on e

S2

m

END

S1 S3

n

Example (contd.)
• Can a node be control-

dependent on more than 
one node?
– yes, see example
– nested repeat-until loops t1

n

p p
• n is control-dependent on 

t1 and t2 (why?)

• In general, control-
dependence relation can 
be quadratic in size of 
program

t1

t2

Formal definition of control 
dependence

• Formalizing these intuitions is quite tricky
• Starting around 1980, lots of proposed 

definitions
• Commonly accepted definition due toCommonly accepted definition due to 

Ferrane, Ottenstein, Warren (1987)
• Uses idea of postdominance
• We will use a slightly modified definition 

due to Bilardi and Pingali which is easier 
to think about and work with
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Control dependence definition
• First cut: given a CFG G, a node w is control-

dependent on an edge (u v) if 
– w postdominates v
– ……. w does not postdominate u

Intuitively• Intuitively, 
– first condition: if control flows from u to v it is 

guaranteed that w will be executed
– second condition: but from u we can reach END 

without encountering w
– so there is a decision being made at u that 

determines whether w is executed

Control dependence definition
• Small caveat: what if w = u in 

previous definition?
– See picture: is u control-

dependent on edge u v? 
– Intuition says yes, but 

definition on previous slides 
says “u should not

u

v

says u should not 
postdominate u” and our 
definition of postdominance is 
reflexive

• Fix: given a CFG G, a node w 
is control-dependent on an 
edge (u v) if 
– w postdominates v
– if w is not u, w does not 

postdominate u

Strict postdominance
• A node w is said to strictly postdominate a node 

u if 
– w != u 
– w postdominates u

That is strict postdominance is the irreflexive• That is, strict postdominance is the irreflexive 
version of the dominance relation

• Control dependence: given a CFG G, a node w 
is control-dependent on an edge (u v) if 
– w postdominates v
– w does not strictly postdominate u

Example

START

a

b
START a
f b
c d

a   b   c   d   e   f   g

x x x x
x x x

x
c

d e

f

g

END

c e
a b

x
x
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Computing control-dependence 
relation

• Nodes control 
dependent on edge 
(u v) are nodes on 
path up the 
postdominator tree

END

STARTg

f
postdominator tree 
from v to ipdom(u), 
excluding ipdom(u)
– We will write this as 

[v,ipdom(u)) 
• half-open interval in 

tree

d e c

a

START a
f b
c d
c e
a b

a   b   c   d   e   f   g

x x x x
x x x

x
x

x

b

Computing control-dependence 
relation

• Compute the postdominator tree
• Overlay each edge u v on pdom tree and determine 

nodes in interval [v,ipdom(u))
• Time and space complexity is O(EV).
• Faster solution: in practice, we do not want the full p

relation, we only make queries
– cd(e): what are the nodes control-dependent on an edge e?
– conds(w): what are the edges that w is control-dependent on?
– cdequiv(w): what nodes have the same control-dependences as 

node w?
• It is possible to implement a simple data structure that 

takes O(E) time and space to build, and that answers 
these queries in time proportional to output of query 
(optimal) (Pingali and Bilardi 1997).

SSA form
• Static single assignment form

– Intermediate representation of program in which 
every use of a variable is reached by exactly one 
definition

– Most programs do not satisfy this condition
(eg) see program on next slide: use of Z in node F is reached• (eg) see program on next slide: use of Z in node F is reached 
by definitions in nodes A and C

– Requires inserting dummy assignments called Φ-
functions at merge points in the CFG to “merge” 
multiple definitions

– Simple algorithm: insert Φ-functions for all variables at 
all merge points in the CFG and rename each real 
and dummy assignment of a variable uniquely

• (eg) see transformed example on next slide

SSA example
START

Z:= …

p1

START

Z0:= …

p1
Z1 := Φ(Z4,Z0) 

A

B

C

A

B

C
Z:= …. ……

p3

p2

print(Z)

END

Z2:= …. Z3:= Φ(Z1,Z3)

p3

Z4:= Φ(Z2,Z3)
p2

print(Z4)

END

C
D

E

F

G

C
D

E
G

F



8/30/2010

8

Minimal SSA form

• In previous example, dummy assignment Z3 is 
not really needed since there is no actual 
assignment to Z in nodes D and G of the original 
program.

• Minimal SSA form
– SSA form of program that does not contain such 

“unnecessary” dummy assignments
– See example on next slide

• Question: how do we construct minimal SSA 
form directly?

Minimal-SSA form Example

Dominance frontier

• Dominance frontier of node w
– Node u is in dominance frontier of node w if w

• dominates a CFG predecessor v of u, but
• does not strictly dominate udoes not strictly dominate u

• Dominance frontier = control dependence 
in reverse graph!

A
B
C
D
E
F
G

A  B  C  D  E  F  G 

x
x

x
x

x

Example from previous slide

Iterated dominance frontier
• Irreflexive closure of dominance frontier relation
• Related notion: iterated control dependence in reverse graph
• Where to place Φ-functions for a variable Z

– Let Assignments = {START} U {nodes with assignments to Z in original 
CFG}

– Find set I = iterated dominance frontier of nodes in Assignments
– Place Φ-functions in nodes of set I– Place Φ-functions in nodes of set I

• For example
– Assignments = {START,A,C}
– DF(Assignments) = {E}
– DF(DF(Assignments)) = {B}
– DF(DF(DF(Assignments))) = {B}
– So I = {E,B}
– This is where we place Φ-functions, which is correct
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Why is SSA form useful?
• For many dataflow problems, SSA form enables 

sparse dataflow analysis that
– yields the same precision as bit-vector CFG-based 

dataflow analysis 
– but is asymptotically faster since it permits the 

exploitation of sparsityexploitation of sparsity 
– see lecture notes from Sept 6th

• SSA has two distinct features
– factored def-use chains
– renaming
– you do not have to perform renaming to get 

advantage of SSA for many dataflow problems

Computing SSA form

• Cytron et al algorithm
– compute DF relation (see slides on computing 

control-dependence relation)
– find irreflexive transitive closure of DF relation for set 

f i t f h i blof assignments for each variable
• Computing full DF relation

– Cytron et al algorithm takes O(|V| +|DF|) time
– |DF| can be quadratic in size of CFG

• Faster algorithms
– O(|V|+|E|) time per variable: see Bilardi and Pingali

Dependences

• We have seen control-dependences.
• What other kind of dependences are there 

in programs?
D t d d d d th t i– Data dependences: dependences that arise 
from reads and writes to memory locations

• Think of these as constraints on reordering 
of statements

Data dependences

• Flow-dependence (read-after-write): S1 S2
– Execution of S2 may follow execution of S1 in program 

order
– S1 may write to a memory location that may be read by 

S2S2
– Example:
…..

x := 3     
…x..   
…….

flow-dependence

while e do
…x…
x: = …
……

flow-dependence

This is called a loop-carried dependence
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Anti-dependences

• Anti-dependence (write-after-read): S1 S2
– Execution of S2 may follow execution of S1 in 

program order
– S1 may read from a memory location that may be 

( ) itt b S2(over)written by S2
– Example:
x := …
..x….
x:= … anti-dependence

Output-dependence

• Output-dependence (write-after-write): 
S1 S2
– Execution of S2 may follow execution of S1 in 

program orderprogram order
– S1 and S2 may both write to same memory 

location 

Summary of dependences

• Dependence
– Data-dependence: relation between nodes

• Flow- or read-after-write (RAW)
• Anti- or write-after-read (WAR)Anti or write after read (WAR)
• Output- or write-after-write (WAW)

– Control-dependence: relation between nodes 
and edges 


